क्वांटम विध्रुवण चैनल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 57: Line 57:
इस प्रकार p-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सामान्य सीमा दिखाने के लिए पर्याप्त है:
इस प्रकार p-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सामान्य सीमा दिखाने के लिए पर्याप्त है:
:<math>\|\left(\Phi^{(n)}_\lambda\otimes\Psi\right)(\rho)\|_p\le v_p(\Delta_\lambda)v_p(\Psi)</math>
:<math>\|\left(\Phi^{(n)}_\lambda\otimes\Psi\right)(\rho)\|_p\le v_p(\Delta_\lambda)v_p(\Psi)</math>
इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो धनात्मक आव्यूह के प्रोडक्ट के p-मानदंड के लिए सीमा प्रदान करता है। इस प्रकार प्रमाण के विवरण और गणना को छोड़ दिया गया है, इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।
इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो धनात्मक आव्यूह के प्रोडक्ट के p-मानदंड के लिए सीमा प्रदान करता है। इस प्रकार प्रमाण के विवरण और गणना को छोड़ दिया गया है, इस प्रकार इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।


=== विचार ===
=== विचार ===
Line 67: Line 67:
चूंकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के कार्य के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल खोजना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से मौलिक क्षमता में सुधार करने के लिए क्वांटम प्रभावों का लाभ ले सकते हैं।
चूंकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के कार्य के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल खोजना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से मौलिक क्षमता में सुधार करने के लिए क्वांटम प्रभावों का लाभ ले सकते हैं।


== टिप्पणियाँ ==
== टिप्पणियाँ                               ==
{{reflist}}
{{reflist}}




== संदर्भ ==
== संदर्भ                                                                                                                                                                                                       ==
*{{Citation |last=King |first=C. |date=14 January 2003 |title=The capacity of the quantum depolarizing channel |journal=[[IEEE Transactions on Information Theory]] |volume=49 |issue=1 |pages=221–229 |doi=10.1109/TIT.2002.806153 |arxiv=quant-ph/0204172v2}}
*{{Citation |last=King |first=C. |date=14 January 2003 |title=The capacity of the quantum depolarizing channel |journal=[[IEEE Transactions on Information Theory]] |volume=49 |issue=1 |pages=221–229 |doi=10.1109/TIT.2002.806153 |arxiv=quant-ph/0204172v2}}
*{{Citation |last=Hastings |first=M. B. |date=15 March 2009 |title=Superadditivity of communication capacity using entangled inputs |journal=[[Nature Physics]] |volume=5 |pages=255–257 |doi=10.1038/nphys1224 |arxiv=0809.3972v4 |issue=4|bibcode = 2009NatPh...5..255H }}
*{{Citation |last=Hastings |first=M. B. |date=15 March 2009 |title=Superadditivity of communication capacity using entangled inputs |journal=[[Nature Physics]] |volume=5 |pages=255–257 |doi=10.1038/nphys1224 |arxiv=0809.3972v4 |issue=4|bibcode = 2009NatPh...5..255H }}

Revision as of 17:16, 4 December 2023


क्वांटम विध्रुवण चैनल क्वांटम प्रणालियों में क्वांटम नॉइज़ के लिए एक मॉडल है। इस प्रकार -आयामी विध्रुवण चैनल को पूर्ण रूप से धनात्मक ट्रेस-संरक्षित मानचित्र के रूप में देखा जा सकता है, जो एक मापदंड पर निर्भर करता है, जो एक समष्टि को स्वयं के रैखिक संयोजन और अधिकतम मिश्रित स्थिति पर मानचित्र करता है,

.

इस प्रकार पूर्ण धनात्मकता की स्थिति के लिए को सीमा को संतुष्ट करने की आवश्यकता होती है

.

क्यूबिट चैनल

इस प्रकार एकल क्वबिट विध्रुवण चैनल में घनत्व आव्यूह द्वारा दिए गए संचालक-योग प्रतिरूप है[1]

जहाँ क्रॉस संचालक द्वारा दिए गए हैं

और पाउली आव्यूह हैं। ट्रेस संरक्षण की स्थिति इस तथ्य से संतुष्ट है कि

ज्यामितीय रूप से विध्रुवण चैनल की व्याख्या बलोच क्षेत्र के एक समान संकुचन के रूप में की जा सकती है, जिसे द्वारा मानकीकृत किया गया है। ऐसे स्थिति में जहां चैनल किसी भी इनपुट स्थिति के लिए अधिकतम-मिश्रित स्थिति है, इस प्रकार जो मूल द्वारा दिए गए एकल-बिंदु तक बलोच-गोले के पूर्ण संकुचन से मेल खाता है।

मौलिक क्षमता

इस प्रकार एचएसडब्ल्यू प्रमेय में कहा गया है कि क्वांटम चैनल की मौलिक क्षमता को इसकी नियमित होलेवो जानकारी के रूप में वर्णित किया जा सकता है:

इस मात्रा की गणना करना कठिन है और यह क्वांटम चैनलों पर हमारी अज्ञानता को दर्शाता है। चूंकि, यदि होलेवो जानकारी किसी चैनल के लिए योगात्मक है।,अर्थात

पुनः हम चैनल की होलेवो जानकारी की गणना करके इसकी मौलिक क्षमता प्राप्त कर सकते हैं।

सभी चैनलों के लिए होलेवो सूचना की संवेदनशीलता क्वांटम सूचना सिद्धांत में प्रसिद्ध प्रत्यक्ष अनुमान था, किन्तु अब यह ज्ञात है कि यह अनुमान सामान्य रूप से मान्य नहीं है। इस प्रकार यह दिखाकर सिद्ध किया गया कि सभी चैनलों के लिए न्यूनतम आउटपुट एन्ट्रापी की संवेदनशीलता स्थिर नहीं है,[2] जो समतुल्य अनुमान है।

सामान्यतः, होलवो जानकारी की संवेदनशीलता को क्वांटम डीपोलराइज़िंग चैनल के लिए दिखाया गया है,[3] और प्रमाण की रूपरेखा नीचे दी गई है। परिणामस्वरूप, चैनल के एकाधिक उपयोगों में उलझने से मौलिक क्षमता में वृद्धि नहीं हो सकती है। इस अर्थ में, चैनल मौलिक चैनल की तरह व्यवहार करता है। इस प्रकार संचार की इष्टतम दर प्राप्त करने के लिए, संदेश को एन्कोड करने के लिए ऑर्थोनॉर्मल आधार और प्राप्तकर्ता के अंत में उसी आधार पर माप करना पर्याप्त है।

होलेवो सूचना की योगात्मकता के प्रमाण की रूपरेखा

इस प्रकार विध्रुवण चैनल के लिए होलेवो जानकारी की संवेदनशीलता क्रिस्टोफर किंग द्वारा सिद्ध की गई थी।[3] उन्होंने दिखाया कि विध्रुवण चैनल का अधिकतम आउटपुट p-मानदंड गुणक है, जिसका तात्पर्य न्यूनतम आउटपुट एन्ट्रापी की योज्यता से है, जो होलेवो सूचना की योज्यता के समान है।

इस प्रकार विध्रुवण चैनल के लिए होलेवो सूचना की संवेदनशीलता का एक सशक्त संस्करण दिखाया गया है। किसी भी चैनल के लिए

इस प्रकार यह अधिकतम आउटपुट p-मानदंड की निम्नलिखित गुणनशीलता द्वारा निहित है (जिसे रूप में दर्शाया गया है ):

उपरोक्त की दिशा से अधिक या इसके समान तुच्छ है, यह टेंसर प्रोडक्ट को उन समष्टिों में लेने के लिए पर्याप्त है जो क्रमशः और के लिए अधिकतम p-मानदंड प्राप्त करते हैं और आउटपुट p-मानदंड प्राप्त करने के लिए प्रोडक्ट स्थिति को प्रोडक्ट चैनल में इनपुट करें दूसरी दिशा का प्रमाण अधिक सम्मिलित है


इस प्रकार प्रमाण का मुख्य विचार विध्रुवण चैनल को सामान्य चैनलों के उत्तल संयोजन के रूप में पुनः लिखना है, और विध्रुवण चैनल के लिए अधिकतम आउटपुट p-मानदंड की गुणात्मकता प्राप्त करने के लिए उन सामान्य चैनलों के गुणों का उपयोग करना है।

यह पता चला है कि हम विध्रुवण चैनल को इस प्रकार लिख सकते हैं:

जहां धनात्मक संख्याएं हैं एकात्मक आव्यूह हैं कुछ डिफेसिंग चैनल हैं और एक इच्छानुसार इनपुट स्थिति है।

इसलिए, प्रोडक्ट चैनल को इस प्रकार लिखा जा सकता है:

इस प्रकार p-मानदंड की उत्तलता और एकात्मक अपरिवर्तनीयता द्वारा, यह सामान्य सीमा दिखाने के लिए पर्याप्त है:

इस सीमा के प्रमाण में उपयोग किया जाने वाला महत्वपूर्ण गणितीय उपकरण लिब-थिरिंग असमानता है, जो धनात्मक आव्यूह के प्रोडक्ट के p-मानदंड के लिए सीमा प्रदान करता है। इस प्रकार प्रमाण के विवरण और गणना को छोड़ दिया गया है, इस प्रकार इच्छुक पाठकों को ऊपर उल्लिखित सी. किंग के पेपर का संदर्भ दिया गया है।

विचार

इस प्रमाण में उपयोग की जाने वाली मुख्य तकनीक, अर्थात् अन्य सामान्य चैनलों के उत्तल संयोजन के रूप में रुचि के चैनल को पुनः लिखना, यूनिटल क्वबिट चैनल के लिए समान परिणाम प्रमाणित करने के लिए पहले उपयोग की गई विधि का सामान्यीकरण है।[4]

इस प्रकार तथ्य यह है कि विध्रुवण चैनल की मौलिक क्षमता चैनल की होलेवो जानकारी के समान है, इसका कारण है कि हम वास्तव में मौलिक जानकारी की संचरण दर में सुधार के लिए सम्मिश्र जैसे क्वांटम प्रभावों का उपयोग नहीं कर सकते हैं। इस अर्थ में, विध्रुवण चैनल को मौलिक चैनल के रूप में माना जा सकता है।

चूंकि तथ्य यह है कि होलेवो जानकारी की संवेदनशीलता सामान्य रूप से मान्य नहीं है, भविष्य के कार्य के कुछ क्षेत्रों का प्रस्ताव करती है, अर्थात् ऐसे चैनल खोजना जो संवेदनशीलता का उल्लंघन करते हैं, दूसरे शब्दों में, ऐसे चैनल जो होलेवो जानकारी से मौलिक क्षमता में सुधार करने के लिए क्वांटम प्रभावों का लाभ ले सकते हैं।

टिप्पणियाँ

  1. Michael A. Nielsen and Isaac L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge University Press.
  2. Hastings 2009.
  3. 3.0 3.1 King 2003.
  4. C. King, Additivity for unital qubit channels


संदर्भ