चिरल क्षोभ सिद्धांत: Difference between revisions
(→विधि) |
|||
Line 24: | Line 24: | ||
===पुनर्सामान्यीकरण=== | ===पुनर्सामान्यीकरण=== | ||
सामान्य रूप से प्रभावी सिद्धांत गैर-[[पुनर्सामान्यीकरण योग्य]] है, हालांकि सीएचपीटी में | सामान्य रूप से प्रभावी सिद्धांत गैर-[[पुनर्सामान्यीकरण योग्य]] है, हालांकि सीएचपीटी में विशेष शक्ति गणना योजना को देखते हुए, प्रभावी सिद्धांत चिरल विस्तार में दिए गए क्रम में पुनर्सामान्यीकरण योग्य है। उदाहरण के लिए, यदि कोई <math>\mathcal{O}(p^4)</math> के लिए प्रेक्षणीय गणना करना चाहता है, फिर किसी को उन संपर्क शब्दों की गणना करनी चाहिए जो ट्री-स्तर पर <math>\mathcal{O}(p^4)</math> लैग्रैन्जियन (यह SU(2) बनाम SU(3) सिद्धांत के लिए अलग है) और <math>\mathcal{O}(p^2)</math> लैग्रैन्जियन से [[एक-लूप]] योगदान से आते हैं।) | ||
कोई भी आसानी से देख सकता है कि | कोई भी आसानी से देख सकता है कि <math>\mathcal{O}(p^2)</math> लैग्रेंजियन से एक-लूप योगदान को <math>\mathcal{O}(p^4)</math> के रूप में गिना जाता है, यह ध्यान में रखते हुए कि एकीकरण माप <math>p^4</math> के रूप में गिना जाता है, [[प्रचारक|प्रवर्धक]] <math>p^{-2}</math> के रूप में गिना जाता है, जबकि व्युत्पन्न योगदान <math>p^2</math> के रूप में गिना जाता है। इसलिए, चूंकि गणना <math>\mathcal{O}(p^4)</math> के लिए मान्य है, इसलिए कोई <math>\mathcal{O}(p^4)</math> लैग्रेन्जियन से निम्न-ऊर्जा स्थिरांकों (LECs) के पुनर्सामान्यीकरण के साथ गणना में विचलनों को हटा देता है। इसलिए यदि कोई <math>\mathcal{O}(p^n)</math> के लिए दिए गए प्रेक्षणीय की गणना में सभी विचलनों को दूर करना चाहता है, तो वह उन विचलनों को दूर करने के लिए <math>\mathcal{O}(p^n)</math> लैग्रेंजियन के लिए अभिव्यक्ति में [[युग्मन स्थिरांक|युग्मन स्थिरांकों]] का उपयोग करता है। | ||
==सफल | ==सफल अनुप्रयोग== | ||
===मेसॉन और [[न्यूक्लियॉन]]=== | ===मेसॉन और [[न्यूक्लियॉन|न्यूक्लिऑन]]=== | ||
सिद्धांत | सिद्धांत पाइऑन के बीच और पाइऑन और न्यूक्लिऑन (या अन्य पदार्थ क्षेत्रों) के बीच अन्योन्यक्रियाओं के विवरण की अनुमति देता है। SU(3) सीएचपीटी काओन्स और [[खाओ|ईटा]] मेसॉन की अन्योन्यक्रियाओं का भी वर्णन कर सकता है, जबकि इसी तरह के सिद्धांतों का उपयोग वेक्टर मेसॉन का वर्णन करने के लिए किया जा सकता है। चूंकि चिरल क्षोभ सिद्धांत चिरल समरूपता मानता है, और इसलिए द्रव्यमान रहित क्वार्क का उपयोग भारी क्वार्क की अन्योन्यक्रियाओं को मॉडल करने के लिए नहीं किया जा सकता है। | ||
SU(2) सिद्धांत के लिए अग्रणी क्रम [[चिरल मॉडल|चिरल]] लैग्रेंजियन द्वारा दिया गया है<ref name=":0" /> | |||
<math> | |||
\mathcal{L}_{2}=\frac{F^2}{4}{\rm tr}(\partial_{\mu}U \partial^{\mu}U^{\dagger})+\frac{\lambda F^3}{4}{\rm tr}(m_q U+m_q^{\dagger}U^{\dagger}) | \mathcal{L}_{2}=\frac{F^2}{4}{\rm tr}(\partial_{\mu}U \partial^{\mu}U^{\dagger})+\frac{\lambda F^3}{4}{\rm tr}(m_q U+m_q^{\dagger}U^{\dagger}) | ||
</math> | </math> | ||
जहां <math>F = 93</math> MeV और <math>m_q</math> क्वार्क द्रव्यमान मैट्रिक्स है। सीएचपीटी के <math>p</math>-विस्तार में, लघु विस्तार पैरामीटर हैं | |||
:<math> | :<math> | ||
\frac{p}{\Lambda_{\chi}}, \frac{m_{\pi}}{\Lambda_{\chi}}. | \frac{p}{\Lambda_{\chi}}, \frac{m_{\pi}}{\Lambda_{\chi}}. | ||
</math> | </math> | ||
जहां <math>\Lambda_{\chi}</math> 1 GeV क्रम (कभी-कभी <math>\Lambda_{\chi} = 4\pi F</math> के रूप में अनुमानित) का चिरल समरूपता तोड़ने वाला पैमाना है। इस विस्तार में, <math>m_q</math> को <math>\mathcal{O}(p^2)</math> के रूप में गिना जाता है क्योंकि <math>m_{\pi}^2=\lambda m_q F</math> चिरल विस्तार में अग्रणी क्रम में है।<ref>{{Cite journal | last1 = Gell-Mann | first1 = M. |last2=Oakes| first2=R. | last3 = Renner | first3 = B. | doi = 10.1103/PhysRev.175.2195 | title = Behavior of Current Divergences under SU_{3}×SU_{3} | journal = Physical Review | volume = 175 | issue = 5 | pages = 2195 | year = 1968 | pmid = | pmc = |bibcode = 1968PhRv..175.2195G | url = https://authors.library.caltech.edu/3634/1/GELpr68.pdf }}</ref> | |||
<math>\Lambda_{\chi} = 4\pi F</math>) | ===हैड्रॉन-हैड्रॉन अन्योन्यक्रियाएं=== | ||
इस विस्तार में, <math>m_q</math> | |||
===हैड्रॉन-हैड्रॉन | |||
कुछ मामलों में, चिरल [[गड़बड़ी सिद्धांत]] मजबूत इंटरैक्शन के [[गैर perturbative]] शासन में हैड्रॉन के बीच बातचीत का वर्णन करने में सफल रहा है। उदाहरण के लिए, इसे कुछ-न्यूक्लियॉन प्रणालियों पर लागू किया जा सकता है, और गड़बड़ी सिद्धांत में अगले-से-अग्रणी क्रम में, यह प्राकृतिक तरीके से [[तीन-न्यूक्लियॉन बल]]ों के लिए जिम्मेदार हो सकता है।<ref name=Machleidt> | कुछ मामलों में, चिरल [[गड़बड़ी सिद्धांत]] मजबूत इंटरैक्शन के [[गैर perturbative]] शासन में हैड्रॉन के बीच बातचीत का वर्णन करने में सफल रहा है। उदाहरण के लिए, इसे कुछ-न्यूक्लियॉन प्रणालियों पर लागू किया जा सकता है, और गड़बड़ी सिद्धांत में अगले-से-अग्रणी क्रम में, यह प्राकृतिक तरीके से [[तीन-न्यूक्लियॉन बल]]ों के लिए जिम्मेदार हो सकता है।<ref name=Machleidt> | ||
{{cite journal | {{cite journal |
Revision as of 15:20, 4 December 2023
चिरल क्षोभ सिद्धांत (सीएचपीटी) प्रभावी क्षेत्र सिद्धांत है जो क्वांटम क्रोमोडायनामिक्स (क्यूसीडी) की (अनुमानित) चिरल समरूपता के साथ-साथ समता और आवेश संयुग्मन की अन्य समरूपता के अनुरूप लैग्रेंजियन के साथ निर्मित है।[1] सीएचपीटी (ChPT) एक सिद्धांत है जो किसी को इस अंतर्निहित चिरल समरूपता के आधार पर क्यूसीडी (QCD) की निम्न-ऊर्जा गतिशीलता का अध्ययन करने की अनुमति देता है।
लक्ष्य
मानक मॉडल के प्रबल अन्योन्यक्रिया के सिद्धांत में, हम क्वार्क और ग्लूऑन के बीच की अन्योन्यक्रियाओं का वर्णन करते हैं। प्रबल युग्मन स्थिरांक के चलने के कारण, हम युग्मन स्थिरांक में क्षोभ सिद्धांत को केवल उच्च ऊर्जाओं पर ही लागू कर सकते हैं। लेकिन क्यूसीडी की निम्न-ऊर्जा व्यवस्था में, स्वतंत्रता की कोटियां अब क्वार्क और ग्लूऑन नहीं हैं, बल्कि हैड्रॉन हैं। यह परिरोधन का परिणाम है। यदि कोई क्यूसीडी विभाजन फलन को "हल" कर सकता है (जैसे कि लैग्रेंजियन में स्वतंत्रता की कोटियाें को हैड्रॉन द्वारा प्रतिस्थापित किया जाता है), तो कोई निम्न-ऊर्जा भौतिकी के बारे में जानकारी प्राप्त कर सकता था। आज तक यह पूरा नहीं किया जा सका है। चूँकि क्यूसीडी निम्न ऊर्जा पर गैर-क्षोभ करने वाला हो जाता है, इसलिए क्यूसीडी के विभाजन फलन से जानकारी निकालने के लिए क्षोभ विधियों का उपयोग करना असंभव है। लैटिस क्यूसीडी एक वैकल्पिक विधि है जो गैर-क्षोभ जानकारी निकालने में सफल साबित हुई है।
विधि
स्वतंत्रता की विभिन्न कोटियों का उपयोग करते हुए, हमें यह आश्वस्त करना होगा कि ईएफ़टी (EFT) में गणना की गई प्रेक्षणीय अंतर्निहित सिद्धांत से संबंधित हैं। यह सबसे सामान्य लैग्रेन्जियन का उपयोग करके प्राप्त किया जाता है जो अंतर्निहित सिद्धांत की समरूपता के अनुरूप है, क्योंकि इससे ''विश्लेषणात्मकता, क्षोभ इकाई, क्लस्टर अपघटन और अनुमानित समरूपता के अनुरूप सबसे सामान्य संभव एस (S)-मैट्रिक्स'' प्राप्त होता है।[2][3] सामान्य रूप में ऐसे अनंत संख्या में शब्द हैं जो इस आवश्यकता को पूरा करते हैं। इसलिए कोई भी भौतिक भविष्यवाणियां करने के लिए, कोई सिद्धांत को शक्ति-क्रमीकरण योजना प्रदान करता है जो कुछ पूर्व-निर्धारित महत्व की डिग्री के आधार पर शब्दों को व्यवस्थित करता है। क्रमीकरण किसी को कुछ शर्तें रखने और अन्य सभी, उच्च-क्रम सुधारों को छोड़ने की अनुमति देता है जिन्हें अस्थायी रूप से अनदेखा किया जा सकता है।
सीएचपीटी में कई शक्ति गणना योजनाएँ हैं। सबसे व्यापक रूप से उपयोग किया जाने वाला -विस्तार है जहां का अर्थ गति है। हालाँकि, वहाँ , और विस्तार भी उपस्थित हैं। ये सभी विस्तार सीमित आयतन में मान्य हैं, (हालाँकि अनंत आयतन में केवल विस्तार ही मान्य है।) सीमित आयतन के विशेष विकल्पों के लिए भौतिकी को सही ढंग से समझने के लिए चिरल सिद्धांत के विभिन्न पुनर्गठन का उपयोग करने की आवश्यकता होती है। ये विभिन्न पुनर्गठनों विभिन्न शक्ति गणना योजनाओं के अनुरूप हैं।
क्रमीकरण योजना के अलावा, अनुमानित लैग्रेंजियन में अधिकांश शब्दों को युग्मन स्थिरांकों से गुणा किया जाएगा जो प्रत्येक पद द्वारा दर्शाए गए बल की सापेक्ष शक्तियों का प्रतिनिधित्व करते हैं। इन स्थिरांकों के मान - जिन्हें निम्न-ऊर्जा स्थिरांक या एलएस (Ls) भी कहा जाता है - प्रायः ज्ञात नहीं होते हैं। स्थिरांकों को प्रायोगिक डेटा के अनुरूप निर्धारित किया जा सकता है या अंतर्निहित सिद्धांत से प्राप्त किया जा सकता है।
मॉडल लैग्रेंजियन
-विस्तार के लैग्रेंजियन का निर्माण उन सभी अन्योन्यक्रियाओं को लिखकर किया जाता है जिन्हें समरूपता द्वारा बाहर नहीं किया जाता है, और फिर उन्हें गति और द्रव्यमान शक्तियों की संख्या के आधार पर क्रमबद्ध किया जाता है।
क्रम को इसलिए चुना गया है कि को प्रथम-क्रम सन्निकटन में माना जाता है, जहां पाइऑन क्षेत्र है और पाइऑन द्रव्यमान है, जो अंतर्निहित चिरल समरूपता को स्पष्ट रूप (पीसीएसी) से तोड़ता है।[4][5] जैसे शब्द अन्य, उच्च क्रम सुधारों का भाग हैं।
यह प्रत्येक पद में एकल पाइऑन क्षेत्रों को पाइऑन क्षेत्रों के सभी संभावित संयोजनों की अनंत श्रृंखला के साथ प्रतिस्थापित करके लैग्रेन्जियन को संपीडित करने के लिए भी प्रथागत है। सबसे सामान्य विकल्पों में से एक है
जहां को पाइऑन क्षय स्थिरांक कहा जाता है जो 93 MeV है।
सामान्य रूप में, के लिए सामान्यीकरण के विभिन्न विकल्प उपस्थित हैं, इसलिए किसी को वह मान चुनना होगा जो आवेशित पियोन क्षय दर के अनुरूप है।
पुनर्सामान्यीकरण
सामान्य रूप से प्रभावी सिद्धांत गैर-पुनर्सामान्यीकरण योग्य है, हालांकि सीएचपीटी में विशेष शक्ति गणना योजना को देखते हुए, प्रभावी सिद्धांत चिरल विस्तार में दिए गए क्रम में पुनर्सामान्यीकरण योग्य है। उदाहरण के लिए, यदि कोई के लिए प्रेक्षणीय गणना करना चाहता है, फिर किसी को उन संपर्क शब्दों की गणना करनी चाहिए जो ट्री-स्तर पर लैग्रैन्जियन (यह SU(2) बनाम SU(3) सिद्धांत के लिए अलग है) और लैग्रैन्जियन से एक-लूप योगदान से आते हैं।)
कोई भी आसानी से देख सकता है कि लैग्रेंजियन से एक-लूप योगदान को के रूप में गिना जाता है, यह ध्यान में रखते हुए कि एकीकरण माप के रूप में गिना जाता है, प्रवर्धक के रूप में गिना जाता है, जबकि व्युत्पन्न योगदान के रूप में गिना जाता है। इसलिए, चूंकि गणना के लिए मान्य है, इसलिए कोई लैग्रेन्जियन से निम्न-ऊर्जा स्थिरांकों (LECs) के पुनर्सामान्यीकरण के साथ गणना में विचलनों को हटा देता है। इसलिए यदि कोई के लिए दिए गए प्रेक्षणीय की गणना में सभी विचलनों को दूर करना चाहता है, तो वह उन विचलनों को दूर करने के लिए लैग्रेंजियन के लिए अभिव्यक्ति में युग्मन स्थिरांकों का उपयोग करता है।
सफल अनुप्रयोग
मेसॉन और न्यूक्लिऑन
सिद्धांत पाइऑन के बीच और पाइऑन और न्यूक्लिऑन (या अन्य पदार्थ क्षेत्रों) के बीच अन्योन्यक्रियाओं के विवरण की अनुमति देता है। SU(3) सीएचपीटी काओन्स और ईटा मेसॉन की अन्योन्यक्रियाओं का भी वर्णन कर सकता है, जबकि इसी तरह के सिद्धांतों का उपयोग वेक्टर मेसॉन का वर्णन करने के लिए किया जा सकता है। चूंकि चिरल क्षोभ सिद्धांत चिरल समरूपता मानता है, और इसलिए द्रव्यमान रहित क्वार्क का उपयोग भारी क्वार्क की अन्योन्यक्रियाओं को मॉडल करने के लिए नहीं किया जा सकता है।
SU(2) सिद्धांत के लिए अग्रणी क्रम चिरल लैग्रेंजियन द्वारा दिया गया है[1]
जहां MeV और क्वार्क द्रव्यमान मैट्रिक्स है। सीएचपीटी के -विस्तार में, लघु विस्तार पैरामीटर हैं
जहां 1 GeV क्रम (कभी-कभी के रूप में अनुमानित) का चिरल समरूपता तोड़ने वाला पैमाना है। इस विस्तार में, को के रूप में गिना जाता है क्योंकि चिरल विस्तार में अग्रणी क्रम में है।[6]
हैड्रॉन-हैड्रॉन अन्योन्यक्रियाएं
कुछ मामलों में, चिरल गड़बड़ी सिद्धांत मजबूत इंटरैक्शन के गैर perturbative शासन में हैड्रॉन के बीच बातचीत का वर्णन करने में सफल रहा है। उदाहरण के लिए, इसे कुछ-न्यूक्लियॉन प्रणालियों पर लागू किया जा सकता है, और गड़बड़ी सिद्धांत में अगले-से-अग्रणी क्रम में, यह प्राकृतिक तरीके से तीन-न्यूक्लियॉन बलों के लिए जिम्मेदार हो सकता है।[7]
संदर्भ
- ↑ 1.0 1.1 Heinrich Leutwyler (2012), Chiral perturbation theory, Scholarpedia, 7(10):8708. doi:10.4249/scholarpedia.8708
- ↑ Weinberg, Steven (1979-04-01). "फेनोमेनोलॉजिकल लैग्रेन्जियंस". Physica A: Statistical Mechanics and Its Applications (in English). 96 (1): 327–340. Bibcode:1979PhyA...96..327W. doi:10.1016/0378-4371(79)90223-1. ISSN 0378-4371.
- ↑ Scherer, Stefan; Schindler, Matthias R. (2012). चिरल गड़बड़ी सिद्धांत के लिए एक प्राइमर. Lecture Notes in Physics (in English). Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-19253-1.
- ↑ Gell-Mann, M., Lévy, M., The axial vector current in beta decay, Nuovo Cim **16**, 705–726 (1960). doi:10.1007/BF02859738
- ↑ J Donoghue, E Golowich and B Holstein, Dynamics of the Standard Model, (Cambridge University Press, 1994) ISBN 9780521476522.
- ↑ Gell-Mann, M.; Oakes, R.; Renner, B. (1968). "Behavior of Current Divergences under SU_{3}×SU_{3}" (PDF). Physical Review. 175 (5): 2195. Bibcode:1968PhRv..175.2195G. doi:10.1103/PhysRev.175.2195.
- ↑ Machleidt, R.; Entem, D.R. (2011). "Chiral effective field theory and nuclear forces". Physics Reports. 503 (1): 1–75. arXiv:1105.2919. Bibcode:2011PhR...503....1M. doi:10.1016/j.physrep.2011.02.001. S2CID 118434586.
बाहरी संबंध
- Howard Georgi, Weak Interactions and Modern Particle Theory, Benjamin Cummings, 1984; revised version 2008
- H Leutwyler, On the foundations of chiral perturbation theory, Annals of Physics, 235, 1994, p 165-203.
- Stefan Scherer, Introduction to Chiral Perturbation Theory, Adv. Nucl. Phys. 27 (2003) 277.
- Gerhard Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995), pp. 1–80.