बोसोनिक स्ट्रिंग सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
Line 59: Line 59:


: <math> g'(\xi) = e^{\sigma(\xi)} g(\xi) </math>
: <math> g'(\xi) = e^{\sigma(\xi)} g(\xi) </math>
चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या [[ मॉड्यूलि स्पेस ]] का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है <math>h \geq 4</math>.
चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या [[ मॉड्यूलि स्पेस ]] का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है <math>h \geq 4</math>.'''एच = 0'''
 
<!-- The single most important quantity in first quantized bosonic string theory is the N-point scattering amplitude. This treats the incoming and outgoing strings as points, which in string theory are [[tachyon]]s, with momentum ''k''<sub>''i''</sub> which connect to a string world surface at the surface points ''z''<sub>''i''</sub>. It is given by the following [[functional integral]] over all possible embeddings of this 2D surface in 26 dimensions:<ref>Polchinski, Joseph. ''String Theory: Volume I''. Cambridge University Press, p. 173.</ref>
 
: <math> A_N = \int  D\mu \int  D[X] \exp \left( -\frac{1}{4\pi\alpha} \int \partial_z X_\mu(z,\overline{z}) \partial_{\overline{z}}  X^\mu(z,\overline{z}) \, dz^2 + i \sum_{i=1}^N  k_{i \mu} X^\mu (z_i,\overline{z}_i) \right) </math>
 
The functional integral can be done because it is a Gaussian to become:
 
: <math> A_N = \int  D\mu \prod_{0<i<j<N+1} |z_i-z_j|^{2\alpha k_i.k_j} </math>
 
This is integrated over the various points ''z''<sub>''i''</sub>. Special care must be taken because two parts of this complex region may represent the same point on the 2D surface and you don't want to integrate over them twice. Also you need to make sure you are not integrating multiple times over different parameterizations of the surface. When this is taken into account it can be used to calculate the 4-point scattering amplitude (the 3-point amplitude is simply a delta function):
 
: <math> A_4 = \frac{ \Gamma (-1+\frac12(k_1+k_2)^2) \Gamma (-1+\frac12(k_2+k_3)^2)  } { \Gamma (-2+\frac12((k_1+k_2)^2+(k_2+k_3)^2)) } </math>
 
Which is a [[beta function]], known as [[Veneziano amplitude]]. It was this beta function which was apparently found before full string theory was developed. With superstrings the equations contain not only the 10D space-time coordinates X but also the Grassmann coordinates&nbsp;''&theta;''. Since there are various ways this can be done this leads to different string theories.
 
When integrating over surfaces such as the torus, we end up with equations in terms of [[theta functions]] and elliptic functions such as the [[Dedekind eta function]]. This is smooth everywhere, which it has to be to make physical sense, only when raised to the 24th power. This is the origin of needing 26 dimensions of space-time for bosonic string theory. The extra two dimensions arise as degrees of freedom of the string surface. -->
 
 
==== एच = 0 ====


वृक्ष-स्तर पर, जीनस 0 के अनुरूप, ब्रह्माण्ड संबंधी स्थिरांक गायब हो जाता है: <math> Z_0 = 0 </math>.
वृक्ष-स्तर पर, जीनस 0 के अनुरूप, ब्रह्माण्ड संबंधी स्थिरांक गायब हो जाता है: <math> Z_0 = 0 </math>.
Line 104: Line 85:
{{reflist}}
{{reflist}}


 
== संदर्भ ==
==संदर्भ==
{{cite journal
{{cite journal
|  title = The geometry of string perturbation theory
|  title = The geometry of string perturbation theory
Line 135: Line 115:
  |url-status      = dead
  |url-status      = dead
}}
}}
==बाहरी संबंध==
* [https://web.archive.org/web/20101008035958/http://superstringtheory.com/basics/basic5a.html How many string theories are there?]
* [http://pirsa.org/C09001 PIRSA:C09001 - Introduction to the Bosonic String]
[[Category: स्ट्रिंग सिद्धांत]]  
[[Category: स्ट्रिंग सिद्धांत]]  



Revision as of 17:18, 30 November 2023

बोसोनिक स्ट्रिंग सिद्धांत, स्ट्रिंग सिद्धांत का मूल संस्करण है, जिसे 1960 के दशक के अंत में विकसित किया गया और इसका नाम सत्येन्द्र नाथ बोस के नाम पर रखा गया। इसे ऐसा इसलिए कहा जाता है क्योंकि इसके स्पेक्ट्रम में केवल बोसॉन होते हैं।

1980 के दशक में, स्ट्रिंग सिद्धांत के संदर्भ में अतिसममिति की खोज की गई, और स्ट्रिंग सिद्धांत का एक नया संस्करण जिसे सुपरस्ट्रिंग सिद्धांत (सुपरसिमेट्रिक स्ट्रिंग सिद्धांत) कहा जाता है, वास्तविक फोकस बन गया। फिर भी, बोसोनिक स्ट्रिंग सिद्धांत विक्षुब्ध स्ट्रिंग सिद्धांत की कई सामान्य विशेषताओं को समझने के लिए एक बहुत ही उपयोगी मॉडल बना हुआ है, और सुपरस्ट्रिंग्स की कई सैद्धांतिक कठिनाइयाँ वास्तव में बोसोनिक स्ट्रिंग्स के संदर्भ में पहले से ही पाई जा सकती हैं।

समस्याएँ

हालाँकि बोसोनिक स्ट्रिंग सिद्धांत में कई आकर्षक विशेषताएं हैं, यह दो महत्वपूर्ण क्षेत्रों में एक व्यवहार्य भौतिक मॉडल के रूप में कम है।

सबसे पहले, यह केवल बोसॉन के अस्तित्व की भविष्यवाणी करता है जबकि कई भौतिक कण फ़र्मिअन हैं।

दूसरा, यह काल्पनिक संख्या द्रव्यमान के साथ स्ट्रिंग के एक मोड के अस्तित्व की भविष्यवाणी करता है, जिसका अर्थ है कि सिद्धांत में टैचियन संक्षेपण नामक प्रक्रिया में अस्थिरता है।

इसके अलावा, सामान्य स्पेसटाइम आयाम में बोसोनिक स्ट्रिंग सिद्धांत अनुरूप विसंगति के कारण विसंगतियों को प्रदर्शित करता है। लेकिन, जैसा कि सबसे पहले क्लाउड लवलेस ने देखा था,[1] 26 आयामों (अंतरिक्ष के 25 आयाम और समय का एक आयाम) के अंतरिक्ष समय में, सिद्धांत के लिए महत्वपूर्ण आयाम, विसंगति रद्द हो जाती है। यह उच्च आयामीता आवश्यक रूप से स्ट्रिंग सिद्धांत के लिए एक समस्या नहीं है, क्योंकि इसे इस तरह से तैयार किया जा सकता है कि 22 अतिरिक्त आयामों के साथ स्पेसटाइम को एक छोटे टोरस्र्स या अन्य कॉम्पैक्ट मैनिफोल्ड बनाने के लिए मोड़ दिया जाता है। इससे कम ऊर्जा प्रयोगों के लिए स्पेसटाइम के केवल परिचित चार आयाम ही दिखाई देंगे। एक महत्वपूर्ण आयाम का अस्तित्व जहां विसंगति रद्द हो जाती है, सभी स्ट्रिंग सिद्धांतों की एक सामान्य विशेषता है।

बोसोनिक तारों के प्रकार

चार संभावित बोसोनिक स्ट्रिंग सिद्धांत हैं, जो इस बात पर निर्भर करता है कि क्या स्ट्रिंग (भौतिकी) # बंद और खुले स्ट्रिंग की अनुमति है और क्या स्ट्रिंग में एक निर्दिष्ट उन्मुखता है # अलग-अलग मैनिफोल्ड्स की ओरिएंटेबिलिटी। याद रखें कि खुली स्ट्रिंग के सिद्धांत में बंद स्ट्रिंग भी शामिल होनी चाहिए; खुले तारों को डी-brane |डी25-ब्रेन पर तय किए गए उनके समापन बिंदु के रूप में सोचा जा सकता है जो पूरे स्पेसटाइम को भरता है। स्ट्रिंग के एक विशिष्ट अभिविन्यास का मतलब है कि केवल ओरिएंटेबिलिटी वर्ल्डशीट के अनुरूप इंटरैक्शन की अनुमति है (उदाहरण के लिए, दो स्ट्रिंग केवल समान अभिविन्यास के साथ विलय कर सकते हैं)। चार संभावित सिद्धांतों के स्पेक्ट्रा का एक रेखाचित्र इस प्रकार है:

Bosonic string theory Non-positive states
Open and closed, oriented tachyon, graviton, dilaton, massless antisymmetric tensor
Open and closed, unoriented tachyon, graviton, dilaton
Closed, oriented tachyon, graviton, dilaton, antisymmetric tensor, U(1) vector boson
Closed, unoriented tachyon, graviton, dilaton

ध्यान दें कि सभी चार सिद्धांतों में एक नकारात्मक ऊर्जा टैचियन है () और एक द्रव्यमान रहित गुरुत्वाकर्षण।

इस लेख का शेष भाग सीमाहीन, उन्मुख विश्वपत्रकों के अनुरूप, बंद, उन्मुख सिद्धांत पर लागू होता है।

गणित

पथ अभिन्न गड़बड़ी सिद्धांत

बोसोनिक स्ट्रिंग सिद्धांत कहा जा सकता है[2] पॉलाकोव कार्रवाई के पथ अभिन्न सूत्रीकरण द्वारा परिभाषित किया जाना है:

वर्ल्डशीट पर वह फ़ील्ड है जो 25+1 स्पेसटाइम में स्ट्रिंग के एम्बेडिंग का वर्णन करता है; पॉलाकोव सूत्रीकरण में, इसे एम्बेडिंग से प्रेरित मीट्रिक के रूप में नहीं, बल्कि एक स्वतंत्र गतिशील क्षेत्र के रूप में समझा जाना चाहिए। लक्ष्य स्पेसटाइम पर मीट्रिक है, जिसे आमतौर पर पर्टर्बेटिव सिद्धांत में मिन्कोवस्की मीट्रिक माना जाता है। बाती घुमाना के तहत, इसे यूक्लिडियन मीट्रिक में लाया जाता है . एम एक टोपोलॉजिकल मैनिफ़ोल्ड पैरामीट्रिज्ड के रूप में वर्ल्डशीट है निर्देशांक स्ट्रिंग तनाव है और रेगे ढलान से संबंधित है .

इसमें डिफोमॉर्फिज्म इनवेरिएंस और वेइल परिवर्तन है। वेइल समरूपता परिमाणीकरण (अनुरूप विसंगति) पर टूट जाती है और इसलिए इस क्रिया को एक काउंटरटर्म के साथ पूरक किया जाना चाहिए, साथ ही एक काल्पनिक विशुद्ध रूप से टोपोलॉजिकल शब्द, यूलर विशेषता के आनुपातिक:

काउंटरटर्म द्वारा वेइल इनवेरिएंस को स्पष्ट रूप से तोड़ने को महत्वपूर्ण आयाम 26 में रद्द किया जा सकता है।

फिर भौतिक मात्राओं का निर्माण (यूक्लिडियन) विभाजन फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) और सहसंबंध फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) | एन-पॉइंट फ़ंक्शन से किया जाता है:

परेशान करने वाली श्रृंखला को जीनस द्वारा अनुक्रमित टोपोलॉजी के योग के रूप में व्यक्त किया जाता है।

असतत योग संभावित टोपोलॉजी पर एक योग है, जो यूक्लिडियन बोसोनिक ओरिएंटेबल बंद स्ट्रिंग्स के लिए कॉम्पैक्ट ओरिएंटेबल रीमैनियन मैनिफोल्ड हैं और इस प्रकार एक जीनस द्वारा पहचाने जाते हैं . एक सामान्यीकरण कारक समरूपता से ओवरकाउंटिंग की भरपाई के लिए पेश किया गया है। जबकि विभाजन फ़ंक्शन की गणना ब्रह्माण्ड संबंधी स्थिरांक से मेल खाती है, जिसमें एन-पॉइंट फ़ंक्शन भी शामिल है वर्टेक्स ऑपरेटर्स, स्ट्रिंग्स के प्रकीर्णन आयाम का वर्णन करता है।

क्रिया का समरूपता समूह वास्तव में एकीकरण स्थान को एक सीमित आयामी कई गुना तक कम कर देता है। h> विभाजन फ़ंक्शन में पथ-अभिन्न, संभावित रीमानियन संरचनाओं पर एक प्राथमिक योग है; हालाँकि, वेइल ट्रांसफ़ॉर्मेशन के संबंध में भागफल स्थान (टोपोलॉजी) हमें केवल अनुरूप संरचनाओं पर विचार करने की अनुमति देता है, अर्थात, संबंधित मेट्रिक्स की पहचान के तहत मेट्रिक्स के समतुल्य वर्ग

चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या मॉड्यूलि स्पेस का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है .एच = 0

वृक्ष-स्तर पर, जीनस 0 के अनुरूप, ब्रह्माण्ड संबंधी स्थिरांक गायब हो जाता है: .

चार टैच्योन के बिखरने के लिए चार-बिंदु कार्य शापिरो-विरासोरो आयाम है:

कहाँ कुल गति है और , , मैंडेलस्टैम चर हैं।

एच = 1

Fundamental domain for the modular group.
छायांकित क्षेत्र मॉड्यूलर समूह के लिए एक संभावित मौलिक डोमेन है।

जीनस 1 टोरस है, और वन-लूप फेनमैन आरेख|वन-लूप स्तर से मेल खाता है। विभाजन फ़ंक्शन की मात्रा इस प्रकार है:

सकारात्मक काल्पनिक भाग वाली एक सम्मिश्र संख्या है ; , टोरस के मॉड्यूलि स्पेस के लिए होलोमोर्फिक, मॉड्यूलर समूह के लिए कोई मौलिक डोमेन है उदाहरण के लिए, ऊपरी आधे तल पर कार्य करना . डेडेकाइंड और फ़ंक्शन है। इंटीग्रैंड निश्चित रूप से मॉड्यूलर समूह के तहत अपरिवर्तनीय है: माप बस पोंकारे मीट्रिक है जिसमें आइसोमेट्री समूह के रूप में SL2(R)|PSL(2,R) है; शेष एकीकरण भी गुण से अपरिवर्तनीय है और तथ्य यह है कि वजन 1/2 का एक मॉड्यूलर रूप है।

यह अभिन्न विचलन करता है. यह टैचियन की उपस्थिति के कारण है और पर्टर्बेटिव वैक्यूम की अस्थिरता से संबंधित है।

यह भी देखें

  • नंबू-गोटो क्रिया
  • पोल्याकोव कार्रवाई

टिप्पणियाँ

  1. Lovelace, Claud (1971), "Pomeron form factors and dual Regge cuts", Physics Letters, B34 (6): 500–506, Bibcode:1971PhLB...34..500L, doi:10.1016/0370-2693(71)90665-4.
  2. D'Hoker, Phong

संदर्भ

D'Hoker, Eric & Phong, D. H. (Oct 1988). "The geometry of string perturbation theory". Rev. Mod. Phys. American Physical Society. 60 (4): 917–1065. Bibcode:1988RvMP...60..917D. doi:10.1103/RevModPhys.60.917.

Belavin, A.A. & Knizhnik, V.G. (Feb 1986). "Complex geometry and the theory of quantum strings". ZhETF. 91 (2): 364–390. Bibcode:1986ZhETF..91..364B. Archived from the original on 2021-02-26. Retrieved 2015-04-24.