क्वांटम विध्रुवण चैनल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Model for quantum noise in quantum systems}}
{{short description|Model for quantum noise in quantum systems}}
क्वांटम विध्रुवण चैनल क्वांटम प्रणालियों में [[शोर]] के लिए मॉडल है। <math>d</math>वें>-आयामी विध्रुवण चैनल को [[क्वांटम चैनल]] के रूप में देखा जा सकता है|पूरी तरह से सकारात्मक ट्रेस-संरक्षित मानचित्र <math>\Delta_\lambda</math>, पैरामीटर पर निर्भर करता है <math>\lambda</math>, जो राज्य का मानचित्रण करता है <math>\rho</math> स्वयं और क्वांटम_स्टेट#मिश्रित_स्टेट्स के रैखिक संयोजन पर,
 
 
'''क्वांटम विध्रुवण चैनल''' क्वांटम प्रणालियों में क्वांटम नॉइज़ के लिए एक मॉडल है। <math>d</math>-आयामी विध्रुवण चैनल को पूर्ण रूप से धनात्मक ट्रेस-संरक्षित मानचित्र <math>\Delta_\lambda</math> के रूप में देखा जा सकता है, जो एक मापदंड <math>\lambda</math> पर निर्भर करता है, जो एक समष्टि <math>\rho</math> को स्वयं के रैखिक संयोजन और अधिकतम मिश्रित स्थिति पर मानचित्र करता है,
:<math>\Delta_\lambda(\rho)=(1-\lambda)\rho+\frac{\lambda}{d}I</math>.
:<math>\Delta_\lambda(\rho)=(1-\lambda)\rho+\frac{\lambda}{d}I</math>.
पूर्ण सकारात्मकता की स्थिति आवश्यक है <math>\lambda</math> सीमाओं को पूरा करने के लिए
पूर्ण धनात्मकता की स्थिति के लिए <math>\lambda</math> को सीमा को संतुष्ट करने की आवश्यकता होती है
:<math>0\le\lambda\le 1+\frac{1}{d^2-1}</math>.
:<math>0\le\lambda\le 1+\frac{1}{d^2-1}</math>.


==[[ qubit | qubit]] चैनल==
==क्यूबिट चैनल==
एकल क्वबिट विध्रुवण चैनल में ऑपरेटर-योग प्रतिनिधित्व होता है<ref>{{cite book
एकल क्वबिट विध्रुवण चैनल में घनत्व आव्यूह <math>\rho</math> द्वारा दिए गए संचालक-योग प्रतिरूप है<ref>{{cite book
   | author = [[Michael A. Nielsen]] and [[Isaac L. Chuang]]
   | author = [[Michael A. Nielsen]] and [[Isaac L. Chuang]]
   | title = Quantum Computation and Quantum Information
   | title = Quantum Computation and Quantum Information
   | publisher= Cambridge University Press
   | publisher= Cambridge University Press
   | year = 2000}}
   | year = 2000}}
</ref> [[घनत्व मैट्रिक्स]] पर <math>\rho</math> द्वारा दिए गए
</ref>


:<math>\Delta_\lambda(\rho) = \sum_{i=0}^{3} K_i \rho K_i^\dagger,</math>
:<math>\Delta_\lambda(\rho) = \sum_{i=0}^{3} K_i \rho K_i^\dagger,</math>
कहाँ <math>K_i</math> [[क्रॉस ऑपरेटर]]्स द्वारा दिए गए हैं
कहाँ <math>K_i</math> [[क्रॉस ऑपरेटर|क्रॉस संचालक]] द्वारा दिए गए हैं
:<math>K_0 = \sqrt{1-\frac{3\lambda}{4}} I, K_1 = \sqrt{\frac{\lambda}{4}} X, K_2 = \sqrt{\frac{\lambda}{4}} Y, K_3 = \sqrt{\frac{\lambda}{4}} Z</math>
:<math>K_0 = \sqrt{1-\frac{3\lambda}{4}} I, K_1 = \sqrt{\frac{\lambda}{4}} X, K_2 = \sqrt{\frac{\lambda}{4}} Y, K_3 = \sqrt{\frac{\lambda}{4}} Z</math>
और <math>\{I,X,Y,Z\}</math> [[पॉल के मैट्रिक्स]] हैं। [[क्वांटम ऑपरेशन]] की स्थिति इस तथ्य से संतुष्ट है <math>\sum_{i}K_i ^\dagger K_i = I.</math>
और <math>\{I,X,Y,Z\}</math> पाउली आव्यूह हैं। ट्रेस संरक्षण की स्थिति इस तथ्य से संतुष्ट है कि <math>\sum_{i}K_i ^\dagger K_i = I.</math>
ज्यामितीय रूप से विध्रुवण चैनल <math>\Delta_\lambda</math> [[बलोच क्षेत्र]] के समान संकुचन के रूप में व्याख्या की जा सकती है, जिसे पैरामीटराइज़ किया गया है <math>\lambda </math>. मामले में जहां <math>\lambda=1</math> चैनल किसी भी इनपुट स्थिति के लिए क्वांटम_स्टेट#मिश्रित_स्टेट्स|अधिकतम-मिश्रित स्थिति लौटाता है <math>\rho</math>, जो बलोच-गोले के एकल-बिंदु तक पूर्ण संकुचन से मेल खाता है <math> \frac{I}{2} </math> मूल द्वारा दिया गया।
 
ज्यामितीय रूप से विध्रुवण चैनल <math>\Delta_\lambda</math> की व्याख्या बलोच क्षेत्र के एक समान संकुचन के रूप में की जा सकती है, जिसे <math>\lambda </math> द्वारा मानकीकृत किया गया है। ऐसे स्थिति में जहां <math>\lambda=1</math> चैनल किसी भी इनपुट स्थिति <math>\rho</math> के लिए अधिकतम-मिश्रित स्थिति है, जो मूल द्वारा दिए गए एकल-बिंदु <math> \frac{I}{2} </math> तक बलोच-गोले के पूर्ण संकुचन से मेल खाता है।


== शास्त्रीय क्षमता ==
== मौलिक क्षमता ==


[[एचएसडब्ल्यू प्रमेय]] बताता है कि क्वांटम चैनल की शास्त्रीय क्षमता <math>\Psi</math> इसे इसकी नियमित [[होलेवो जानकारी]] के रूप में जाना जा सकता है:
एचएसडब्ल्यू प्रमेय में कहा गया है कि क्वांटम चैनल <math>\Psi</math> की मौलिक क्षमता को इसकी नियमित होलेवो जानकारी के रूप में वर्णित किया जा सकता है:
:<math>\lim_{n\to\infty}\frac{1}{n}\chi\left(\Psi^{\otimes n}\right)</math>
:<math>\lim_{n\to\infty}\frac{1}{n}\chi\left(\Psi^{\otimes n}\right)</math>
इस मात्रा की गणना करना कठिन है और यह क्वांटम चैनलों पर हमारी अज्ञानता को दर्शाता है। हालाँकि, यदि होलेवो जानकारी किसी चैनल के लिए योगात्मक है <math>\Psi</math>, अर्थात।,
 
 
इस मात्रा की गणना करना कठिन है और यह क्वांटम चैनलों पर हमारी अज्ञानता को दर्शाता है। चूंकि, यदि होलेवो जानकारी किसी चैनल <math>\Psi</math> के लिए योगात्मक है।,अर्थात
:<math>\chi\left(\Psi\otimes\Psi\right)=\chi\left(\Psi\right)+\chi\left(\Psi\right)</math>
:<math>\chi\left(\Psi\otimes\Psi\right)=\chi\left(\Psi\right)+\chi\left(\Psi\right)</math>
फिर हम चैनल की होलेवो जानकारी की गणना करके इसकी शास्त्रीय क्षमता प्राप्त कर सकते हैं।
फिर हम चैनल की होलेवो जानकारी की गणना करके इसकी मौलिक क्षमता प्राप्त कर सकते हैं।


सभी चैनलों के लिए होलेवो सूचना की संवेदनशीलता क्वांटम सूचना सिद्धांत में प्रसिद्ध खुला अनुमान था, लेकिन अब यह ज्ञात है कि यह अनुमान सामान्य रूप से मान्य नहीं है। यह यह दिखाकर सिद्ध किया गया कि सभी चैनलों के लिए [[न्यूनतम आउटपुट एन्ट्रापी]] की संवेदनशीलता कायम नहीं है,{{sfn|Hastings|2009}} जो समतुल्य अनुमान है।
सभी चैनलों के लिए होलेवो सूचना की संवेदनशीलता क्वांटम सूचना सिद्धांत में प्रसिद्ध प्रत्यक्ष अनुमान था, किन्तु अब यह ज्ञात है कि यह अनुमान सामान्य रूप से मान्य नहीं है। यह यह दिखाकर सिद्ध किया गया कि सभी चैनलों के लिए [[न्यूनतम आउटपुट एन्ट्रापी]] की संवेदनशीलता स्थिर नहीं है,{{sfn|Hastings|2009}} जो समतुल्य अनुमान है।


बहरहाल, होलवो जानकारी की संवेदनशीलता को क्वांटम डीपोलराइज़िंग चैनल के लिए दिखाया गया है,{{sfn|King|2003}} और प्रमाण की रूपरेखा नीचे दी गई है। परिणामस्वरूप, चैनल के एकाधिक उपयोगों में उलझने से शास्त्रीय क्षमता में वृद्धि नहीं हो सकती है। इस अर्थ में, चैनल शास्त्रीय चैनल की तरह व्यवहार करता है। संचार की इष्टतम दर प्राप्त करने के लिए, संदेश को एन्कोड करने के लिए ऑर्थोनॉर्मल आधार चुनना और प्राप्तकर्ता के अंत में उसी आधार पर माप करना पर्याप्त है।
सामान्यतः, होलवो जानकारी की संवेदनशीलता को क्वांटम डीपोलराइज़िंग चैनल के लिए दिखाया गया है,{{sfn|King|2003}} और प्रमाण की रूपरेखा नीचे दी गई है। परिणामस्वरूप, चैनल के एकाधिक उपयोगों में उलझने से मौलिक क्षमता में वृद्धि नहीं हो सकती है। इस अर्थ में, चैनल मौलिक चैनल की तरह व्यवहार करता है। संचार की इष्टतम दर प्राप्त करने के लिए, संदेश को एन्कोड करने के लिए ऑर्थोनॉर्मल आधार और प्राप्तकर्ता के अंत में उसी आधार पर माप करना पर्याप्त है।


=== होलेवो सूचना की योगात्मकता के प्रमाण की रूपरेखा ===
=== होलेवो सूचना की योगात्मकता के प्रमाण की रूपरेखा ===


विध्रुवण चैनल के लिए होलेवो जानकारी की संवेदनशीलता क्रिस्टोफर किंग द्वारा सिद्ध की गई थी।{{sfn|King|2003}} उन्होंने दिखाया कि विध्रुवण चैनल का [[अधिकतम आउटपुट पी-मानदंड]] गुणक है, जिसका तात्पर्य न्यूनतम आउटपुट एन्ट्रापी की योज्यता से है, जो होलेवो सूचना की योज्यता के बराबर है।
विध्रुवण चैनल के लिए होलेवो जानकारी की संवेदनशीलता क्रिस्टोफर किंग द्वारा सिद्ध की गई थी।{{sfn|King|2003}} उन्होंने दिखाया कि विध्रुवण चैनल का [[अधिकतम आउटपुट पी-मानदंड|अधिकतम आउटपुट p-मानदंड]] गुणक है, जिसका तात्पर्य न्यूनतम आउटपुट एन्ट्रापी की योज्यता से है, जो होलेवो सूचना की योज्यता के समान है।


विध्रुवण चैनल के लिए होलेवो सूचना की संवेदनशीलता का मजबूत संस्करण दिखाया गया है <math>\Delta_\lambda</math>. किसी भी चैनल के लिए <math>\Psi</math>:
विध्रुवण चैनल <math>\Delta_\lambda</math> के लिए होलेवो सूचना की संवेदनशीलता का एक सशक्त संस्करण दिखाया गया है। किसी भी चैनल <math>\Psi</math> के लिए
:<math>\chi\left(\Delta_\lambda\otimes\Psi\right)=\chi\left(\Delta_\lambda\right)+\chi\left(\Psi\right)</math>
:<math>\chi\left(\Delta_\lambda\otimes\Psi\right)=\chi\left(\Delta_\lambda\right)+\chi\left(\Psi\right)</math>
यह अधिकतम आउटपुट पी-मानदंड की निम्नलिखित गुणनशीलता द्वारा निहित है (जिसे इस रूप में दर्शाया गया है <math>v_p</math>):
यह अधिकतम आउटपुट p-मानदंड की निम्नलिखित गुणनशीलता द्वारा निहित है (जिसे <math>v_p</math> रूप में दर्शाया गया है ):
:<math>v_p\left(\Delta_\lambda\otimes\Psi\right)=v_p\left(\Delta_\lambda\right)v_p\left(\Psi\right)</math>
:<math>v_p\left(\Delta_\lambda\otimes\Psi\right)=v_p\left(\Delta_\lambda\right)v_p\left(\Psi\right)</math>
उपरोक्त की दिशा से अधिक या इसके बराबर तुच्छ है, यह टेंसर उत्पाद को उन राज्यों में लेने के लिए पर्याप्त है जो अधिकतम पी-मानदंड प्राप्त करते हैं <math>\Delta_\lambda</math> और <math>\Psi</math> क्रमशः, और आउटपुट पी-मानदंड प्राप्त करने के लिए उत्पाद स्थिति को उत्पाद चैनल में इनपुट करें <math>v_p(\Delta_\lambda)v_p(\Psi)</math>. दूसरी दिशा का प्रमाण अधिक सम्मिलित है
उपरोक्त की दिशा से अधिक या इसके समान तुच्छ है, यह टेंसर प्रोडक्ट को उन समष्टिों में लेने के लिए पर्याप्त है जो क्रमशः <math>\Delta_\lambda</math> और <math>\Psi</math> के लिए अधिकतम p-मानदंड प्राप्त करते हैं और आउटपुट p-मानदंड <math>v_p(\Delta_\lambda)v_p(\Psi)</math> प्राप्त करने के लिए प्रोडक्ट स्थिति को प्रोडक्ट चैनल में इनपुट करें दूसरी दिशा का प्रमाण अधिक सम्मिलित है


प्रमाण का मुख्य विचार विध्रुवण चैनल को सरल चैनलों के [[उत्तल संयोजन]] के रूप में फिर से लिखना है, और विध्रुवण चैनल के लिए अधिकतम आउटपुट पी-मानदंड की गुणात्मकता प्राप्त करने के लिए उन सरल चैनलों के गुणों का उपयोग करना है।
 
प्रमाण का मुख्य विचार विध्रुवण चैनल को सामान्य चैनलों के [[उत्तल संयोजन]] के रूप में पुनः लिखना है, और विध्रुवण चैनल के लिए अधिकतम आउटपुट p-मानदंड की गुणात्मकता प्राप्त करने के लिए उन सामान्य चैनलों के गुणों का उपयोग करना है।


यह पता चला है कि हम विध्रुवण चैनल को इस प्रकार लिख सकते हैं:
यह पता चला है कि हम विध्रुवण चैनल को इस प्रकार लिख सकते हैं:
:<math>\Delta_\lambda(\rho)=\sum_{n=1}^{2d^2(d+1)}c_nU_n^*\Phi_\lambda^{(n)}(\rho)Un</math>
:<math>\Delta_\lambda(\rho)=\sum_{n=1}^{2d^2(d+1)}c_nU_n^*\Phi_\lambda^{(n)}(\rho)Un</math>
कहाँ <math>c_n</math>ये धनात्मक संख्याएँ हैं, <math>U_n</math>'एकात्मक आव्यूह हैं, <math>\Phi^{(n)}_\lambda</math>कुछ [[Dephasing]] और हैं <math>\rho</math> मनमाना इनपुट स्थिति है.
जहां <math>c_n</math> धनात्मक संख्याएं हैं <math>U_n</math> एकात्मक आव्यूह हैं <math>\Phi^{(n)}_\lambda</math> कुछ डिफेसिंग चैनल हैं और <math>\rho</math> एक इच्छानुसार इनपुट स्थिति है।


इसलिए, उत्पाद चैनल को इस प्रकार लिखा जा सकता है:
इसलिए, प्रोडक्ट चैनल को इस प्रकार लिखा जा सकता है:
:<math>\left(\Delta_\lambda\otimes\Psi\right)(\rho)=\sum_{n=1}^{2d^2(d+1)}c_n\left(U_n^*\otimes I\right)\left(\Phi_\lambda^{(n)}\otimes\Psi\right)(\rho)\left(U_n\otimes I\right)</math>
:<math>\left(\Delta_\lambda\otimes\Psi\right)(\rho)=\sum_{n=1}^{2d^2(d+1)}c_n\left(U_n^*\otimes I\right)\left(\Phi_\lambda^{(n)}\otimes\Psi\right)(\rho)\left(U_n\otimes I\right)</math>
पी-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सरल सीमा दिखाने के लिए पर्याप्त है:
p-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सामान्य सीमा दिखाने के लिए पर्याप्त है:
:<math>\|\left(\Phi^{(n)}_\lambda\otimes\Psi\right)(\rho)\|_p\le v_p(\Delta_\lambda)v_p(\Psi)</math>
:<math>\|\left(\Phi^{(n)}_\lambda\otimes\Psi\right)(\rho)\|_p\le v_p(\Delta_\lambda)v_p(\Psi)</math>
इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो सकारात्मक मैट्रिक्स के उत्पाद के पी-मानदंड के लिए सीमा प्रदान करता है। प्रमाण के विवरण और गणना को छोड़ दिया गया है, इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।
इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो धनात्मक आव्यूह के प्रोडक्ट के p-मानदंड के लिए सीमा प्रदान करता है। प्रमाण के विवरण और गणना को छोड़ दिया गया है, इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।
 
=== विचार ===


=== चर्चा ===
इस प्रमाण में उपयोग की जाने वाली मुख्य तकनीक, अर्थात् अन्य सामान्य चैनलों के उत्तल संयोजन के रूप में रुचि के चैनल को पुनः लिखना, [[यूनिटल क्वबिट चैनल]] के लिए समान परिणाम प्रमाणित करने के लिए पहले उपयोग की गई विधि का सामान्यीकरण है।<ref>C. King, ''Additivity for unital qubit channels''</ref>


इस प्रमाण में उपयोग की जाने वाली मुख्य तकनीक, अर्थात् अन्य सरल चैनलों के उत्तल संयोजन के रूप में रुचि के चैनल को फिर से लिखना, [[यूनिटल क्वबिट चैनल]]ों के लिए समान परिणाम साबित करने के लिए पहले इस्तेमाल की गई विधि का सामान्यीकरण है।<ref>C. King, ''Additivity for unital qubit channels''</ref>
तथ्य यह है कि विध्रुवण चैनल की मौलिक क्षमता चैनल की होलेवो जानकारी के समान है, इसका कारण है कि हम वास्तव में मौलिक जानकारी की संचरण दर में सुधार के लिए सम्मिश्र जैसे क्वांटम प्रभावों का उपयोग नहीं कर सकते हैं। इस अर्थ में, विध्रुवण चैनल को मौलिक चैनल के रूप में माना जा सकता है।
तथ्य यह है कि विध्रुवण चैनल की शास्त्रीय क्षमता चैनल की होलेवो जानकारी के बराबर है, इसका मतलब है कि हम वास्तव में शास्त्रीय जानकारी की संचरण दर में सुधार के लिए उलझाव जैसे क्वांटम प्रभावों का उपयोग नहीं कर सकते हैं। इस अर्थ में, विध्रुवण चैनल को शास्त्रीय चैनल के रूप में माना जा सकता है।


हालाँकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के काम के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल ढूंढना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से परे शास्त्रीय क्षमता में सुधार करने के लिए क्वांटम प्रभावों का फायदा उठा सकते हैं।
चूंकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के कार्य के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल खोजना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से मौलिक क्षमता में सुधार करने के लिए क्वांटम प्रभावों का लाभ ले सकते हैं।


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 17:12, 4 December 2023


क्वांटम विध्रुवण चैनल क्वांटम प्रणालियों में क्वांटम नॉइज़ के लिए एक मॉडल है। -आयामी विध्रुवण चैनल को पूर्ण रूप से धनात्मक ट्रेस-संरक्षित मानचित्र के रूप में देखा जा सकता है, जो एक मापदंड पर निर्भर करता है, जो एक समष्टि को स्वयं के रैखिक संयोजन और अधिकतम मिश्रित स्थिति पर मानचित्र करता है,

.

पूर्ण धनात्मकता की स्थिति के लिए को सीमा को संतुष्ट करने की आवश्यकता होती है

.

क्यूबिट चैनल

एकल क्वबिट विध्रुवण चैनल में घनत्व आव्यूह द्वारा दिए गए संचालक-योग प्रतिरूप है[1]

कहाँ क्रॉस संचालक द्वारा दिए गए हैं

और पाउली आव्यूह हैं। ट्रेस संरक्षण की स्थिति इस तथ्य से संतुष्ट है कि

ज्यामितीय रूप से विध्रुवण चैनल की व्याख्या बलोच क्षेत्र के एक समान संकुचन के रूप में की जा सकती है, जिसे द्वारा मानकीकृत किया गया है। ऐसे स्थिति में जहां चैनल किसी भी इनपुट स्थिति के लिए अधिकतम-मिश्रित स्थिति है, जो मूल द्वारा दिए गए एकल-बिंदु तक बलोच-गोले के पूर्ण संकुचन से मेल खाता है।

मौलिक क्षमता

एचएसडब्ल्यू प्रमेय में कहा गया है कि क्वांटम चैनल की मौलिक क्षमता को इसकी नियमित होलेवो जानकारी के रूप में वर्णित किया जा सकता है:


इस मात्रा की गणना करना कठिन है और यह क्वांटम चैनलों पर हमारी अज्ञानता को दर्शाता है। चूंकि, यदि होलेवो जानकारी किसी चैनल के लिए योगात्मक है।,अर्थात

फिर हम चैनल की होलेवो जानकारी की गणना करके इसकी मौलिक क्षमता प्राप्त कर सकते हैं।

सभी चैनलों के लिए होलेवो सूचना की संवेदनशीलता क्वांटम सूचना सिद्धांत में प्रसिद्ध प्रत्यक्ष अनुमान था, किन्तु अब यह ज्ञात है कि यह अनुमान सामान्य रूप से मान्य नहीं है। यह यह दिखाकर सिद्ध किया गया कि सभी चैनलों के लिए न्यूनतम आउटपुट एन्ट्रापी की संवेदनशीलता स्थिर नहीं है,[2] जो समतुल्य अनुमान है।

सामान्यतः, होलवो जानकारी की संवेदनशीलता को क्वांटम डीपोलराइज़िंग चैनल के लिए दिखाया गया है,[3] और प्रमाण की रूपरेखा नीचे दी गई है। परिणामस्वरूप, चैनल के एकाधिक उपयोगों में उलझने से मौलिक क्षमता में वृद्धि नहीं हो सकती है। इस अर्थ में, चैनल मौलिक चैनल की तरह व्यवहार करता है। संचार की इष्टतम दर प्राप्त करने के लिए, संदेश को एन्कोड करने के लिए ऑर्थोनॉर्मल आधार और प्राप्तकर्ता के अंत में उसी आधार पर माप करना पर्याप्त है।

होलेवो सूचना की योगात्मकता के प्रमाण की रूपरेखा

विध्रुवण चैनल के लिए होलेवो जानकारी की संवेदनशीलता क्रिस्टोफर किंग द्वारा सिद्ध की गई थी।[3] उन्होंने दिखाया कि विध्रुवण चैनल का अधिकतम आउटपुट p-मानदंड गुणक है, जिसका तात्पर्य न्यूनतम आउटपुट एन्ट्रापी की योज्यता से है, जो होलेवो सूचना की योज्यता के समान है।

विध्रुवण चैनल के लिए होलेवो सूचना की संवेदनशीलता का एक सशक्त संस्करण दिखाया गया है। किसी भी चैनल के लिए

यह अधिकतम आउटपुट p-मानदंड की निम्नलिखित गुणनशीलता द्वारा निहित है (जिसे रूप में दर्शाया गया है ):

उपरोक्त की दिशा से अधिक या इसके समान तुच्छ है, यह टेंसर प्रोडक्ट को उन समष्टिों में लेने के लिए पर्याप्त है जो क्रमशः और के लिए अधिकतम p-मानदंड प्राप्त करते हैं और आउटपुट p-मानदंड प्राप्त करने के लिए प्रोडक्ट स्थिति को प्रोडक्ट चैनल में इनपुट करें दूसरी दिशा का प्रमाण अधिक सम्मिलित है


प्रमाण का मुख्य विचार विध्रुवण चैनल को सामान्य चैनलों के उत्तल संयोजन के रूप में पुनः लिखना है, और विध्रुवण चैनल के लिए अधिकतम आउटपुट p-मानदंड की गुणात्मकता प्राप्त करने के लिए उन सामान्य चैनलों के गुणों का उपयोग करना है।

यह पता चला है कि हम विध्रुवण चैनल को इस प्रकार लिख सकते हैं:

जहां धनात्मक संख्याएं हैं एकात्मक आव्यूह हैं कुछ डिफेसिंग चैनल हैं और एक इच्छानुसार इनपुट स्थिति है।

इसलिए, प्रोडक्ट चैनल को इस प्रकार लिखा जा सकता है:

p-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सामान्य सीमा दिखाने के लिए पर्याप्त है:

इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो धनात्मक आव्यूह के प्रोडक्ट के p-मानदंड के लिए सीमा प्रदान करता है। प्रमाण के विवरण और गणना को छोड़ दिया गया है, इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।

विचार

इस प्रमाण में उपयोग की जाने वाली मुख्य तकनीक, अर्थात् अन्य सामान्य चैनलों के उत्तल संयोजन के रूप में रुचि के चैनल को पुनः लिखना, यूनिटल क्वबिट चैनल के लिए समान परिणाम प्रमाणित करने के लिए पहले उपयोग की गई विधि का सामान्यीकरण है।[4]

तथ्य यह है कि विध्रुवण चैनल की मौलिक क्षमता चैनल की होलेवो जानकारी के समान है, इसका कारण है कि हम वास्तव में मौलिक जानकारी की संचरण दर में सुधार के लिए सम्मिश्र जैसे क्वांटम प्रभावों का उपयोग नहीं कर सकते हैं। इस अर्थ में, विध्रुवण चैनल को मौलिक चैनल के रूप में माना जा सकता है।

चूंकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के कार्य के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल खोजना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से मौलिक क्षमता में सुधार करने के लिए क्वांटम प्रभावों का लाभ ले सकते हैं।

टिप्पणियाँ

  1. Michael A. Nielsen and Isaac L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge University Press.
  2. Hastings 2009.
  3. 3.0 3.1 King 2003.
  4. C. King, Additivity for unital qubit channels


संदर्भ