आठ-शीर्ष प्रारूप: Difference between revisions
(Created page with "{{short description|Generalization of the ice-type (six-vertex) models}} सांख्यिकीय यांत्रिकी में, आठ-शीर्ष म...") |
m (7 revisions imported from alpha:आठ-शीर्ष_प्रारूप) |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Generalization of the ice-type (six-vertex) models}} | {{short description|Generalization of the ice-type (six-vertex) models}} | ||
[[सांख्यिकीय यांत्रिकी]] में, आठ-शीर्ष | [[सांख्यिकीय यांत्रिकी]] में, '''आठ-शीर्ष प्रारूप''' आइस-टाइप प्रारूप का सामान्यीकरण है, इस पर सदरलैंड और फैन एंड वू, द्वारा वर्णन किया गया और शून्य-क्षेत्र स्तिथि में [[रॉडने बैक्सटर]] द्वारा समाधान किया गया।<ref>{{cite journal | last=Sutherland | first=Bill | title=Two‐Dimensional Hydrogen Bonded Crystals without the Ice Rule | journal=Journal of Mathematical Physics | publisher=AIP Publishing | volume=11 | issue=11 | year=1970 | issn=0022-2488 | doi=10.1063/1.1665111 | pages=3183–3186| bibcode=1970JMP....11.3183S }}</ref> <ref>{{cite journal | last1=Fan | first1=Chungpeng | last2=Wu | first2=F. Y. | title=चरण संक्रमण का सामान्य जाली मॉडल| journal=Physical Review B | publisher=American Physical Society (APS) | volume=2 | issue=3 | date=1970-08-01 | issn=0556-2805 | doi=10.1103/physrevb.2.723 | pages=723–733| bibcode=1970PhRvB...2..723F }}</ref> <ref>{{cite journal | last=Baxter | first=R. J. | title=जाली सांख्यिकी में आठ-वर्टेक्स मॉडल| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=26 | issue=14 | date=1971-04-05 | issn=0031-9007 | doi=10.1103/physrevlett.26.832 | pages=832–833| bibcode=1971PhRvL..26..832B }}</ref> | ||
== विवरण == | |||
आइस-टाइप के प्रारूप के जैसे, आठ-शीर्ष प्रारूप वर्गाकार [[जाली (समूह)|लैटिस]] प्रारूप है, जहां प्रत्येक स्तिथि शीर्ष पर एरो का विन्यास है। अनुमत शीर्षों में शीर्ष की ओर प्रदर्शित करने वाले एरो की संख्या सम है; इनमें आइस-टाइप के प्रारूप (1-6), सिंक और स्रोत (7, 8) से गुण में मिले छह सम्मिलित हैं। | |||
[[File:Eightvertex2.png|thumb|आठ शीर्ष 2]]हम विचार करते हैं <math>N\times N</math> लैटिस, के साथ <math>N^2</math> शीर्ष और <math>2N^2</math> किनारों आवधिक सीमा नियमों को प्रारम्भ करने के लिए आवश्यक है कि अवस्था 7 और 8 समान रूप से बार-बार घटित हों, जैसा कि अवस्था 5 और 6 में होता है, और इस प्रकार इसे समान ऊर्जा के रूप में लिया जा सकता है। शून्य-क्षेत्र स्तिथि के लिए अवस्थाओं के दो अन्य युग्मों के लिए भी यही सत्य है। प्रत्येक शीर्ष <math>j</math> संबद्ध ऊर्जा है <math>\epsilon_j</math> और [[बोल्ट्ज़मान कारक|बोल्ट्ज़मान भार]] <math>w_j=e^{-\frac{\epsilon_j}{kT}}</math>, लैटिस पर [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)|विभाजन फलन]] को इस प्रकार देता है: | |||
[[File:Eightvertex2.png|thumb| | |||
:<math> | :<math> | ||
Z=\sum \exp\left(-\frac{\sum_j n_j\epsilon_j}{kT}\right) | Z=\sum \exp\left(-\frac{\sum_j n_j\epsilon_j}{kT}\right) | ||
</math> | </math> | ||
जहां | जहां लैटिस में शीर्षों के सभी अनुमत विन्यासों का योग है। इस सामान्य रूप में विभाजन फलन अनसाल्व्ड रहता है। | ||
==शून्य-क्षेत्र | ==शून्य-क्षेत्र स्तिथि में समाधान== | ||
प्रारूप का शून्य-क्षेत्र स्तिथि भौतिक रूप से बाहरी विद्युत क्षेत्रों की अनुपस्थिति से संयुग्मित होता है। इसलिए, सभी एरो के रिवर्ज होने पर भी प्रारूप अपरिवर्तित रहता है; परिणामस्वरूप अवस्थाएँ 1, 2, 3 और 4, जोड़े के रूप में घटित होने चाहिए। शीर्षों को स्वेछानुसार भार प्रदान किया जा सकता है: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 24: | Line 22: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
समाधान इस अवलोकन पर आधारित है कि [[स्थानांतरण मैट्रिक्स विधि]] | समाधान इस अवलोकन पर आधारित है कि [[स्थानांतरण मैट्रिक्स विधि|स्थानांतरण आव्यूह पंक्तियाँ]] इन चार बोल्ट्ज़मान भारों के निश्चित पैरामीट्रिजेशन के लिए परिवर्तित होती हैं। यह [[छह-शीर्ष मॉडल|छह-शीर्ष प्रारूप]] के लिए वैकल्पिक समाधान के संशोधन के रूप में आया; यह [[जैकोबी थीटा फ़ंक्शन|अण्डाकार थीटा फलन]] का उपयोग करता है। | ||
===कम्यूटिंग | ===कम्यूटिंग स्थानांतरण आव्यूह=== | ||
प्रमाण इस तथ्य पर निर्भर करता है कि | प्रमाण इस तथ्य पर निर्भर करता है कि जब <math> \Delta'=\Delta</math> और <math> \Gamma'=\Gamma</math>, मात्राओं के लिए है: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 35: | Line 33: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
स्थानांतरण | स्थानांतरण आव्यूह <math> T</math> और <math>T'</math>(भार से जुड़ा हुआ <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> और <math>a'</math>, <math>b'</math>, <math>c'</math>, <math>d'</math>) का आवागमन करना। स्टार-त्रिकोण संबंध का उपयोग करते हुए, बैक्सटर ने इस स्थिति को दिए गए भारों के पैरामीट्रिजेशन के समान के रूप में पुन: तैयार किया: | ||
:<math> | :<math> | ||
a:b:c:d=\operatorname{snh}(\eta-u):\operatorname{snh} (\eta +u):\operatorname{snh} (2\eta): k\operatorname{snh} (2\eta)\operatorname{snh} (\eta-u)\operatorname{snh} (\eta+u) | a:b:c:d=\operatorname{snh}(\eta-u):\operatorname{snh} (\eta +u):\operatorname{snh} (2\eta): k\operatorname{snh} (2\eta)\operatorname{snh} (\eta-u)\operatorname{snh} (\eta+u) | ||
</math> | </math> | ||
निश्चित मापांक के लिए <math>k</math> | निश्चित मापांक के लिए <math>k</math>, <math>\eta</math> और परिवर्तनशील <math>u</math> यहाँ snh, sn का अतिशयोक्तिपूर्ण एनालॉग है, जो कि दिया गया है: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 46: | Line 44: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
<math>H(u)</math> और <math>\Theta(u)</math> मापांक के थीटा फलन हैं <math>k</math> संबद्ध स्थानांतरण आव्यूह <math>T</math> इस प्रकार का कार्य <math>u</math> है; सभी के लिए <math>u</math>, <math>v</math> है: | |||
:<math> | :<math> | ||
T(u)T(v)=T(v)T(u). | T(u)T(v)=T(v)T(u). | ||
</math> | </math> | ||
'''आव्यूह फलन <math>Q(u)</math>''' | |||
समाधान का अन्य महत्वपूर्ण भाग अविलक्षण आव्यूह-मान फलन का अस्तित्व <math>Q</math> है, जैसे कि सभी जटिल के लिए <math>u</math> आव्यूह <math>Q(u), Q(u')</math> एक-दूसरे और स्थानांतरण आव्यूह के साथ आवागमन करते हैं, और संतुष्ट होते हैं: | |||
समाधान का अन्य महत्वपूर्ण | |||
{{NumBlk|:|<math> \zeta(u)T(u)Q(u)=\phi(u-\eta)Q(u+2\eta)+\phi(u+\eta)Q(u-2\eta)</math>|{{EquationRef|1}}}} | {{NumBlk|:|<math> \zeta(u)T(u)Q(u)=\phi(u-\eta)Q(u+2\eta)+\phi(u+\eta)Q(u-2\eta)</math>|{{EquationRef|1}}}} | ||
जहाँ | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 63: | Line 60: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
ऐसे | ऐसे फलन के अस्तित्व और रूपान्तरण संबंधों को छह-शीर्ष प्रारूप के समान विधि से, शीर्ष के माध्यम से जोड़ी प्रसार और थीटा कार्यों की आवधिकता संबंधों पर विचार करके प्रदर्शित किया जाता है। | ||
===स्पष्ट समाधान=== | ===स्पष्ट समाधान=== | ||
( | ({{EquationNote|1}})में आव्यूहों का रूपान्तरण उन्हें [[विकर्णीय मैट्रिक्स|विकर्णित आव्यूह]] होने की अनुमति देता है, और इस प्रकार [[eigenvalues|आईजेनवैल्यूज]] पाया जा सकता है। विभाजन फलन की गणना अधिकतम आईजेनवैल्यूज से की जाती है, जिसके परिणामस्वरूप प्रति साइट [[थर्मोडायनामिक मुक्त ऊर्जा]] प्राप्त होती है: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 73: | Line 70: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
के लिए | के लिए, | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 81: | Line 78: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>K</math> और <math>K'</math> मॉड्यूलि के पूर्ण अण्डाकार अभिन्न अंग हैं <math>k</math> और <math>k'</math> आठ शीर्ष प्रारूप को भी [[quasicrystals|क्वैसिक्रिस्टल]] में समाधान किया गया था। | |||
आठ | |||
==आइज़िंग | ==आइज़िंग प्रारूप के साथ समतुल्यता== | ||
आठ- | आठ-शीर्ष प्रारूप और [[आइसिंग मॉडल|आइसिंग प्रारूप]] के मध्य 2-स्पिन और 4-स्पिन निकटतम अत:खंड इंटरैक्शन के मध्य प्राकृतिक पत्राचार है। इस प्रारूप की अवस्थाएँ स्पिन <math>\sigma=\pm 1</math> हैं वर्गाकार लैटिस के फलकों पर आठ-शीर्ष प्रारूप में 'किनारों' का एनालॉग आसन्न फेसेस पर स्पिन के उत्पाद हैं: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 94: | Line 90: | ||
</math> | </math> | ||
[[File:Isingduallattice.png|Isingduallattice]]इस | [[File:Isingduallattice.png|Isingduallattice]] | ||
इस प्रारूप के लिए ऊर्जा का सबसे सामान्य रूप है: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 100: | Line 98: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>J_h</math>, <math>J_v</math>, <math>J</math>, <math>J'</math> क्षैतिज, ऊर्ध्वाधर और दो विकर्ण 2-स्पिन इंटरैक्शन का वर्णन करता है, और <math>J''</math> शीर्ष पर चार फेसेस के मध्य 4-स्पिन इंटरैक्शन का वर्णन करता है; योग पूर्ण लैटिस से अधिक है। | |||
[[File:Isinginteractions.png|Isingबातचीत]]हम आठ-शीर्ष | [[File:Isinginteractions.png|Isingबातचीत]] | ||
प्रत्येक शीर्ष के लिए बोल्ट्ज़मान भार का समीकरण सामान्य | |||
हम आठ-शीर्ष प्रारूप में क्षैतिज और ऊर्ध्वाधर स्पिन (किनारों पर एरो) <math>\mu</math> को दर्शाते हैं, क्रमशः <math>\alpha</math>, ऊपर और दाएं को सकारात्मक दिशाओं के रूप में परिभाषित करता है। शीर्ष स्थिति पर प्रतिबंध यह है कि शीर्ष पर चार किनारों का गुणनफल 1 है; यह स्वचालित रूप से आइसिंग 'किनारों' के लिए मान्य है। प्रत्येक <math>\sigma</math> कॉन्फ़िगरेशन तब अद्वितीय से संयुग्मित होता है। <math>\mu</math>, <math>\alpha</math> कॉन्फ़िगरेशन जबकि प्रत्येक <math>\mu</math>, <math>\alpha</math> कॉन्फ़िगरेशन दो विकल्प प्रदान करता है। <math>\sigma</math> विन्यास है। | |||
प्रत्येक शीर्ष के लिए बोल्ट्ज़मान भार का समीकरण सामान्य रूपों <math>j</math>, के मध्य निम्नलिखित संबंध <math>\epsilon_j</math> और <math>J_h</math>, <math>J_v</math>, <math>J</math>, <math>J'</math>, <math>J''</math> लैटिस प्रारूप के मध्य पत्राचार को परिभाषित किया जाता है: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 112: | Line 113: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
यह इस प्रकार है कि आठ-शीर्ष | यह इस प्रकार है कि आठ-शीर्ष प्रारूप के शून्य-क्षेत्र स्तिथि में, संबंधित आइसिंग प्रारूप में क्षैतिज और ऊर्ध्वाधर इंटरैक्शन विलुप्त हो जाते हैं। | ||
ये संबंध समतुल्यता प्रदान करते हैं <math>Z_I=2Z_{8V}</math> आठ- | ये संबंध समतुल्यता प्रदान करते हैं <math>Z_I=2Z_{8V}</math> आठ-शीर्ष प्रारूप के विभाजन कार्यों और 2,4-स्पिन आइसिंग प्रारूप के मध्य परिणामस्वरूप किसी भी प्रारूप में समाधान तुरंत दूसरे प्रारूप में समाधान की ओर ले जाएगा। | ||
==यह भी देखें== | ==यह भी देखें== | ||
* | *छह-शीर्ष प्रारूप | ||
*[[स्थानांतरण-मैट्रिक्स विधि]] | *[[स्थानांतरण-मैट्रिक्स विधि|स्थानांतरण-आव्यूह विधि]] | ||
*आइज़िंग | *आइज़िंग प्रारूप | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
== संदर्भ == | |||
==संदर्भ== | |||
*{{Citation | last1=Baxter | first1=Rodney J. | title=Exactly solved models in statistical mechanics | url=http://physics.anu.edu.au/theophys/_files/Exactly.pdf | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | isbn=978-0-12-083180-7 | mr=690578 | year=1982 | access-date=2012-08-12 | archive-date=2021-04-14 | archive-url=https://web.archive.org/web/20210414063635/https://physics.anu.edu.au/theophys/_files/Exactly.pdf | url-status=dead }} | *{{Citation | last1=Baxter | first1=Rodney J. | title=Exactly solved models in statistical mechanics | url=http://physics.anu.edu.au/theophys/_files/Exactly.pdf | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | isbn=978-0-12-083180-7 | mr=690578 | year=1982 | access-date=2012-08-12 | archive-date=2021-04-14 | archive-url=https://web.archive.org/web/20210414063635/https://physics.anu.edu.au/theophys/_files/Exactly.pdf | url-status=dead }} | ||
[[Category: बिल्कुल हल करने योग्य मॉडल]] [[Category: सांख्यिकीय यांत्रिकी]] [[Category: जाली मॉडल]] | [[Category: बिल्कुल हल करने योग्य मॉडल]] [[Category: सांख्यिकीय यांत्रिकी]] [[Category: जाली मॉडल]] | ||
Line 133: | Line 133: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 29/11/2023]] | [[Category:Created On 29/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 09:05, 13 December 2023
सांख्यिकीय यांत्रिकी में, आठ-शीर्ष प्रारूप आइस-टाइप प्रारूप का सामान्यीकरण है, इस पर सदरलैंड और फैन एंड वू, द्वारा वर्णन किया गया और शून्य-क्षेत्र स्तिथि में रॉडने बैक्सटर द्वारा समाधान किया गया।[1] [2] [3]
विवरण
आइस-टाइप के प्रारूप के जैसे, आठ-शीर्ष प्रारूप वर्गाकार लैटिस प्रारूप है, जहां प्रत्येक स्तिथि शीर्ष पर एरो का विन्यास है। अनुमत शीर्षों में शीर्ष की ओर प्रदर्शित करने वाले एरो की संख्या सम है; इनमें आइस-टाइप के प्रारूप (1-6), सिंक और स्रोत (7, 8) से गुण में मिले छह सम्मिलित हैं।
हम विचार करते हैं लैटिस, के साथ शीर्ष और किनारों आवधिक सीमा नियमों को प्रारम्भ करने के लिए आवश्यक है कि अवस्था 7 और 8 समान रूप से बार-बार घटित हों, जैसा कि अवस्था 5 और 6 में होता है, और इस प्रकार इसे समान ऊर्जा के रूप में लिया जा सकता है। शून्य-क्षेत्र स्तिथि के लिए अवस्थाओं के दो अन्य युग्मों के लिए भी यही सत्य है। प्रत्येक शीर्ष संबद्ध ऊर्जा है और बोल्ट्ज़मान भार , लैटिस पर विभाजन फलन को इस प्रकार देता है:
जहां लैटिस में शीर्षों के सभी अनुमत विन्यासों का योग है। इस सामान्य रूप में विभाजन फलन अनसाल्व्ड रहता है।
शून्य-क्षेत्र स्तिथि में समाधान
प्रारूप का शून्य-क्षेत्र स्तिथि भौतिक रूप से बाहरी विद्युत क्षेत्रों की अनुपस्थिति से संयुग्मित होता है। इसलिए, सभी एरो के रिवर्ज होने पर भी प्रारूप अपरिवर्तित रहता है; परिणामस्वरूप अवस्थाएँ 1, 2, 3 और 4, जोड़े के रूप में घटित होने चाहिए। शीर्षों को स्वेछानुसार भार प्रदान किया जा सकता है:
समाधान इस अवलोकन पर आधारित है कि स्थानांतरण आव्यूह पंक्तियाँ इन चार बोल्ट्ज़मान भारों के निश्चित पैरामीट्रिजेशन के लिए परिवर्तित होती हैं। यह छह-शीर्ष प्रारूप के लिए वैकल्पिक समाधान के संशोधन के रूप में आया; यह अण्डाकार थीटा फलन का उपयोग करता है।
कम्यूटिंग स्थानांतरण आव्यूह
प्रमाण इस तथ्य पर निर्भर करता है कि जब और , मात्राओं के लिए है:
स्थानांतरण आव्यूह और (भार से जुड़ा हुआ , , , और , , , ) का आवागमन करना। स्टार-त्रिकोण संबंध का उपयोग करते हुए, बैक्सटर ने इस स्थिति को दिए गए भारों के पैरामीट्रिजेशन के समान के रूप में पुन: तैयार किया:
निश्चित मापांक के लिए , और परिवर्तनशील यहाँ snh, sn का अतिशयोक्तिपूर्ण एनालॉग है, जो कि दिया गया है:
और मापांक के थीटा फलन हैं संबद्ध स्थानांतरण आव्यूह इस प्रकार का कार्य है; सभी के लिए , है:
आव्यूह फलन
समाधान का अन्य महत्वपूर्ण भाग अविलक्षण आव्यूह-मान फलन का अस्तित्व है, जैसे कि सभी जटिल के लिए आव्यूह एक-दूसरे और स्थानांतरण आव्यूह के साथ आवागमन करते हैं, और संतुष्ट होते हैं:
-
(1)
जहाँ
ऐसे फलन के अस्तित्व और रूपान्तरण संबंधों को छह-शीर्ष प्रारूप के समान विधि से, शीर्ष के माध्यम से जोड़ी प्रसार और थीटा कार्यों की आवधिकता संबंधों पर विचार करके प्रदर्शित किया जाता है।
स्पष्ट समाधान
(1)में आव्यूहों का रूपान्तरण उन्हें विकर्णित आव्यूह होने की अनुमति देता है, और इस प्रकार आईजेनवैल्यूज पाया जा सकता है। विभाजन फलन की गणना अधिकतम आईजेनवैल्यूज से की जाती है, जिसके परिणामस्वरूप प्रति साइट थर्मोडायनामिक मुक्त ऊर्जा प्राप्त होती है:
के लिए,
जहाँ और मॉड्यूलि के पूर्ण अण्डाकार अभिन्न अंग हैं और आठ शीर्ष प्रारूप को भी क्वैसिक्रिस्टल में समाधान किया गया था।
आइज़िंग प्रारूप के साथ समतुल्यता
आठ-शीर्ष प्रारूप और आइसिंग प्रारूप के मध्य 2-स्पिन और 4-स्पिन निकटतम अत:खंड इंटरैक्शन के मध्य प्राकृतिक पत्राचार है। इस प्रारूप की अवस्थाएँ स्पिन हैं वर्गाकार लैटिस के फलकों पर आठ-शीर्ष प्रारूप में 'किनारों' का एनालॉग आसन्न फेसेस पर स्पिन के उत्पाद हैं:
इस प्रारूप के लिए ऊर्जा का सबसे सामान्य रूप है:
जहाँ , , , क्षैतिज, ऊर्ध्वाधर और दो विकर्ण 2-स्पिन इंटरैक्शन का वर्णन करता है, और शीर्ष पर चार फेसेस के मध्य 4-स्पिन इंटरैक्शन का वर्णन करता है; योग पूर्ण लैटिस से अधिक है।
हम आठ-शीर्ष प्रारूप में क्षैतिज और ऊर्ध्वाधर स्पिन (किनारों पर एरो) को दर्शाते हैं, क्रमशः , ऊपर और दाएं को सकारात्मक दिशाओं के रूप में परिभाषित करता है। शीर्ष स्थिति पर प्रतिबंध यह है कि शीर्ष पर चार किनारों का गुणनफल 1 है; यह स्वचालित रूप से आइसिंग 'किनारों' के लिए मान्य है। प्रत्येक कॉन्फ़िगरेशन तब अद्वितीय से संयुग्मित होता है। , कॉन्फ़िगरेशन जबकि प्रत्येक , कॉन्फ़िगरेशन दो विकल्प प्रदान करता है। विन्यास है।
प्रत्येक शीर्ष के लिए बोल्ट्ज़मान भार का समीकरण सामान्य रूपों , के मध्य निम्नलिखित संबंध और , , , , लैटिस प्रारूप के मध्य पत्राचार को परिभाषित किया जाता है:
यह इस प्रकार है कि आठ-शीर्ष प्रारूप के शून्य-क्षेत्र स्तिथि में, संबंधित आइसिंग प्रारूप में क्षैतिज और ऊर्ध्वाधर इंटरैक्शन विलुप्त हो जाते हैं।
ये संबंध समतुल्यता प्रदान करते हैं आठ-शीर्ष प्रारूप के विभाजन कार्यों और 2,4-स्पिन आइसिंग प्रारूप के मध्य परिणामस्वरूप किसी भी प्रारूप में समाधान तुरंत दूसरे प्रारूप में समाधान की ओर ले जाएगा।
यह भी देखें
- छह-शीर्ष प्रारूप
- स्थानांतरण-आव्यूह विधि
- आइज़िंग प्रारूप
टिप्पणियाँ
- ↑ Sutherland, Bill (1970). "Two‐Dimensional Hydrogen Bonded Crystals without the Ice Rule". Journal of Mathematical Physics. AIP Publishing. 11 (11): 3183–3186. Bibcode:1970JMP....11.3183S. doi:10.1063/1.1665111. ISSN 0022-2488.
- ↑ Fan, Chungpeng; Wu, F. Y. (1970-08-01). "चरण संक्रमण का सामान्य जाली मॉडल". Physical Review B. American Physical Society (APS). 2 (3): 723–733. Bibcode:1970PhRvB...2..723F. doi:10.1103/physrevb.2.723. ISSN 0556-2805.
- ↑ Baxter, R. J. (1971-04-05). "जाली सांख्यिकी में आठ-वर्टेक्स मॉडल". Physical Review Letters. American Physical Society (APS). 26 (14): 832–833. Bibcode:1971PhRvL..26..832B. doi:10.1103/physrevlett.26.832. ISSN 0031-9007.
संदर्भ
- Baxter, Rodney J. (1982), Exactly solved models in statistical mechanics (PDF), London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-083180-7, MR 0690578, archived from the original (PDF) on 2021-04-14, retrieved 2012-08-12