पल्स-घनत्व मॉड्यूलेशन: Difference between revisions
No edit summary |
m (8 revisions imported from alpha:पल्स-घनत्व_मॉड्यूलेशन) |
||
(One intermediate revision by one other user not shown) | |||
Line 97: | Line 97: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 18/11/2023]] | [[Category:Created On 18/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 11:04, 11 December 2023
पल्स-डेंसिटी मॉडुलन या पीडीएम, मॉड्यूलेशन का रूप है जिसका उपयोग बाइनरी सिग्नल के साथ एनालॉग सिग्नल का प्रतिनिधित्व करने के लिए किया जाता है। पीडीएम सिग्नल में, विशिष्ट आयाम मानों को भिन्न-भिन्न वजन के पल्स के कोडवर्ड में एन्कोड नहीं किया जाता है क्योंकि वह पल्स कोड मॉडुलेशन (पीसीएम) में होंगे; किन्तु, पल्स का सापेक्ष घनत्व एनालॉग सिग्नल के आयाम से मेल खाता है। इस प्रकार 1-बिट डीएसी का आउटपुट सिग्नल के पीडीएम एन्कोडिंग के समान है।
विवरण
इस प्रकार पल्स-डेंसिटी मॉड्यूलेशन बिटस्ट्रीम में, 1 धनात्मक ध्रुवता (+A) की पल्स से मेल खाता है, और 0 ऋणात्मक ध्रुवता (−A) की पल्स से मेल खाता है। गणितीय रूप से, इसे इस प्रकार दर्शाया जा सकता है
जहां x[n] द्विध्रुवी बिटस्ट्रीम (या तो −A या +A) है, और a[n] संबंधित बाइनरी बिटस्ट्रीम (या तो 0 या 1) है।
सभी 1s से युक्त रन अधिकतम (धनात्मक) आयाम मान के अनुरूप होगा, सभी 0s न्यूनतम (ऋणात्मक) आयाम मान के अनुरूप होंगे, और 1s और 0s को वैकल्पिक करने से शून्य आयाम मान के अनुरूप होगा। इस प्रकार निरंतर आयाम तरंग को द्विध्रुवी पीडीएम बिटस्ट्रीम को लो पास फिल्टर करके पुनर्प्राप्त किया जाता है।
उदाहरण
इस प्रकार त्रिकोणमितीय फलन का एकल आवधिक फलन, प्रारूप (सिग्नल) 100 बार और पीडीएम बिटस्ट्रीम के रूप में दर्शाया गया है:
01010110111101111111111111111111101111110110110101010010010000001000000000000000000010010101
इस प्रकार उच्च आवृत्ति वाली साइन तरंग की दो अवधियाँ इस प्रकार दिखाई देंगी:
0101101111111111111101101010010000000000001000100110111011111111111101101010010000000000000100101
इस प्रकार पल्स-डेंसिटी मॉड्यूलेशन में, 1s का उच्च घनत्व साइन तरंग के शीर्ष पर होता है, जबकि 1s का कम घनत्व साइन तरंग में होता है।
एनालॉग-टू-डिजिटल रूपांतरण
इस प्रकार पीडीएम बिटस्ट्रीम को 1-बिट डेल्टा-सिग्मा मॉड्यूलेशन की प्रक्रिया के माध्यम से एनालॉग सिग्नल से कोड किया जाता है। यह प्रक्रिया एक-बिट डिकोडिंग (सिग्नल प्रोसेसिंग) का उपयोग करती है जो एनालॉग सिग्नल के आयाम के आधार पर 1 या 0 उत्पन्न करती है। 1 या 0 सिग्नल से मेल खाता है जो क्रमशः ऊपर या नीचे की ओर है। क्योंकि वास्तविक संसार में, एनालॉग सिग्नल संभवतः ही कभी ही दिशा में होते हैं, परिमाणीकरण त्रुटि होती है, 1 या 0 और इसके द्वारा दर्शाए जाने वाले वास्तविक आयाम के मध्य का अंतर यह त्रुटि ΔΣ प्रक्रिया लूप में ऋणात्मक रूप से पुनः फीड की जाती है। इस तरह, प्रत्येक त्रुटि क्रमिक रूप से प्रत्येक अन्य परिमाणीकरण माप और उसकी त्रुटि को प्रभावित करती है। इससे परिमाणीकरण त्रुटि को औसत करने का प्रभाव पड़ता है।
डिजिटल-टू-एनालॉग रूपांतरण
इस प्रकार डिज़िटल से एनालॉग कन्वर्टर पीडीएम सिग्नल को एनालॉग में परिवर्तित करने की प्रक्रिया सरल है: किसी को केवल पीडीएम सिग्नल को लो-पास फिल्टर के माध्यम से पास करना होता है। इस प्रकार यह कार्य करता है क्योंकि लो-पास फिल्टर का कार्य अनिवार्य रूप से सिग्नल को औसत करना है। इस प्रकार पल्स का औसत आयाम समय के साथ उन पल्स के घनत्व से मापा जाता है, इस प्रकार लो-पास फ़िल्टर डिकोडिंग प्रक्रिया में आवश्यक एकमात्र चरण है।
पीडब्लूएम से संबंध
इस प्रकार पल्स-विड्थ मॉड्यूलेशन (पीडब्लूएम) पीडीएम का विशेष स्थिति है जहां स्विचिंग आवृत्ति तय होती है और प्रारूप के अनुरूप सभी पल्स डिजिटल सिग्नल में सन्निहित होते हैं। एनालॉग सिग्नल को डिमोड्यूलेशन करने की विधि वही रहती है, किन्तु 8-बिट्स के रिज़ॉल्यूशन के साथ 50% सिग्नल का प्रतिनिधित्व, पीडब्लूएम तरंग 128 घड़ी चक्रों के लिए विवृत हो जाएगी और फिर शेष 128 चक्रों के लिए संवृत हो जाएगी। पीडीएम और समान क्लॉक रेट के साथ सिग्नल प्रत्येक दूसरे चक्र में निरंतर से विवृत और संवृत होता रहेगा। इस प्रकार लो-पास फिल्टर द्वारा प्राप्त औसत दोनों तरंगों के लिए अधिकतम सिग्नल स्तर का 50% है, किन्तु पीडीएम सिग्नल अधिक बार स्विच होता है। इस प्रकार 100% या 0% स्तर के लिए, वह समान हैं, सिग्नल क्रमशः स्थायी रूप से विवृत या संवृत है।
जीवविज्ञान से संबंध
विशेष रूप से, एनिमल नर्वस सिस्टम संवेदी और अन्य जानकारी का प्रतिनिधित्व करने के विधियों में से रेट कोडिंग के माध्यम से होता है, जिससे संकेत का परिमाण संवेदी न्यूरॉन की फायरिंग की दर से संबंधित होता है। इस प्रकार प्रत्यक्ष सादृश्य में, प्रत्येक तंत्रिका घटना - जिसे ऐक्शन पोटेंशिअल कहा जाता है - बिट (पल्स) का प्रतिनिधित्व करती है, न्यूरॉन की फायरिंग की दर पल्स घनत्व का प्रतिनिधित्व करती है।
एल्गोरिदम
इस प्रकार पल्स-डेंसिटी मॉड्यूलेशन का निम्नलिखित डिजिटल मॉडल 1-ऑर्डर 1-बिट डेल्टा-सिग्मा मॉड्यूलेटर के डिजिटल मॉडल से प्राप्त किया जा सकता है। असतत समय डोमेन में सिग्नल को आउटपुट के साथ प्रथम-क्रम डेल्टा-सिग्मा मॉड्यूलेटर के इनपुट के रूप में मान असतत आवृत्ति डोमेन में, जहां ज़ेड-ट्रांसफॉर्म को प्राप्त करने के लिए आयाम समय-श्रृंखला पर प्रयुक्त किया गया है, डेल्टा-सिग्मा मॉड्यूलेटर के ऑपरेशन के आउटपुट को दर्शाया गया है
जहां डेल्टा-सिग्मा मॉड्यूलेटर की आवृत्ति-डोमेन परिमाणीकरण त्रुटि है। पदों को पुनर्व्यवस्थित करने पर, हमें प्राप्त होता है
फ़ैक्टर } उच्च-पास फ़िल्टर का प्रतिनिधित्व करता है, इसलिए यह स्पष्ट है कि कम आवृत्तियों पर आउटपुट में कम और उच्च आवृत्तियों पर अधिक योगदान देता है। यह डेल्टा-सिग्मा मॉड्यूलेटर के ध्वनि को आकार देने वाले प्रभाव को प्रदर्शित करता है: परिमाणीकरण ध्वनि को कम आवृत्तियों से उच्च-आवृत्ति रेंज होता है।
व्युत्क्रम Z-परिवर्तन का उपयोग करके, हम इसे भिन्न समय डोमेन में डेल्टा-सिग्मा मॉड्यूलेटर के इनपुट और उसके आउटपुट से संबंधित अंतर समीकरण में परिवर्तित कर सकते हैं,
विचार करने के लिए दो अतिरिक्त बाधाएँ हैं: पहला, प्रत्येक चरण में आउटपुट प्रारूप को चुना जाता है जिससे "प्रारंभ" परिमाणीकरण त्रुटि बिट को कम किया जा सके। जिसका अर्थ है कि यह केवल दो मान ग्रहण कर सकता है। हम सुविधा के लिए चुनते हैं, जिससे हमें लिखने की अनुमति मिलती है
इस प्रकार वृद्धि को हल करने के लिए पुनर्व्यवस्थित करता है
यह अंततः इनपुट सैंपल के संदर्भ में आउटपुट सैंपल के लिए सूत्र देता है। इस प्रकार प्रत्येक प्रारूप की परिमाणीकरण त्रुटि को निम्नलिखित प्रारूप के इनपुट में पुनः फीड किया जाता है।
निम्नलिखित प्सयूडो कोड पल्स-कोड मॉड्यूलेशन सिग्नल को पीडीएम सिग्नल में परिवर्तित करने के लिए इस एल्गोरिदम को कार्यान्वित करता है:
// Encode samples into pulse-density modulation
// using a first-order sigma-delta modulator
function pdm(real[0..s] x, real qe = 0) // initial running error is zero
var int[0..s] y
for n from 0 to s do
qe := qe + x[n]
if qe > 0 then
y[n] := 1
else
y[n] := −1
qe := qe - y[n]
return y, qe // return output and running error
अनुप्रयोग
पीडीएम सोनी के सुपर ऑडियो सीडी (एसएसीडी) प्रारूप में डायरेक्ट स्ट्रीम डिजिटल नाम के अनुसार उपयोग की जाने वाली एन्कोडिंग है।
पीडीएम कुछ एमईएमएस माइक्रोफोन का आउटपुट भी है।[1] कुछ सिस्टम एकल डेटा तार पर पीडीएम स्टीरियो ऑडियो संचारित करते हैं। इस प्रकार मास्टर घड़ी का उठता हुआ एज बाएं चैनल से संकेत करता है, जबकि मास्टर घड़ी का फालिंग एज दाएं चैनल से संकेत करता है।[2][3][4]
यह भी देखें
- डेल्टा मॉड्यूलेशन
- पल्स कोड मॉडुलेशन
- डेल्टा-सिग्मा मॉड्यूलेशन
संदर्भ
- ↑ Fried, Limor (2018-01-10). "एडफ्रूट पीडीएम माइक्रोफोन ब्रेकआउट". Adafruit Learning System (in English). Archived from the original on 2022-12-08. Retrieved 2023-06-30.
- ↑ Thomas Kite. "Understanding PDM Digital Audio" (PDF). 2012. The "PDM Microphones" section on p. 6.
- ↑ Maxim Integrated. "PDM Input Class D Audio Power Amplifier" (PDF). 2013. Figure 1 on p. 5; and the "Digital Audio Interface" section on p. 13.
- ↑ Knowles. "SPK0641 Digital, CMOS MEMS Microphone" (PDF).
अग्रिम पठन
- 1-bit A/D and D/A Converters – Discusses delta modulation, पीडीएम (also known as Sigma-delta modulation or SDM), and relationships to Pulse-code modulation (PCM)
- Kite, Thomas (2012). "Understanding PDM Digital Audio" (PDF). Audio Precision. Retrieved 19 January 2017.