क्वांटम वित्त: Difference between revisions

From Vigyanwiki
No edit summary
m (6 revisions imported from alpha:क्वांटम_वित्त)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{short description|Subfield of econophysics which applies quantum theory to finance}}
{{short description|Subfield of econophysics which applies quantum theory to finance}}


'''क्वांटम वित्त''' अंतःविषय अनुसंधान क्षेत्र है, जो वित्त में समस्याओं को हल करने के लिए [[क्वांटम यांत्रिकी]] और [[अर्थशास्त्र]] द्वारा विकसित सिद्धांतों और विधियों को प्रयुक्त करता है। इस प्रकार यह अर्थशास्त्र की शाखा है।


क्वांटम [[वित्त]] अंतःविषय अनुसंधान क्षेत्र है, जो वित्त में समस्याओं को हल करने के लिए [[क्वांटम यांत्रिकी]] और [[अर्थशास्त्र]] द्वारा विकसित सिद्धांतों और विधियों को लागू करता है। यह अर्थशास्त्र की शाखा है।
== उपकरण मूल्य निर्धारण पर पृष्ठभूमि ==
 
इस प्रकार वित्त सिद्धांत अधिक सीमा तक स्टॉक विकल्प मूल्य निर्धारण जैसे वित्तीय साधन मूल्य निर्धारण पर आधारित है। वित्त समुदाय के सामने आने वाली विभिन्न समस्याओं का कोई ज्ञात विश्लेषणात्मक समाधान नहीं है। परिणामस्वरूप, इन समस्याओं को हल करने के लिए संख्यात्मक विधियों और कंप्यूटर सिमुलेशन का प्रसार हुआ है। इस प्रकार इस अनुसंधान क्षेत्र को [[कम्प्यूटेशनल वित्त|कम्प्यूटेशनल]] वित्त के रूप में जाना जाता है। विभिन्न कम्प्यूटेशनल वित्त समस्याओं में उच्च स्तर की कम्प्यूटेशनल सम्मिश्रता होती है और क्लासिकल कंप्यूटरों पर समाधान तक पहुंचने में धीमी होती है। विशेष रूप से, जब विकल्प मूल्य निर्धारण की बात आती है, तो तीव्रता से परिवर्तित बाजारों पर प्रतिक्रिया करने की आवश्यकता के परिणामस्वरूप अतिरिक्त सम्मिश्रता होती है। उदाहरण के लिए, गलत मूल्य वाले स्टॉक विकल्पों का लाभ उठाने के लिए, प्रायः निरंतर परिवर्तित शेयर बाजार में अगले परिवर्तन से पहले गणना पूर्ण होनी चाहिए। इस प्रकार परिणामस्वरूप, वित्त समुदाय सदैव मूल्य निर्धारण विकल्पों के समय उत्पन्न होने वाले परिणामी प्रदर्शन उद्देश्यों को दूर करने के विधियों की खोज में रहता है। इससे ऐसे शोध को बढ़ावा मिला है जो वित्त में वैकल्पिक कंप्यूटिंग तकनीकों को प्रयुक्त करता है।
== साधन मूल्य निर्धारण पर पृष्ठभूमि ==
वित्त सिद्धांत काफी हद तक स्टॉक विकल्प मूल्य निर्धारण जैसे वित्तीय साधन मूल्य निर्धारण पर आधारित है। वित्त समुदाय के सामने आने वाली कई समस्याओं का कोई ज्ञात विश्लेषणात्मक समाधान नहीं है। परिणामस्वरूप, इन समस्याओं को हल करने के लिए संख्यात्मक तरीकों और कंप्यूटर सिमुलेशन का प्रसार हुआ है। इस अनुसंधान क्षेत्र को [[कम्प्यूटेशनल वित्त]] के रूप में जाना जाता है। कई कम्प्यूटेशनल वित्त समस्याओं में उच्च स्तर की कम्प्यूटेशनल जटिलता होती है और शास्त्रीय कंप्यूटरों पर समाधान तक पहुंचने में धीमी होती है। विशेष रूप से, जब विकल्प मूल्य निर्धारण की बात आती है, तो तेजी से बदलते बाजारों पर प्रतिक्रिया करने की आवश्यकता के परिणामस्वरूप अतिरिक्त जटिलता होती है। उदाहरण के लिए, गलत कीमत वाले स्टॉक विकल्पों का लाभ उठाने के लिए, लगभग लगातार बदलते शेयर बाजार में अगले बदलाव से पहले गणना पूरी होनी चाहिए। परिणामस्वरूप, वित्त समुदाय हमेशा मूल्य निर्धारण विकल्पों के दौरान उत्पन्न होने वाले परिणामी प्रदर्शन मुद्दों को दूर करने के तरीकों की तलाश में रहता है। इससे ऐसे शोध को बढ़ावा मिला है जो वित्त में वैकल्पिक कंप्यूटिंग तकनीकों को लागू करता है।


== क्वांटम वित्त पर पृष्ठभूमि ==
== क्वांटम वित्त पर पृष्ठभूमि ==
इन्हीं विकल्पों में से है [[ एक क्वांटम कंप्यूटर |क्वांटम कंप्यूटर]] । जिस प्रकार भौतिकी मॉडल शास्त्रीय से क्वांटम तक विकसित हुए हैं, उसी प्रकार कंप्यूटिंग भी विकसित हुई है। यह देखा गया है कि जब अनुकरण की बात आती है तो क्वांटम कंप्यूटर शास्त्रीय कंप्यूटरों से बेहतर प्रदर्शन करते हैं
इनमें से एक विकल्प क्वांटम कंप्यूटिंग है। जिस प्रकार भौतिकी मॉडल क्लासिकल से क्वांटम तक विकसित हुए हैं, उसी प्रकार कंप्यूटिंग भी विकसित हुई है। यह देखा गया है कि जब अनुकरण की बात आती है तो क्वांटम कंप्यूटर क्लासिकल कंप्यूटरों से उत्तम प्रदर्शन करते हैं इस प्रकार क्वांटम यांत्रिकी <ref>{{cite journal |url=http://citeseer.ist.psu.edu/boghosian98simulating.html|author=B. Boghosian |title=क्वांटम कंप्यूटर पर क्वांटम यांत्रिकी का अनुकरण|year= 1998|journal=Physica D: Nonlinear Phenomena|volume=120 |issue=1–2 |pages=30–42 |doi=10.1016/S0167-2789(98)00042-6 |arxiv=quant-ph/9701019 |bibcode=1998PhyD..120...30B |s2cid=6052092 }}</ref> के लिए विभिन्न अन्य एल्गोरिदम जैसे फैक्टराइज़ेशन के लिए ध्वनि का एल्गोरिदम और क्वांटम खोज के लिए ग्रोवर का एल्गोरिदम, उन्हें कम्प्यूटेशनल वित्त समस्याओं को हल करने के लिए अनुसंधान के लिए आकर्षक क्षेत्र बनाते हैं
क्वांटम यांत्रिकी<ref>{{cite journal |url=http://citeseer.ist.psu.edu/boghosian98simulating.html|author=B. Boghosian |title=क्वांटम कंप्यूटर पर क्वांटम यांत्रिकी का अनुकरण|year= 1998|journal=Physica D: Nonlinear Phenomena|volume=120 |issue=1–2 |pages=30–42 |doi=10.1016/S0167-2789(98)00042-6 |arxiv=quant-ph/9701019 |bibcode=1998PhyD..120...30B |s2cid=6052092 }}</ref> के लिए साथ साथ
कई अन्य एल्गोरिदम जैसे फैक्टराइज़ेशन के लिए शोर का एल्गोरिदम और क्वांटम खोज के लिए ग्रोवर का एल्गोरिदम, उन्हें कम्प्यूटेशनल वित्त समस्याओं को हल करने के लिए अनुसंधान के लिए आकर्षक क्षेत्र बनाते हैं।


=== क्वांटम सतत मॉडल ===
=== क्वांटम सतत मॉडल ===
अधिकांश क्वांटम विकल्प मूल्य निर्धारण अनुसंधान आमतौर पर श्रोडिंगर समीकरण जैसे निरंतर समीकरणों के परिप्रेक्ष्य से शास्त्रीय ब्लैक-स्कोल्स समीकरण | ब्लैक-स्कोल्स-मेरटन समीकरण के परिमाणीकरण पर केंद्रित होते हैं। [[इमैनुएल हेवन]] ज़ेकियान चेन और अन्य के काम पर आधारित है,<ref name=CHEN_01>{{cite journal|author=Zeqian Chen |title=वित्त सिद्धांत में द्विपद मॉडल के लिए क्वांटम सिद्धांत|journal=Journal of Systems Science and Complexity|year= 2004 |arxiv=quant-ph/0112156|bibcode = 2001quant.ph.12156C }}</ref> लेकिन श्रोडिंगर समीकरण के परिप्रेक्ष्य से बाजार पर विचार करता है। <ref>{{cite journal |author=Haven, Emmanuel |title=क्वांटम भौतिकी सेटिंग में ब्लैक-स्कोल्स विकल्प मूल्य निर्धारण मॉडल को एम्बेड करने पर चर्चा|year= 2002 |doi=10.1016/S0378-4371(01)00568-4|bibcode = 2002PhyA..304..507H |volume=304 |issue=3–4 |journal=Physica A: Statistical Mechanics and Its Applications |pages=507–524}}</ref> हेवन के काम में मुख्य संदेश यह है कि ब्लैक-स्कोल्स-मर्टन समीकरण वास्तव में श्रोडिंगर समीकरण का विशेष मामला है जहां बाजारों को कुशल माना जाता है। हेवन द्वारा प्राप्त श्रोडिंगर-आधारित समीकरण में पैरामीटर ħ है (एच के जटिल संयुग्म के साथ भ्रमित नहीं होना चाहिए) जो गैर-असीम तेज़ मूल्य परिवर्तन सहित विभिन्न स्रोतों के परिणामस्वरूप बाजार में मौजूद मध्यस्थता की मात्रा का प्रतिनिधित्व करता है, गैर-असीम तेज़ सूचना प्रसार और व्यापारियों के बीच असमान धन। हेवन का तर्क है कि इस मूल्य को उचित रूप से निर्धारित करके, अधिक सटीक विकल्प मूल्य प्राप्त किया जा सकता है, क्योंकि वास्तव में, बाजार वास्तव में कुशल नहीं हैं।
इस प्रकार अधिकांश क्वांटम विकल्प मूल्य निर्धारण अनुसंधान सामान्यतः श्रोडिंगर समीकरण जैसे निरंतर समीकरणों के परिप्रेक्ष्य से क्लासिकल ब्लैक-स्कोल्स समीकरण या ब्लैक-स्कोल्स-मेरटन समीकरण के परिमाणीकरण पर केंद्रित होते हैं। [[इमैनुएल हेवन]] ज़ेकियान चेन और अन्य के कार्य पर आधारित है,<ref name=CHEN_01>{{cite journal|author=Zeqian Chen |title=वित्त सिद्धांत में द्विपद मॉडल के लिए क्वांटम सिद्धांत|journal=Journal of Systems Science and Complexity|year= 2004 |arxiv=quant-ph/0112156|bibcode = 2001quant.ph.12156C }}</ref> किन्तु श्रोडिंगर समीकरण के परिप्रेक्ष्य से बाजार पर विचार करता है। <ref>{{cite journal |author=Haven, Emmanuel |title=क्वांटम भौतिकी सेटिंग में ब्लैक-स्कोल्स विकल्प मूल्य निर्धारण मॉडल को एम्बेड करने पर चर्चा|year= 2002 |doi=10.1016/S0378-4371(01)00568-4|bibcode = 2002PhyA..304..507H |volume=304 |issue=3–4 |journal=Physica A: Statistical Mechanics and Its Applications |pages=507–524}}</ref> इस प्रकार हेवन के कार्य में मुख्य संदेश यह है कि ब्लैक-स्कोल्स-मर्टन समीकरण वास्तव में श्रोडिंगर समीकरण का विशेष स्थिति है जहां बाजारों को कुशल माना जाता है। इस प्रकार हेवन द्वारा प्राप्त श्रोडिंगर-आधारित समीकरण में मापदंड ħ है (एच के सम्मिश्र संयुग्म के साथ भ्रमित नहीं होना चाहिए) जो गैर-असीम तेज़ मूल्य परिवर्तन सहित विभिन्न स्रोतों के परिणामस्वरूप बाजार में उपस्थित मध्यस्थता की मात्रा का प्रतिनिधित्व करता है, गैर-तीव्र सूचना प्रसार और व्यापारियों के मध्य धन हेवन का तर्क है कि इस मूल्य को उचित रूप से निर्धारित करके, अधिक स्पष्ट विकल्प मूल्य प्राप्त किया जा सकता है, क्योंकि वास्तव में, बाजार वास्तव में कुशल नहीं हैं।
 
यह कारण है कि यह संभव है कि क्वांटम विकल्प मूल्य निर्धारण मॉडल शास्त्रीय मॉडल की तुलना में अधिक सटीक हो सकता है। बेलाल ई. बाक़ी ने क्वांटम फाइनेंस पर कई पेपर प्रकाशित किए हैं और यहां तक ​​कि किताब भी लिखी है जो उनमें से कई को साथ लाती है। <ref>{{cite book |year= 2002 |bibcode=2003npte.conf..333B |author1=Baaquie, Belal E. |title = अरेखीय भौतिकी|author2=Coriano, Claudio |author3=Srikant, Marakani |page=8191 |arxiv=cond-mat/0208191 |doi=10.1142/9789812704467_0046|chapter= Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance |journal=अरेखीय भौतिकी – Theory and Experiment II |isbn=978-981-238-270-2 |s2cid=14095958 }}</ref><ref>{{cite book|last=Baaquie|first=Belal|title=Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates|year=2004|publisher=Cambridge University Press|isbn=978-0-521-84045-3|page=332}}</ref> बाक़ी के शोध का मूल और मैटाकज़ जैसे अन्य [[रिचर्ड फेनमैन]] का [[पथ अभिन्न सूत्रीकरण]] हैं।<ref>{{cite journal |url=http://citeseer.ist.psu.edu/matacz02path.html |title=पथ पर निर्भर विकल्प मूल्य निर्धारण, पथ अभिन्न आंशिक औसत पद्धति|publisher=Journal of Computational Finance|year= 2002 |arxiv=cond-mat/0005319 |bibcode=2000cond.mat..5319M|last1=Matacz|first1=Andrew}}</ref>
बाक़ी कई [[विदेशी विकल्प]]ों के लिए पथ इंटीग्रल लागू करता है और अपने परिणामों की तुलना ब्लैक-स्कोल्स-मर्टन समीकरण के परिणामों से करते हुए विश्लेषणात्मक परिणाम प्रस्तुत करता है, जिससे पता चलता है कि वे बहुत समान हैं। एडवर्ड पियोत्रोव्स्की एट अल। विकल्प के अंतर्निहित स्टॉक के व्यवहार के संबंध में ब्लैक-स्कोल्स-मर्टन धारणा को बदलकर अलग दृष्टिकोण अपनाएं।<ref>{{cite journal |title=ऑर्नस्टीन उहलेनबेक प्रक्रिया के आधार पर यूरोपीय विकल्प मूल्य निर्धारण का क्वांटम विस्तार|year= 2006 |bibcode=2006PhyA..368..176P |author1=Piotrowski, Edward W. |author2=Schroeder, Małgorzata |author3=Zambrzycka, Anna |volume=368 |issue= 1 |pages=176–182 |journal=Physica A |doi=10.1016/j.physa.2005.12.021|arxiv = quant-ph/0510121 |s2cid= 14209173 }}</ref> यह मानने के बजाय कि यह वीनर प्रक्रिया|वीनर-बैचलियर प्रक्रिया का अनुसरण करता है,<ref>{{cite book | last = Hull | first = John | title = विकल्प, वायदा और अन्य डेरिवेटिव| publisher = Pearson/Prentice Hall | location = Upper Saddle River, N.J | year = 2006 | isbn = 978-0-13-149908-9 }}</ref> वे मानते हैं कि यह ऑर्नस्टीन-उहलेनबेक प्रक्रिया का अनुसरण करता है।<ref>{{cite journal |first1=G. E. |last1=Uhlenbeck |first2=L. S. |last2=Ornstein |title=ब्राउनियन गति के सिद्धांत पर|journal=Phys. Rev. |year=1930 |volume=36 |issue=5 |pages=823–841 |doi=10.1103/PhysRev.36.823 |bibcode=1930PhRv...36..823U }}</ref> इस नई धारणा के साथ, वे क्वांटम वित्त मॉडल के साथ-साथ यूरोपीय कॉल विकल्प फॉर्मूला भी प्राप्त करते हैं।
 
हल-व्हाइट और कॉक्स-इंगरसोल-रॉस जैसे अन्य मॉडलों ने ब्याज दर डेरिवेटिव के साथ शास्त्रीय सेटिंग में समान दृष्टिकोण का सफलतापूर्वक उपयोग किया है।<ref>{{cite journal |title=The pricing of options on interest rate caps and floors using the Hull–White model|year= 1990|publisher=Advanced Strategies in Financial Risk Management}}</ref><ref>{{cite journal |title=ब्याज दरों की अवधि संरचना का एक सिद्धांत|year= 1985|publisher=Physica A}}</ref> आंद्रेई ख्रेनिकोव हेवन और अन्य के काम पर आधारित है और इस विचार को और मजबूत करता है कि ब्लैक-स्कोल्स-मर्टन समीकरण द्वारा बनाई गई बाजार दक्षता धारणा उचित नहीं हो सकती है।<ref>{{cite arXiv |title=शास्त्रीय और क्वांटम यादृच्छिकता और वित्तीय बाजार|year= 2007 |author1=Khrennikov, Andrei|eprint=0704.2865 |class= q-fin.ST }}</ref> इस विचार का समर्थन करने के लिए, ख्रेनिकोव वित्त में क्वांटम सिद्धांत को लागू करने की आलोचना पर काबू पाने के तरीके के रूप में एजेंटों का उपयोग करके प्रासंगिक संभावनाओं के ढांचे का निर्माण करता है। लुइगी एकार्डी और एंड्रियास बोकास ने फिर से ब्लैक-स्कोल्स-मर्टन समीकरण की मात्रा निर्धारित की, लेकिन इस मामले में, वे अंतर्निहित स्टॉक को ब्राउनियन और पॉइसन दोनों प्रक्रियाओं वाला भी मानते हैं।<ref>{{cite arXiv |title=क्वांटम ब्लैक-स्कोल्स समीकरण|author1=Accardi, Luigi |author2=Boukas, Andreas |eprint=0706.1300 |class=q-fin.PR |year=2007 }}</ref>


यह कारण है कि यह संभव है कि क्वांटम विकल्प मूल्य निर्धारण मॉडल क्लासिकल मॉडल की तुलना में अधिक स्पष्ट हो सकता है। बेलाल ई. शेष ने क्वांटम वित्त पर विभिन्न पेपर प्रकाशित किए हैं और यहां तक ​​कि किताब भी लिखी है जो उनमें से विभिन्न को साथ लाती है। <ref>{{cite book |year= 2002 |bibcode=2003npte.conf..333B |author1=Baaquie, Belal E. |title = अरेखीय भौतिकी|author2=Coriano, Claudio |author3=Srikant, Marakani |page=8191 |arxiv=cond-mat/0208191 |doi=10.1142/9789812704467_0046|chapter= Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance |journal=अरेखीय भौतिकी – Theory and Experiment II |isbn=978-981-238-270-2 |s2cid=14095958 }}</ref><ref>{{cite book|last=Baaquie|first=Belal|title=Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates|year=2004|publisher=Cambridge University Press|isbn=978-0-521-84045-3|page=332}}</ref> शेष के शोध का मूल और मैटाकज़ जैसे अन्य [[रिचर्ड फेनमैन]] का [[पथ अभिन्न सूत्रीकरण]] हैं।<ref>{{cite journal |url=http://citeseer.ist.psu.edu/matacz02path.html |title=पथ पर निर्भर विकल्प मूल्य निर्धारण, पथ अभिन्न आंशिक औसत पद्धति|publisher=Journal of Computational Finance|year= 2002 |arxiv=cond-mat/0005319 |bibcode=2000cond.mat..5319M|last1=Matacz|first1=Andrew}}</ref> शेष विभिन्न [[विदेशी विकल्प]] के लिए पथ इंटीग्रल प्रयुक्त करता है और अपने परिणामों की तुलना ब्लैक-स्कोल्स-मर्टन समीकरण के परिणामों से करते हुए विश्लेषणात्मक परिणाम प्रस्तुत करता है, जिससे पता चलता है कि वह बहुत समान हैं। एडवर्ड पियोत्रोव्स्की एट अल विकल्प के अंतर्निहित स्टॉक के व्यवहार के संबंध में ब्लैक-स्कोल्स-मर्टन धारणा को परिवर्तित कर भिन्न दृष्टिकोण अपनाएं <ref>{{cite journal |title=ऑर्नस्टीन उहलेनबेक प्रक्रिया के आधार पर यूरोपीय विकल्प मूल्य निर्धारण का क्वांटम विस्तार|year= 2006 |bibcode=2006PhyA..368..176P |author1=Piotrowski, Edward W. |author2=Schroeder, Małgorzata |author3=Zambrzycka, Anna |volume=368 |issue= 1 |pages=176–182 |journal=Physica A |doi=10.1016/j.physa.2005.12.021|arxiv = quant-ph/0510121 |s2cid= 14209173 }}</ref> यह मानने के अतिरिक्त कि यह वीनर प्रक्रिया या वीनर-बैचलियर प्रक्रिया का अनुसरण करता है,<ref>{{cite book | last = Hull | first = John | title = विकल्प, वायदा और अन्य डेरिवेटिव| publisher = Pearson/Prentice Hall | location = Upper Saddle River, N.J | year = 2006 | isbn = 978-0-13-149908-9 }}</ref> वह मानते हैं कि यह ऑर्नस्टीन-उहलेनबेक प्रक्रिया का अनुसरण करता है।<ref>{{cite journal |first1=G. E. |last1=Uhlenbeck |first2=L. S. |last2=Ornstein |title=ब्राउनियन गति के सिद्धांत पर|journal=Phys. Rev. |year=1930 |volume=36 |issue=5 |pages=823–841 |doi=10.1103/PhysRev.36.823 |bibcode=1930PhRv...36..823U }}</ref> इस नई धारणा के साथ, वह क्वांटम वित्त मॉडल के साथ-साथ यूरोपीय कॉल विकल्प सूत्र भी प्राप्त करते हैं।


इस प्रकार हल-व्हाइट और कॉक्स-इंगरसोल-रॉस जैसे अन्य मॉडलों ने ब्याज दर डेरिवेटिव के साथ क्लासिकल सेटिंग में समान दृष्टिकोण का सफलतापूर्वक उपयोग किया है।<ref>{{cite journal |title=The pricing of options on interest rate caps and floors using the Hull–White model|year= 1990|publisher=Advanced Strategies in Financial Risk Management}}</ref><ref>{{cite journal |title=ब्याज दरों की अवधि संरचना का एक सिद्धांत|year= 1985|publisher=Physica A}}</ref> आंद्रेई ख्रेनिकोव हेवन और अन्य के कार्य पर आधारित है और इस विचार को और सशक्त करता है कि ब्लैक-स्कोल्स-मर्टन समीकरण द्वारा बनाई गई बाजार दक्षता धारणा उचित नहीं हो सकती है।<ref>{{cite arXiv |title=शास्त्रीय और क्वांटम यादृच्छिकता और वित्तीय बाजार|year= 2007 |author1=Khrennikov, Andrei|eprint=0704.2865 |class= q-fin.ST }}</ref> इस प्रकार इस विचार का समर्थन करने के लिए, ख्रेनिकोव वित्त में क्वांटम सिद्धांत को प्रयुक्त करने की आलोचना पर नियंत्रण के विधि के रूप में एजेंटों का उपयोग करके प्रासंगिक संभावनाओं के प्रारूप का निर्माण करता है। लुइगी एकार्डी और एंड्रियास बोकास ने पुनः ब्लैक-स्कोल्स-मर्टन समीकरण की मात्रा निर्धारित की थी, किन्तु इस स्थिति में, वह अंतर्निहित स्टॉक को ब्राउनियन और पॉइसन दोनों प्रक्रियाओं वाला भी मानते हैं।<ref>{{cite arXiv |title=क्वांटम ब्लैक-स्कोल्स समीकरण|author1=Accardi, Luigi |author2=Boukas, Andreas |eprint=0706.1300 |class=q-fin.PR |year=2007 }}</ref>
=== क्वांटम द्विपद मॉडल ===
=== क्वांटम द्विपद मॉडल ===
चेन ने 2001 में पेपर प्रकाशित किया,<ref name=CHEN_01/>जहां वह क्वांटम [[द्विपद विकल्प मूल्य निर्धारण मॉडल]] प्रस्तुत करता है या इसे संक्षेप में क्वांटम द्विपद मॉडल के रूप में प्रस्तुत करता है। प्रतीकात्मक रूप से कहें तो, चेन का क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल (संदर्भित)
चेन ने 2001 में पेपर प्रकाशित किया,<ref name=CHEN_01/>जहां वह क्वांटम [[द्विपद विकल्प मूल्य निर्धारण मॉडल]] प्रस्तुत करता है या इसे संक्षेप में क्वांटम द्विपद मॉडल के रूप में प्रस्तुत करता है। इस प्रकार प्रतीकात्मक रूप से कहें तो, चेन का क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल (संदर्भित) इसके पश्चात् क्वांटम द्विपद मॉडल के रूप में) उपस्थिता क्वांटम वित्त मॉडल के लिए वही है जो कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल ब्लैक-स्कोल्स-मर्टन मॉडल के लिए था: उसी परिणाम का विवेकाधीन और सरल संस्करण यह सरलीकरण संबंधित सिद्धांतों को न केवल विश्लेषण करना सरल बनाते हैं किन्तु कंप्यूटर पर प्रयुक्त करना भी सरल बनाते हैं।
इसके बाद क्वांटम द्विपद मॉडल के रूप में) मौजूदा क्वांटम वित्त मॉडल के लिए वही है जो कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल ब्लैक-स्कोल्स-मर्टन मॉडल के लिए था: उसी परिणाम का विवेकाधीन और सरल संस्करण। ये सरलीकरण संबंधित सिद्धांतों को न केवल विश्लेषण करना आसान बनाते हैं बल्कि कंप्यूटर पर लागू करना भी आसान बनाते हैं।


=== मल्टी-स्टेप क्वांटम द्विपद मॉडल ===
=== मल्टी-स्टेप क्वांटम द्विपद मॉडल ===
मल्टी-स्टेप मॉडल में क्वांटम मूल्य निर्धारण फॉर्मूला है:
इस प्रकार मल्टी-स्टेप मॉडल में क्वांटम मूल्य निर्धारण सूत्र है:
:<math>C_0^N=\mathrm{tr}[(\bigotimes_{j=1}^{N}\rho_j){[S_N-K]}^+]</math>,
:<math>C_0^N=\mathrm{tr}[(\bigotimes_{j=1}^{N}\rho_j){[S_N-K]}^+]</math>,
जो निम्नानुसार कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल सूत्र के समतुल्य है:
जो निम्नानुसार कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल सूत्र के समतुल्य है:
Line 32: Line 25:
     {[S_0{(1+b)}^n{(1+a)}^{N-n}-K]}^+</math>.
     {[S_0{(1+b)}^n{(1+a)}^{N-n}-K]}^+</math>.


इससे पता चलता है कि यह मानते हुए कि स्टॉक मैक्सवेल-बोल्ट्ज़मैन आंकड़ों के अनुसार व्यवहार करते हैं, क्वांटम द्विपद मॉडल वास्तव में शास्त्रीय द्विपद मॉडल में ढह जाता है।
इससे पता चलता है कि यह मानते हुए कि स्टॉक मैक्सवेल-बोल्ट्ज़मैन आंकड़ों के अनुसार व्यवहार करते हैं, क्वांटम द्विपद मॉडल वास्तव में क्लासिकल द्विपद मॉडल में जाता है।


कीथ मेयर के अनुसार क्वांटम अस्थिरता इस प्रकार है:<ref>{{cite book|title=क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल का विस्तार और अनुकरण|author=Keith Meyer|publisher=The University of Manitoba|url = http://mspace.lib.umanitoba.ca/handle/1993/3154 |year= 2009}}</ref>
कीथ मेयर के अनुसार क्वांटम अस्थिरता इस प्रकार है:<ref>{{cite book|title=क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल का विस्तार और अनुकरण|author=Keith Meyer|publisher=The University of Manitoba|url = http://mspace.lib.umanitoba.ca/handle/1993/3154 |year= 2009}}</ref>
Line 38: Line 31:


==== बोस-आइंस्टीन धारणा ====
==== बोस-आइंस्टीन धारणा ====
मैक्सवेल-बोल्ट्ज़मैन आँकड़ों को क्वांटम बोस-आइंस्टीन आँकड़ों द्वारा प्रतिस्थापित किया जा सकता है जिसके परिणामस्वरूप निम्नलिखित विकल्प मूल्य सूत्र प्राप्त होगा:
इस प्रकार मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी को क्वांटम बोस-आइंस्टीन सांख्यिकी द्वारा प्रतिस्थापित किया जा सकता है जिसके परिणामस्वरूप निम्नलिखित विकल्प मूल्य सूत्र प्राप्त होगा:
:<math>C_0^N=(1+r)^{-N}\sum_{n=0}^{N}\left(\frac{q^n{(1-q)}^{N-n}}{\sum_{k=0}^{N}q^k{(1-q)}^{N-k}}\right){[S_0{(1+b)}^n{(1+a)}^{N-n}-K]}^+</math>.
:<math>C_0^N=(1+r)^{-N}\sum_{n=0}^{N}\left(\frac{q^n{(1-q)}^{N-n}}{\sum_{k=0}^{N}q^k{(1-q)}^{N-k}}\right){[S_0{(1+b)}^n{(1+a)}^{N-n}-K]}^+</math>.


बोस-आइंस्टीन समीकरण विकल्प कीमतें उत्पन्न करेगा जो कॉक्स-रॉस-रुबिनस्टीन विकल्प द्वारा उत्पादित कीमतों से भिन्न होंगी।
इस प्रकार बोस-आइंस्टीन समीकरण विकल्प मूल्यें उत्पन्न करेगा जो कॉक्स-रॉस-रुबिनस्टीन विकल्प द्वारा उत्पादित मूल्यों से भिन्न होंगी। कुछ परिस्थितियों में मूल्य निर्धारण सूत्र ऐसा इसलिए है क्योंकि स्टॉक को क्लासिकल कण के अतिरिक्त क्वांटम बोसोन कण की तरह माना जा रहा है।
कुछ परिस्थितियों में मूल्य निर्धारण सूत्र। ऐसा इसलिए है क्योंकि स्टॉक को शास्त्रीय कण के बजाय क्वांटम बोसोन कण की तरह माना जा रहा है।


== डेरिवेटिव के मूल्य निर्धारण के लिए क्वांटम एल्गोरिदम ==
== डेरिवेटिव के मूल्य निर्धारण के लिए क्वांटम एल्गोरिदम ==
पैट्रिक रेबेंट्रोस्ट ने 2018 में दिखाया कि क्वांटम कंप्यूटरों के लिए एल्गोरिदम मौजूद है जो शास्त्रीय तरीकों पर वर्गमूल लाभ के साथ वित्तीय डेरिवेटिव का मूल्य निर्धारण करने में सक्षम है।<ref>{{Cite journal|last1=Rebentrost|first1=Patrick|last2=Gupt|first2=Brajesh|last3=Bromley|first3=Thomas R.|date=2018-04-30|title=Quantum computational finance: Monte Carlo pricing of financial derivatives|journal=Physical Review A|volume=98|issue=2|pages=022321|arxiv=1805.00109|bibcode=2018PhRvA..98b2321R|doi=10.1103/PhysRevA.98.022321|s2cid=73628234}}</ref> यह विकास कार्यात्मक वित्त में अंतर्दृष्टि प्राप्त करने के लिए क्वांटम यांत्रिकी का उपयोग करने से लेकर उन गणनाओं को करने के लिए क्वांटम सिस्टम-क्वांटम कंप्यूटर का उपयोग करने की ओर बदलाव का प्रतीक है।
इस प्रकार पैट्रिक रेबेंट्रोस्ट ने 2018 में दिखाया कि क्वांटम कंप्यूटरों के लिए एल्गोरिदम उपस्थित है जो क्लासिकल विधियों पर वर्गमूल लाभ के साथ वित्तीय डेरिवेटिव का मूल्य निर्धारण करने में सक्षम है।<ref>{{Cite journal|last1=Rebentrost|first1=Patrick|last2=Gupt|first2=Brajesh|last3=Bromley|first3=Thomas R.|date=2018-04-30|title=Quantum computational finance: Monte Carlo pricing of financial derivatives|journal=Physical Review A|volume=98|issue=2|pages=022321|arxiv=1805.00109|bibcode=2018PhRvA..98b2321R|doi=10.1103/PhysRevA.98.022321|s2cid=73628234}}</ref> इस प्रकार यह विकास कार्यात्मक वित्त में अंतर्दृष्टि प्राप्त करने के लिए क्वांटम यांत्रिकी का उपयोग करने से लेकर उन गणनाओं को करने के लिए क्वांटम सिस्टम-क्वांटम कंप्यूटर का उपयोग करने की ओर परिवर्तन का प्रतीक है।
 
2020 में [[डेविड ऑरेल]] ने क्वांटम वॉक पर आधारित विकल्प-मूल्य निर्धारण मॉडल प्रस्तावित किया जो फोटोनिक्स डिवाइस पर चल सकता है।<ref>{{cite book |last=Orrell |first=David |author-link= David Orrell|date=2020 |title=Quantum Economics and Finance: An Applied Mathematics Introduction |location=New York |publisher=Panda Ohana  |isbn=978-1916081611}}</ref><ref>{{cite journal|last=Orrell|first=David| title=वित्तीय विकल्पों का एक क्वांटम वॉक मॉडल|journal=Wilmott |year=2021| volume=2021 |issue=112 |pages=62–69|doi=10.1002/wilm.10918|s2cid=233850811}}</ref><ref>{{cite news |author=<!--Staff writer(s)/no by-line.--> |date= 6 November 2021|title= Schrödinger's markets |newspaper= The Economist}}</ref>
 


इस प्रकार 2020 में [[डेविड ऑरेल]] ने क्वांटम वॉक पर आधारित विकल्प-मूल्य निर्धारण मॉडल प्रस्तावित किया था जो फोटोनिक्स डिवाइस पर चल सकता है।<ref>{{cite book |last=Orrell |first=David |author-link= David Orrell|date=2020 |title=Quantum Economics and Finance: An Applied Mathematics Introduction |location=New York |publisher=Panda Ohana  |isbn=978-1916081611}}</ref><ref>{{cite journal|last=Orrell|first=David| title=वित्तीय विकल्पों का एक क्वांटम वॉक मॉडल|journal=Wilmott |year=2021| volume=2021 |issue=112 |pages=62–69|doi=10.1002/wilm.10918|s2cid=233850811}}</ref><ref>{{cite news |author=<!--Staff writer(s)/no by-line.--> |date= 6 November 2021|title= Schrödinger's markets |newspaper= The Economist}}</ref>
== संदर्भ ==
== संदर्भ ==


Line 63: Line 53:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 29/11/2023]]
[[Category:Created On 29/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:49, 11 December 2023

क्वांटम वित्त अंतःविषय अनुसंधान क्षेत्र है, जो वित्त में समस्याओं को हल करने के लिए क्वांटम यांत्रिकी और अर्थशास्त्र द्वारा विकसित सिद्धांतों और विधियों को प्रयुक्त करता है। इस प्रकार यह अर्थशास्त्र की शाखा है।

उपकरण मूल्य निर्धारण पर पृष्ठभूमि

इस प्रकार वित्त सिद्धांत अधिक सीमा तक स्टॉक विकल्प मूल्य निर्धारण जैसे वित्तीय साधन मूल्य निर्धारण पर आधारित है। वित्त समुदाय के सामने आने वाली विभिन्न समस्याओं का कोई ज्ञात विश्लेषणात्मक समाधान नहीं है। परिणामस्वरूप, इन समस्याओं को हल करने के लिए संख्यात्मक विधियों और कंप्यूटर सिमुलेशन का प्रसार हुआ है। इस प्रकार इस अनुसंधान क्षेत्र को कम्प्यूटेशनल वित्त के रूप में जाना जाता है। विभिन्न कम्प्यूटेशनल वित्त समस्याओं में उच्च स्तर की कम्प्यूटेशनल सम्मिश्रता होती है और क्लासिकल कंप्यूटरों पर समाधान तक पहुंचने में धीमी होती है। विशेष रूप से, जब विकल्प मूल्य निर्धारण की बात आती है, तो तीव्रता से परिवर्तित बाजारों पर प्रतिक्रिया करने की आवश्यकता के परिणामस्वरूप अतिरिक्त सम्मिश्रता होती है। उदाहरण के लिए, गलत मूल्य वाले स्टॉक विकल्पों का लाभ उठाने के लिए, प्रायः निरंतर परिवर्तित शेयर बाजार में अगले परिवर्तन से पहले गणना पूर्ण होनी चाहिए। इस प्रकार परिणामस्वरूप, वित्त समुदाय सदैव मूल्य निर्धारण विकल्पों के समय उत्पन्न होने वाले परिणामी प्रदर्शन उद्देश्यों को दूर करने के विधियों की खोज में रहता है। इससे ऐसे शोध को बढ़ावा मिला है जो वित्त में वैकल्पिक कंप्यूटिंग तकनीकों को प्रयुक्त करता है।

क्वांटम वित्त पर पृष्ठभूमि

इनमें से एक विकल्प क्वांटम कंप्यूटिंग है। जिस प्रकार भौतिकी मॉडल क्लासिकल से क्वांटम तक विकसित हुए हैं, उसी प्रकार कंप्यूटिंग भी विकसित हुई है। यह देखा गया है कि जब अनुकरण की बात आती है तो क्वांटम कंप्यूटर क्लासिकल कंप्यूटरों से उत्तम प्रदर्शन करते हैं इस प्रकार क्वांटम यांत्रिकी [1] के लिए विभिन्न अन्य एल्गोरिदम जैसे फैक्टराइज़ेशन के लिए ध्वनि का एल्गोरिदम और क्वांटम खोज के लिए ग्रोवर का एल्गोरिदम, उन्हें कम्प्यूटेशनल वित्त समस्याओं को हल करने के लिए अनुसंधान के लिए आकर्षक क्षेत्र बनाते हैं

क्वांटम सतत मॉडल

इस प्रकार अधिकांश क्वांटम विकल्प मूल्य निर्धारण अनुसंधान सामान्यतः श्रोडिंगर समीकरण जैसे निरंतर समीकरणों के परिप्रेक्ष्य से क्लासिकल ब्लैक-स्कोल्स समीकरण या ब्लैक-स्कोल्स-मेरटन समीकरण के परिमाणीकरण पर केंद्रित होते हैं। इमैनुएल हेवन ज़ेकियान चेन और अन्य के कार्य पर आधारित है,[2] किन्तु श्रोडिंगर समीकरण के परिप्रेक्ष्य से बाजार पर विचार करता है। [3] इस प्रकार हेवन के कार्य में मुख्य संदेश यह है कि ब्लैक-स्कोल्स-मर्टन समीकरण वास्तव में श्रोडिंगर समीकरण का विशेष स्थिति है जहां बाजारों को कुशल माना जाता है। इस प्रकार हेवन द्वारा प्राप्त श्रोडिंगर-आधारित समीकरण में मापदंड ħ है (एच के सम्मिश्र संयुग्म के साथ भ्रमित नहीं होना चाहिए) जो गैर-असीम तेज़ मूल्य परिवर्तन सहित विभिन्न स्रोतों के परिणामस्वरूप बाजार में उपस्थित मध्यस्थता की मात्रा का प्रतिनिधित्व करता है, गैर-तीव्र सूचना प्रसार और व्यापारियों के मध्य धन हेवन का तर्क है कि इस मूल्य को उचित रूप से निर्धारित करके, अधिक स्पष्ट विकल्प मूल्य प्राप्त किया जा सकता है, क्योंकि वास्तव में, बाजार वास्तव में कुशल नहीं हैं।

यह कारण है कि यह संभव है कि क्वांटम विकल्प मूल्य निर्धारण मॉडल क्लासिकल मॉडल की तुलना में अधिक स्पष्ट हो सकता है। बेलाल ई. शेष ने क्वांटम वित्त पर विभिन्न पेपर प्रकाशित किए हैं और यहां तक ​​कि किताब भी लिखी है जो उनमें से विभिन्न को साथ लाती है। [4][5] शेष के शोध का मूल और मैटाकज़ जैसे अन्य रिचर्ड फेनमैन का पथ अभिन्न सूत्रीकरण हैं।[6] शेष विभिन्न विदेशी विकल्प के लिए पथ इंटीग्रल प्रयुक्त करता है और अपने परिणामों की तुलना ब्लैक-स्कोल्स-मर्टन समीकरण के परिणामों से करते हुए विश्लेषणात्मक परिणाम प्रस्तुत करता है, जिससे पता चलता है कि वह बहुत समान हैं। एडवर्ड पियोत्रोव्स्की एट अल विकल्प के अंतर्निहित स्टॉक के व्यवहार के संबंध में ब्लैक-स्कोल्स-मर्टन धारणा को परिवर्तित कर भिन्न दृष्टिकोण अपनाएं [7] यह मानने के अतिरिक्त कि यह वीनर प्रक्रिया या वीनर-बैचलियर प्रक्रिया का अनुसरण करता है,[8] वह मानते हैं कि यह ऑर्नस्टीन-उहलेनबेक प्रक्रिया का अनुसरण करता है।[9] इस नई धारणा के साथ, वह क्वांटम वित्त मॉडल के साथ-साथ यूरोपीय कॉल विकल्प सूत्र भी प्राप्त करते हैं।

इस प्रकार हल-व्हाइट और कॉक्स-इंगरसोल-रॉस जैसे अन्य मॉडलों ने ब्याज दर डेरिवेटिव के साथ क्लासिकल सेटिंग में समान दृष्टिकोण का सफलतापूर्वक उपयोग किया है।[10][11] आंद्रेई ख्रेनिकोव हेवन और अन्य के कार्य पर आधारित है और इस विचार को और सशक्त करता है कि ब्लैक-स्कोल्स-मर्टन समीकरण द्वारा बनाई गई बाजार दक्षता धारणा उचित नहीं हो सकती है।[12] इस प्रकार इस विचार का समर्थन करने के लिए, ख्रेनिकोव वित्त में क्वांटम सिद्धांत को प्रयुक्त करने की आलोचना पर नियंत्रण के विधि के रूप में एजेंटों का उपयोग करके प्रासंगिक संभावनाओं के प्रारूप का निर्माण करता है। लुइगी एकार्डी और एंड्रियास बोकास ने पुनः ब्लैक-स्कोल्स-मर्टन समीकरण की मात्रा निर्धारित की थी, किन्तु इस स्थिति में, वह अंतर्निहित स्टॉक को ब्राउनियन और पॉइसन दोनों प्रक्रियाओं वाला भी मानते हैं।[13]

क्वांटम द्विपद मॉडल

चेन ने 2001 में पेपर प्रकाशित किया,[2]जहां वह क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल प्रस्तुत करता है या इसे संक्षेप में क्वांटम द्विपद मॉडल के रूप में प्रस्तुत करता है। इस प्रकार प्रतीकात्मक रूप से कहें तो, चेन का क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल (संदर्भित) इसके पश्चात् क्वांटम द्विपद मॉडल के रूप में) उपस्थिता क्वांटम वित्त मॉडल के लिए वही है जो कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल ब्लैक-स्कोल्स-मर्टन मॉडल के लिए था: उसी परिणाम का विवेकाधीन और सरल संस्करण यह सरलीकरण संबंधित सिद्धांतों को न केवल विश्लेषण करना सरल बनाते हैं किन्तु कंप्यूटर पर प्रयुक्त करना भी सरल बनाते हैं।

मल्टी-स्टेप क्वांटम द्विपद मॉडल

इस प्रकार मल्टी-स्टेप मॉडल में क्वांटम मूल्य निर्धारण सूत्र है:

,

जो निम्नानुसार कॉक्स-रॉस-रुबिनस्टीन द्विपद विकल्प मूल्य निर्धारण मॉडल सूत्र के समतुल्य है:

.

इससे पता चलता है कि यह मानते हुए कि स्टॉक मैक्सवेल-बोल्ट्ज़मैन आंकड़ों के अनुसार व्यवहार करते हैं, क्वांटम द्विपद मॉडल वास्तव में क्लासिकल द्विपद मॉडल में जाता है।

कीथ मेयर के अनुसार क्वांटम अस्थिरता इस प्रकार है:[14]

.

बोस-आइंस्टीन धारणा

इस प्रकार मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी को क्वांटम बोस-आइंस्टीन सांख्यिकी द्वारा प्रतिस्थापित किया जा सकता है जिसके परिणामस्वरूप निम्नलिखित विकल्प मूल्य सूत्र प्राप्त होगा:

.

इस प्रकार बोस-आइंस्टीन समीकरण विकल्प मूल्यें उत्पन्न करेगा जो कॉक्स-रॉस-रुबिनस्टीन विकल्प द्वारा उत्पादित मूल्यों से भिन्न होंगी। कुछ परिस्थितियों में मूल्य निर्धारण सूत्र ऐसा इसलिए है क्योंकि स्टॉक को क्लासिकल कण के अतिरिक्त क्वांटम बोसोन कण की तरह माना जा रहा है।

डेरिवेटिव के मूल्य निर्धारण के लिए क्वांटम एल्गोरिदम

इस प्रकार पैट्रिक रेबेंट्रोस्ट ने 2018 में दिखाया कि क्वांटम कंप्यूटरों के लिए एल्गोरिदम उपस्थित है जो क्लासिकल विधियों पर वर्गमूल लाभ के साथ वित्तीय डेरिवेटिव का मूल्य निर्धारण करने में सक्षम है।[15] इस प्रकार यह विकास कार्यात्मक वित्त में अंतर्दृष्टि प्राप्त करने के लिए क्वांटम यांत्रिकी का उपयोग करने से लेकर उन गणनाओं को करने के लिए क्वांटम सिस्टम-क्वांटम कंप्यूटर का उपयोग करने की ओर परिवर्तन का प्रतीक है।

इस प्रकार 2020 में डेविड ऑरेल ने क्वांटम वॉक पर आधारित विकल्प-मूल्य निर्धारण मॉडल प्रस्तावित किया था जो फोटोनिक्स डिवाइस पर चल सकता है।[16][17][18]

संदर्भ

  1. B. Boghosian (1998). "क्वांटम कंप्यूटर पर क्वांटम यांत्रिकी का अनुकरण". Physica D: Nonlinear Phenomena. 120 (1–2): 30–42. arXiv:quant-ph/9701019. Bibcode:1998PhyD..120...30B. doi:10.1016/S0167-2789(98)00042-6. S2CID 6052092.
  2. 2.0 2.1 Zeqian Chen (2004). "वित्त सिद्धांत में द्विपद मॉडल के लिए क्वांटम सिद्धांत". Journal of Systems Science and Complexity. arXiv:quant-ph/0112156. Bibcode:2001quant.ph.12156C.
  3. Haven, Emmanuel (2002). "क्वांटम भौतिकी सेटिंग में ब्लैक-स्कोल्स विकल्प मूल्य निर्धारण मॉडल को एम्बेड करने पर चर्चा". Physica A: Statistical Mechanics and Its Applications. 304 (3–4): 507–524. Bibcode:2002PhyA..304..507H. doi:10.1016/S0378-4371(01)00568-4.
  4. Baaquie, Belal E.; Coriano, Claudio; Srikant, Marakani (2002). "Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance". अरेखीय भौतिकी. p. 8191. arXiv:cond-mat/0208191. Bibcode:2003npte.conf..333B. doi:10.1142/9789812704467_0046. ISBN 978-981-238-270-2. S2CID 14095958. {{cite book}}: |journal= ignored (help)
  5. Baaquie, Belal (2004). Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press. p. 332. ISBN 978-0-521-84045-3.
  6. Matacz, Andrew (2002). "पथ पर निर्भर विकल्प मूल्य निर्धारण, पथ अभिन्न आंशिक औसत पद्धति". Journal of Computational Finance. arXiv:cond-mat/0005319. Bibcode:2000cond.mat..5319M. {{cite journal}}: Cite journal requires |journal= (help)
  7. Piotrowski, Edward W.; Schroeder, Małgorzata; Zambrzycka, Anna (2006). "ऑर्नस्टीन उहलेनबेक प्रक्रिया के आधार पर यूरोपीय विकल्प मूल्य निर्धारण का क्वांटम विस्तार". Physica A. 368 (1): 176–182. arXiv:quant-ph/0510121. Bibcode:2006PhyA..368..176P. doi:10.1016/j.physa.2005.12.021. S2CID 14209173.
  8. Hull, John (2006). विकल्प, वायदा और अन्य डेरिवेटिव. Upper Saddle River, N.J: Pearson/Prentice Hall. ISBN 978-0-13-149908-9.
  9. Uhlenbeck, G. E.; Ornstein, L. S. (1930). "ब्राउनियन गति के सिद्धांत पर". Phys. Rev. 36 (5): 823–841. Bibcode:1930PhRv...36..823U. doi:10.1103/PhysRev.36.823.
  10. "The pricing of options on interest rate caps and floors using the Hull–White model". Advanced Strategies in Financial Risk Management. 1990. {{cite journal}}: Cite journal requires |journal= (help)
  11. "ब्याज दरों की अवधि संरचना का एक सिद्धांत". Physica A. 1985. {{cite journal}}: Cite journal requires |journal= (help)
  12. Khrennikov, Andrei (2007). "शास्त्रीय और क्वांटम यादृच्छिकता और वित्तीय बाजार". arXiv:0704.2865 [q-fin.ST].
  13. Accardi, Luigi; Boukas, Andreas (2007). "क्वांटम ब्लैक-स्कोल्स समीकरण". arXiv:0706.1300 [q-fin.PR].
  14. Keith Meyer (2009). क्वांटम द्विपद विकल्प मूल्य निर्धारण मॉडल का विस्तार और अनुकरण. The University of Manitoba.
  15. Rebentrost, Patrick; Gupt, Brajesh; Bromley, Thomas R. (2018-04-30). "Quantum computational finance: Monte Carlo pricing of financial derivatives". Physical Review A. 98 (2): 022321. arXiv:1805.00109. Bibcode:2018PhRvA..98b2321R. doi:10.1103/PhysRevA.98.022321. S2CID 73628234.
  16. Orrell, David (2020). Quantum Economics and Finance: An Applied Mathematics Introduction. New York: Panda Ohana. ISBN 978-1916081611.
  17. Orrell, David (2021). "वित्तीय विकल्पों का एक क्वांटम वॉक मॉडल". Wilmott. 2021 (112): 62–69. doi:10.1002/wilm.10918. S2CID 233850811.
  18. "Schrödinger's markets". The Economist. 6 November 2021.


बाहरी संबंध