थर्मल संपर्क संचालन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|The study of heat conduction between solid bodies in thermal contact}}
{{Short description|The study of heat conduction between solid bodies in thermal contact}}
भौतिकी में, '''[[थर्मल संपर्क]] संचालन''' [[ठोस]] या तरल निकायों के मध्य ऊष्मा संचालन का अध्ययन है। थर्मल संपर्क चालन गुणांक <math>h_c</math>, गुण है, जो संपर्क में आए दो निकायों के मध्य तापीय चालकता, या [[गर्मी|ऊष्मा]] संचालित करने की क्षमता को दर्शाता है। इस गुण के व्युत्क्रम को थर्मल संपर्क प्रतिरोध कहा जाता है।
भौतिकी में, '''[[थर्मल संपर्क]] संचालन''' [[ठोस]] या तरल निकायों के मध्य ऊष्मा संचालन का अध्ययन है। थर्मल संपर्क चालन गुणांक <math>h_c</math> का गुण है, जो संपर्क में आए दो निकायों के मध्य तापीय चालकता, या [[गर्मी|ऊष्मा]] संचालित करने की क्षमता को दर्शाता है। इस गुण के व्युत्क्रम को थर्मल संपर्क प्रतिरोध कहा जाता है।


==परिभाषा==
==परिभाषा==
Line 14: Line 14:
जहाँ <math>q</math> ऊष्मा का प्रवाह है, तापीय चालकता <math>k</math> है, क्रॉस अनुभागीय क्षेत्र <math>A</math> है और <math>dT/dx</math> प्रवाह की दिशा में तापमान प्रवणता है।
जहाँ <math>q</math> ऊष्मा का प्रवाह है, तापीय चालकता <math>k</math> है, क्रॉस अनुभागीय क्षेत्र <math>A</math> है और <math>dT/dx</math> प्रवाह की दिशा में तापमान प्रवणता है।


ऊर्जा संरक्षण के विचार से, संपर्क में आने वाले दो पिंड A और B के मध्य ऊष्मा का प्रवाह इस प्रकार पाया जाता है:
ऊर्जा संरक्षण के विचार से, संपर्क में आने वाले दो पिंड A और B के मध्य ऊष्मा का प्रवाह इस प्रकार प्राप्त किया जाता है:
{{NumBlk|:|<math>q=\frac{T_1 - T_3}{X_A/(k_A A)+1/(h_c A) + X_B/(k_B A)}</math>|{{EquationRef|2}}}}
{{NumBlk|:|<math>q=\frac{T_1 - T_3}{X_A/(k_A A)+1/(h_c A) + X_B/(k_B A)}</math>|{{EquationRef|2}}}}


कोई यह देख सकता है कि ऊष्मा का प्रवाह सीधे संपर्क में आने वाले पिंडों की तापीय चालकता से संबंधित है, <math>k_A</math> और <math>k_B</math>, संपर्क क्षेत्र <math>A</math>, और थर्मल संपर्क प्रतिरोध, <math>1/h_c</math>, जैसा कि पहले उल्लेख किया गया है, तापीय चालकता गुणांक का व्युत्क्रम <math>h_c</math> है।
कोई यह देख सकता है कि ऊष्मा का प्रवाह सरलता से संपर्क में आने वाले पिंडों की तापीय चालकता से संबंधित है, <math>k_A</math> और <math>k_B</math>, संपर्क क्षेत्र <math>A</math>, और थर्मल संपर्क प्रतिरोध <math>1/h_c</math>, जैसा कि पहले उल्लेख किया गया है, तापीय चालकता गुणांक का व्युत्क्रम <math>h_c</math> है।


==महत्व==
==महत्व==
थर्मल संपर्क प्रतिरोध के अधिकांश प्रयोगात्मक रूप से निर्धारित मान 0.000005 और 0.0005 m2 K/W मध्य में आते हैं (थर्मल संपर्क संचालन की संबंधित सीमा 200,000 से 2000 W/m है) यह जानने के लिए कि थर्मल संपर्क प्रतिरोध महत्वपूर्ण है या नहीं, परतों के थर्मल प्रतिरोध के परिमाण की तुलना थर्मल संपर्क प्रतिरोध के विशिष्ट मानों से की जाती है। थर्मल संपर्क प्रतिरोध महत्वपूर्ण है धातुओं जैसे उत्तम ताप चालकों के लिए हो सकता है किंतु इन्सुलेटर जैसे व्यर्थ ताप चालकों के लिए इसे विस्थापित किया जा सकता है।<ref>{{cite book|title=थर्मोडायनामिक्स और हीट ट्रांसफर का परिचय|author=Çengel}}</ref>थर्मल संपर्क संचालन विभिन्न प्रकार के अनुप्रयोगों में महत्वपूर्ण कारक है, मुख्यतः क्योंकि कई भौतिक प्रणालियों में दो सामग्रियों का [[यांत्रिकी]] संयोजन होता है। कुछ ऐसे क्षेत्र जहां संपर्क संचालन का महत्व है:<ref>{{cite journal
थर्मल संपर्क प्रतिरोध के अधिकांश प्रयोगात्मक रूप से निर्धारित मान 0.000005 और 0.0005 m2 K/W मध्य में आते हैं (थर्मल संपर्क संचालन की संबंधित सीमा 200,000 से 2000 W/m है)यह जानने के लिए कि थर्मल संपर्क प्रतिरोध महत्वपूर्ण है या नहीं, परतों के थर्मल प्रतिरोध के परिमाण की तुलना थर्मल संपर्क प्रतिरोध के विशिष्ट मानों से की जाती है। थर्मल संपर्क प्रतिरोध महत्वपूर्ण है धातुओं जैसे उत्तम ताप चालकों के लिए हो सकता है किंतु इन्सुलेटर जैसे व्यर्थ ताप चालकों के लिए इसे विस्थापित किया जा सकता है।<ref>{{cite book|title=थर्मोडायनामिक्स और हीट ट्रांसफर का परिचय|author=Çengel}}</ref>थर्मल संपर्क संचालन विभिन्न प्रकार के अनुप्रयोगों में महत्वपूर्ण कारक है, मुख्यतः क्योंकि कई भौतिक प्रणालियों में दो सामग्रियों का [[यांत्रिकी]] संयोजन होता है। कुछ ऐसे क्षेत्र जहां संपर्क संचालन का महत्व है:<ref>{{cite journal
   | first = L. S.
   | first = L. S.
   | last = Fletcher
   | last = Fletcher
Line 68: Line 68:


===संपर्क [[दबाव]]===
===संपर्क [[दबाव]]===
दो संपर्क निकायों के मध्य थर्मल परिवहन के लिए, जैसे कि दानेदार माध्यम में कण, संपर्क दबाव समग्र संपर्क संचालन पर सबसे अधिक प्रभाव का कारक है। जैसे-जैसे संपर्क दबाव बढ़ता है, वास्तविक संपर्क क्षेत्र बढ़ता है और संपर्क संचालन बढ़ता है (संपर्क प्रतिरोध छोटा हो जाता है)।<ref name="fusion">{{cite journal| last1=Gan| first1=Y| last2=Hernandez|first2=F |display-authors=etal |title=न्यूट्रॉन विकिरण के अधीन ईयू सॉलिड ब्रीडर कंबल का थर्मल असतत तत्व विश्लेषण| journal= Fusion Science and Technology| year=2014| volume=66|issue=1| pages=83–90 | doi=10.13182/FST13-727| arxiv=1406.4199| bibcode=2014FuST...66...83G| s2cid=51903434}}</ref>
दो संपर्क निकायों के मध्य थर्मल परिवहन के लिए, जैसे कि दानेदार माध्यम में कण, संपर्क दबाव समग्र संचालन पर सबसे अधिक प्रभाव का कारक है। जैसे-जैसे संपर्क दबाव बढ़ता है, वास्तविक संपर्क क्षेत्र बढ़ता है और संपर्क संचालन बढ़ता है (संपर्क प्रतिरोध छोटा हो जाता है)।<ref name="fusion">{{cite journal| last1=Gan| first1=Y| last2=Hernandez|first2=F |display-authors=etal |title=न्यूट्रॉन विकिरण के अधीन ईयू सॉलिड ब्रीडर कंबल का थर्मल असतत तत्व विश्लेषण| journal= Fusion Science and Technology| year=2014| volume=66|issue=1| pages=83–90 | doi=10.13182/FST13-727| arxiv=1406.4199| bibcode=2014FuST...66...83G| s2cid=51903434}}</ref>


चूंकि संपर्क दबाव सबसे महत्वपूर्ण कारक है, संपर्क संचालन के माप के लिए अधिकांश अध्ययन, सहसंबंध और गणितीय मॉडल इस कारक के कार्य के रूप में किए जाते हैं।
चूंकि संपर्क दबाव सबसे महत्वपूर्ण कारक है, संपर्क संचालन के माप के लिए अधिकांश अध्ययन, सहसंबंध और गणितीय मॉडल इस कारक के कार्य के रूप में किए जाते हैं।
Line 77: Line 77:
{{main|अंतरालीय दोष}}
{{main|अंतरालीय दोष}}


वास्तव में कोई स्मूथ सतह उपस्तिथ नहीं है, और सतह की हानियाँ [[माइक्रोस्कोप]] के नीचे दिखाई देती हैं। परिणामस्वरूप, जब दो पिंडों को एक साथ दबाया जाता है, तो संपर्क केवल सीमित संख्या में बिंदुओं में होता है, जो अपेक्षाकृत बड़े अंतराल से भिन्न होता है, जैसा कि चित्र 2 में दिखाया जा सकता है। चूंकि वास्तविक संपर्क क्षेत्र कम हो गया है, ऊष्मा के लिए प्रतिरोध प्रवाह उपस्तिथ है। इन अंतरालों को भरने वाली [[गैस|गैसें]]/[[तरल पदार्थ]] इंटरफ़ेस में कुल ताप प्रवाह को अधिक सीमा तक प्रभावित कर सकते हैं। नुडसेन संख्या के संदर्भ में परिक्षण की गई अंतरालीय सामग्री की तापीय चालकता और उसका दबाव, दो गुण हैं जो सामान्य रूप से संपर्क संचालन और विषम सामग्रियों में थर्मल परिवहन पर इसके प्रभाव को नियंत्रित करते हैं<ref name="fusion" />
वास्तव में कोई स्मूथ सतह उपस्तिथ नहीं है, और सतह की हानियाँ [[माइक्रोस्कोप]] के नीचे दिखाई देती हैं। परिणामस्वरूप, जब दो पिंडों को एक साथ दबाया जाता है, तो संपर्क केवल सीमित संख्या बिंदुओं में होती है, जो अपेक्षाकृत बड़े अंतराल से भिन्न होती है, जैसा कि चित्र 2 में दिखाया जा सकता है। चूंकि वास्तविक संपर्क क्षेत्र कम हो गया है, ऊष्मा के लिए प्रतिरोध प्रवाह उपस्तिथ है। इन अंतरालों को भरने वाली [[गैस|गैसें]]/[[तरल पदार्थ]] इंटरफ़ेस में कुल ताप प्रवाह को अधिक सीमा तक प्रभावित कर सकते हैं। नुडसेन संख्या के संदर्भ में परिक्षण की गई अंतरालीय सामग्री की तापीय चालकता और उसका दबाव, दो गुण हैं जो सामान्य रूप से संपर्क संचालन और विषम सामग्रियों में थर्मल परिवहन पर इसके प्रभाव को नियंत्रित करते हैं<ref name="fusion" />


अंतरालीय सामग्रियों की अनुपस्थिति में, जैसे निर्वात में, संपर्क प्रतिरोध अधिक बड़ा होगा, क्योंकि अंतरंग संपर्क बिंदुओं के माध्यम से प्रवाह प्रमुख है।
अंतरालीय सामग्रियों की अनुपस्थिति में, जैसे निर्वात में, संपर्क प्रतिरोध अधिक बड़ा होगा, क्योंकि अंतरंग संपर्क बिंदुओं के माध्यम से प्रवाह प्रमुख है।


===सतह का रफ़नेस, वाविननेस और फ्लैटनेस===
===सतह का रफ़नेस, वाविननेस और फ्लैटनेस===
कोई ऐसी सतह को चिह्नित कर सकता है जिसमें तीन मुख्य गुणों के आधार पर कुछ सतह परिष्करण कार्य किए गए हैं: रफ़नेस, वाविननेस और [[भग्न आयाम|फ्लैटनेस]] है। इनमें रफ़नेस और भग्नता सबसे अधिक महत्वपूर्ण है, रफ़नेस प्रायः मूल माध्य वर्ग मान के संदर्भ में प्रदर्शित किया जाता है, <math>\sigma</math> और सतह भग्नता को सामान्यतः d<sub>f</sub> द्वारा दर्शाया जाता है, इंटरफेस पर तापीय चालकता पर सतह संरचनाओं का प्रभाव [[विद्युत संपर्क प्रतिरोध]] की अवधारणा के अनुरूप है, जिसे विद्युत संपर्क प्रतिरोध के रूप में भी जाना जाता है, जिसमें इलेक्ट्रॉनों के अतिरिक्त [[फोनन]] के संपर्क पैच प्रतिबंधित परिवहन सम्मिलित है।
कोई ऐसी सतह को चिह्नित कर सकता है जिसमें तीन मुख्य गुणों के आधार पर कुछ सतह परिष्करण कार्य किए गए हैं: रफ़नेस, वाविननेस और [[भग्न आयाम|फ्लैटनेस]] है। इनमें रफ़नेस और भग्नता सबसे अधिक महत्वपूर्ण है, रफ़नेस प्रायः मूल माध्य वर्ग मान के संदर्भ में प्रदर्शित किया जाता है, <math>\sigma</math> और सतह भग्नता को सामान्यतः d<sub>f</sub> द्वारा दर्शाया जाता है, इंटरफेस पर तापीय चालकता पर सतह संरचनाओं का प्रभाव [[विद्युत संपर्क प्रतिरोध]] की अवधारणा के अनुरूप है, जिसे विद्युत संपर्क प्रतिरोध के रूप में भी जाना जाता है, जिसमें इलेक्ट्रॉनों के अतिरिक्त [[फोनन]] के संपर्क में पैच प्रतिबंधित परिवहन सम्मिलित है।


===सतह विकृतियाँ===
===सतह विकृतियाँ===
Line 106: Line 106:


==थर्मल संपर्क संचालन का मापन==
==थर्मल संपर्क संचालन का मापन==
सूत्र 2 पर वापस जाने पर, संपर्क क्षेत्र को मापने में कठिनाई के कारण थर्मल संपर्क संचालन की गणना करना कठिन है, यहां तक ​​कि असंभव भी सिद्ध हो सकता है, <math>A</math> (सतह विशेषताओं का उत्पाद, जैसा कि पूर्व में बताया गया है)। इस कारण से, संपर्क संचालन/प्रतिरोध सामान्यतः मानक उपकरण का उपयोग करके प्रयोगात्मक रूप से पाया जाता है।<ref>ASTM D 5470 – 06 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials</ref>
सूत्र 2 पर वापस जाने पर, संपर्क क्षेत्र को मापने में कठिनाई के कारण थर्मल संपर्क संचालन की गणना करना कठिन है, यहां तक ​​कि असंभव भी सिद्ध हो सकता है, <math>A</math> (सतह विशेषताओं का उत्पाद, जैसा कि पूर्व में बताया गया है)। इस कारण से, संपर्क संचालन/प्रतिरोध सामान्यतः मानक उपकरण का उपयोग करके प्रयोगात्मक रूप से प्राप्त किया जाता है।<ref>ASTM D 5470 – 06 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials</ref>


ऐसे प्रयोगों के परिणाम सामान्यतः [[ अभियांत्रिकी |अभियांत्रिकी]] [[साहित्य]] में [http://scation.aip.org/ASMEJournals/HeatTransfer/ जर्नल ऑफ हीट ट्रांसफर], [http://www.elsevier.com/wps इंटरनेशनल जर्नल ऑफ हीट एंड मास ट्रांसफर] आदि [[वैज्ञानिक पत्रिका|वैज्ञानिक पत्रिकाओं]] में [http://www.elsevier.com/wps प्रकाशित होते हैं।]  दुर्भाग्य से, संपर्क चालन गुणांक का केंद्रीकृत [[डेटाबेस]] उपस्तिथ नहीं है, ऐसी स्थिति जो कभी-कभी कंपनियों को प्राचीन, अप्रासंगिक डेटा का उपयोग करना, या संपर्क संचालन को पूर्णतः भी ध्यान में न रखना। [http://www.elsevier.com/wps /find/journaldescription.cws_home/210/description#description]  
ऐसे प्रयोगों के परिणाम सामान्यतः [[ अभियांत्रिकी |अभियांत्रिकी]] [[साहित्य]] में [http://scation.aip.org/ASMEJournals/HeatTransfer/ जर्नल ऑफ हीट ट्रांसफर], [http://www.elsevier.com/wps इंटरनेशनल जर्नल ऑफ हीट एंड मास ट्रांसफर] आदि [[वैज्ञानिक पत्रिका|वैज्ञानिक पत्रिकाओं]] में [http://www.elsevier.com/wps प्रकाशित होते हैं।]  दुर्भाग्य से, संपर्क चालन गुणांक का केंद्रीकृत [[डेटाबेस]] उपस्तिथ नहीं है, ऐसी स्थिति जो कभी-कभी कंपनियों को प्राचीन, अप्रासंगिक डेटा का उपयोग करना, या संपर्क संचालन को पूर्णतः भी ध्यान में न रखना। [http://www.elsevier.com/wps /find/journaldescription.cws_home/210/description#description]  


[http://sourceforge.net/projects/cocoe/ CoCoE] (संपर्क आचरण अनुमानक), इस समस्या का समाधान करने और संपर्क आचरण डेटा का केंद्रीकृत डेटाबेस और इसका उपयोग करने वाला कंप्यूटर प्रोग्राम बनाने के लिए स्थापित परियोजना, 2006 में प्रारंभ की गई थी।
[http://sourceforge.net/projects/cocoe/ CoCoE] (संपर्क आचरण अनुमानक), इस समस्या का समाधान करन और संपर्क आचरण डेटा का केंद्रीकृत डेटाबेस और इसका उपयोग करने वाला कंप्यूटर प्रोग्राम बनाने के लिए स्थापित परियोजना, 2006 में प्रारंभ की गई थी।


==थर्मल सीमा संचालन==
==थर्मल सीमा संचालन==


जबकि परिमित थर्मल संपर्क चालन इंटरफ़ेस, सतह वाविननेस, और सतह रफ़नेस आदि पर रिक्तियों के कारण होता है, परिमित संचालन आदर्श इंटरफेस के निकट भी उपस्तिथ होता है। यह संचालन, जिसे [[इंटरफेशियल थर्मल प्रतिरोध|थर्मल सीमा चालन]] के रूप में जाना जाता है, संपर्क सामग्रियों के मध्य इलेक्ट्रॉनिक और कंपन गुणों में अंतर के कारण होता है। यह चालन सामान्यतः थर्मल संपर्क चालन से अधिक है, किंतु नैनोस्केल सामग्री प्रणालियों में महत्वपूर्ण हो जाता है।
जबकि परिमित थर्मल संपर्क चालन इंटरफ़ेस, सतह वाविननेस, और सतह रफ़नेस आदि पर रिक्तियों के कारण होता है, परिमित संचालन आदर्श इंटरफेस के निकट भी उपस्तिथ होता है। यह संचालन, जिसे [[इंटरफेशियल थर्मल प्रतिरोध|थर्मल सीमा चालन]] के रूप में जाना जाता है, संपर्क सामग्रियों के मध्य इलेक्ट्रॉनिक और कंपन गुणों में अंतर के कारण होता है। यह चालन सामान्यतः थर्मल संपर्क चालन से अधिक है, किंतु नैनोस्केल सामग्री प्रणालियों में महत्वपूर्ण हो जाती है।


==यह भी देखें==
==यह भी देखें==

Revision as of 22:03, 6 December 2023

भौतिकी में, थर्मल संपर्क संचालन ठोस या तरल निकायों के मध्य ऊष्मा संचालन का अध्ययन है। थर्मल संपर्क चालन गुणांक का गुण है, जो संपर्क में आए दो निकायों के मध्य तापीय चालकता, या ऊष्मा संचालित करने की क्षमता को दर्शाता है। इस गुण के व्युत्क्रम को थर्मल संपर्क प्रतिरोध कहा जाता है।

परिभाषा

चित्र 1: संपर्क में आए दो ठोस पदार्थों के मध्य ऊष्मा का प्रवाह और तापमान वितरण।

जब दो ठोस पिंड संपर्क में आते हैं, जैसे कि चित्र 1 में A और B, तो ऊष्मा गर्म पिंड से ठंडे पिंड की ओर प्रवाहित होती है। अनुभव से, दोनों निकायों का तापमान प्रोफ़ाइल लगभग भिन्न होता है, जैसा कि चित्र में दिखाया गया है। संपर्क में आने वाली दो सतहों के मध्य इंटरफेस पर तापमान में अल्पता देखी गई है। ऐसा कहा जाता है कि यह घटना संपर्क सतहों के मध्य उपस्तिथ थर्मल संपर्क प्रतिरोध का परिणाम है। थर्मल संपर्क प्रतिरोध को इस तापमान में अल्पता और इंटरफ़ेस में औसत ताप प्रवाह के मध्य के अनुपात के रूप में परिभाषित किया गया है।[1]

फूरियर के नियम के अनुसार, पिंडों के मध्य ऊष्मा का प्रवाह संबंध द्वारा पाया जाता है:

 

 

 

 

(1)

जहाँ ऊष्मा का प्रवाह है, तापीय चालकता है, क्रॉस अनुभागीय क्षेत्र है और प्रवाह की दिशा में तापमान प्रवणता है।

ऊर्जा संरक्षण के विचार से, संपर्क में आने वाले दो पिंड A और B के मध्य ऊष्मा का प्रवाह इस प्रकार प्राप्त किया जाता है:

 

 

 

 

(2)

कोई यह देख सकता है कि ऊष्मा का प्रवाह सरलता से संपर्क में आने वाले पिंडों की तापीय चालकता से संबंधित है, और , संपर्क क्षेत्र , और थर्मल संपर्क प्रतिरोध , जैसा कि पहले उल्लेख किया गया है, तापीय चालकता गुणांक का व्युत्क्रम है।

महत्व

थर्मल संपर्क प्रतिरोध के अधिकांश प्रयोगात्मक रूप से निर्धारित मान 0.000005 और 0.0005 m2 K/W मध्य में आते हैं (थर्मल संपर्क संचालन की संबंधित सीमा 200,000 से 2000 W/m है)। यह जानने के लिए कि थर्मल संपर्क प्रतिरोध महत्वपूर्ण है या नहीं, परतों के थर्मल प्रतिरोध के परिमाण की तुलना थर्मल संपर्क प्रतिरोध के विशिष्ट मानों से की जाती है। थर्मल संपर्क प्रतिरोध महत्वपूर्ण है धातुओं जैसे उत्तम ताप चालकों के लिए हो सकता है किंतु इन्सुलेटर जैसे व्यर्थ ताप चालकों के लिए इसे विस्थापित किया जा सकता है।[2]थर्मल संपर्क संचालन विभिन्न प्रकार के अनुप्रयोगों में महत्वपूर्ण कारक है, मुख्यतः क्योंकि कई भौतिक प्रणालियों में दो सामग्रियों का यांत्रिकी संयोजन होता है। कुछ ऐसे क्षेत्र जहां संपर्क संचालन का महत्व है:[3][4][5]

संपर्क संचालन को प्रभावित करने वाले कारक

चित्र 2: दो संपर्क सतहों के मध्य इंटरफ़ेस का विस्तार। नियम के लिए फिनिश गुणवत्ता को बढ़ा-चढ़ाकर प्रस्तुत किया गया है।

थर्मल संपर्क संचालन जटिल घटना है, जो कई कारकों से प्रभावित होती है। अनुभव से ज्ञात होता है कि सबसे महत्वपूर्ण निम्नलिखित हैं:

संपर्क दबाव

दो संपर्क निकायों के मध्य थर्मल परिवहन के लिए, जैसे कि दानेदार माध्यम में कण, संपर्क दबाव समग्र संचालन पर सबसे अधिक प्रभाव का कारक है। जैसे-जैसे संपर्क दबाव बढ़ता है, वास्तविक संपर्क क्षेत्र बढ़ता है और संपर्क संचालन बढ़ता है (संपर्क प्रतिरोध छोटा हो जाता है)।[6]

चूंकि संपर्क दबाव सबसे महत्वपूर्ण कारक है, संपर्क संचालन के माप के लिए अधिकांश अध्ययन, सहसंबंध और गणितीय मॉडल इस कारक के कार्य के रूप में किए जाते हैं।

उच्च तापमान के अनुसार रोल करके निर्मित कुछ सैंडविच प्रकार की सामग्रियों के थर्मल संपर्क प्रतिरोध को कभी-कभी विस्थापित किया जा सकता है क्योंकि उनके मध्य थर्मल चालकता में कमी नगण्य है।

अंतरालीय सामग्री

वास्तव में कोई स्मूथ सतह उपस्तिथ नहीं है, और सतह की हानियाँ माइक्रोस्कोप के नीचे दिखाई देती हैं। परिणामस्वरूप, जब दो पिंडों को एक साथ दबाया जाता है, तो संपर्क केवल सीमित संख्या बिंदुओं में होती है, जो अपेक्षाकृत बड़े अंतराल से भिन्न होती है, जैसा कि चित्र 2 में दिखाया जा सकता है। चूंकि वास्तविक संपर्क क्षेत्र कम हो गया है, ऊष्मा के लिए प्रतिरोध प्रवाह उपस्तिथ है। इन अंतरालों को भरने वाली गैसें/तरल पदार्थ इंटरफ़ेस में कुल ताप प्रवाह को अधिक सीमा तक प्रभावित कर सकते हैं। नुडसेन संख्या के संदर्भ में परिक्षण की गई अंतरालीय सामग्री की तापीय चालकता और उसका दबाव, दो गुण हैं जो सामान्य रूप से संपर्क संचालन और विषम सामग्रियों में थर्मल परिवहन पर इसके प्रभाव को नियंत्रित करते हैं[6]

अंतरालीय सामग्रियों की अनुपस्थिति में, जैसे निर्वात में, संपर्क प्रतिरोध अधिक बड़ा होगा, क्योंकि अंतरंग संपर्क बिंदुओं के माध्यम से प्रवाह प्रमुख है।

सतह का रफ़नेस, वाविननेस और फ्लैटनेस

कोई ऐसी सतह को चिह्नित कर सकता है जिसमें तीन मुख्य गुणों के आधार पर कुछ सतह परिष्करण कार्य किए गए हैं: रफ़नेस, वाविननेस और फ्लैटनेस है। इनमें रफ़नेस और भग्नता सबसे अधिक महत्वपूर्ण है, रफ़नेस प्रायः मूल माध्य वर्ग मान के संदर्भ में प्रदर्शित किया जाता है, और सतह भग्नता को सामान्यतः df द्वारा दर्शाया जाता है, इंटरफेस पर तापीय चालकता पर सतह संरचनाओं का प्रभाव विद्युत संपर्क प्रतिरोध की अवधारणा के अनुरूप है, जिसे विद्युत संपर्क प्रतिरोध के रूप में भी जाना जाता है, जिसमें इलेक्ट्रॉनों के अतिरिक्त फोनन के संपर्क में पैच प्रतिबंधित परिवहन सम्मिलित है।

सतह विकृतियाँ

जब दो पिंड संपर्क में आते हैं, तो दोनों पिंडों की सतह में विकृति(इंजीनियरिंग) आ सकती है। सामग्री के गुणों और संपर्क दबाव के आधार पर यह विकृति या तो प्लास्टिक या इलास्टिक हो सकती है। जब कोई सतह प्लास्टिक विरूपण से निकलती है, तो संपर्क प्रतिरोध कम हो जाता है, क्योंकि विरूपण के कारण वास्तविक संपर्क क्षेत्र बढ़ जाता है।[7][8]

सतह की स्वच्छ्ता

धूल के कणों, अम्ल आदि की उपस्थिति भी संपर्क संचालन को प्रभावित कर सकती है।

थर्मल संपर्क संचालन का मापन

सूत्र 2 पर वापस जाने पर, संपर्क क्षेत्र को मापने में कठिनाई के कारण थर्मल संपर्क संचालन की गणना करना कठिन है, यहां तक ​​कि असंभव भी सिद्ध हो सकता है, (सतह विशेषताओं का उत्पाद, जैसा कि पूर्व में बताया गया है)। इस कारण से, संपर्क संचालन/प्रतिरोध सामान्यतः मानक उपकरण का उपयोग करके प्रयोगात्मक रूप से प्राप्त किया जाता है।[9]

ऐसे प्रयोगों के परिणाम सामान्यतः अभियांत्रिकी साहित्य में जर्नल ऑफ हीट ट्रांसफर, इंटरनेशनल जर्नल ऑफ हीट एंड मास ट्रांसफर आदि वैज्ञानिक पत्रिकाओं में प्रकाशित होते हैं। दुर्भाग्य से, संपर्क चालन गुणांक का केंद्रीकृत डेटाबेस उपस्तिथ नहीं है, ऐसी स्थिति जो कभी-कभी कंपनियों को प्राचीन, अप्रासंगिक डेटा का उपयोग करना, या संपर्क संचालन को पूर्णतः भी ध्यान में न रखना। /find/journaldescription.cws_home/210/description#description

CoCoE (संपर्क आचरण अनुमानक), इस समस्या का समाधान करन और संपर्क आचरण डेटा का केंद्रीकृत डेटाबेस और इसका उपयोग करने वाला कंप्यूटर प्रोग्राम बनाने के लिए स्थापित परियोजना, 2006 में प्रारंभ की गई थी।

थर्मल सीमा संचालन

जबकि परिमित थर्मल संपर्क चालन इंटरफ़ेस, सतह वाविननेस, और सतह रफ़नेस आदि पर रिक्तियों के कारण होता है, परिमित संचालन आदर्श इंटरफेस के निकट भी उपस्तिथ होता है। यह संचालन, जिसे थर्मल सीमा चालन के रूप में जाना जाता है, संपर्क सामग्रियों के मध्य इलेक्ट्रॉनिक और कंपन गुणों में अंतर के कारण होता है। यह चालन सामान्यतः थर्मल संपर्क चालन से अधिक है, किंतु नैनोस्केल सामग्री प्रणालियों में महत्वपूर्ण हो जाती है।

यह भी देखें

संदर्भ

  1. Holman, J. P. (1997). Heat Transfer, 8th Edition. McGraw-Hill.
  2. Çengel. थर्मोडायनामिक्स और हीट ट्रांसफर का परिचय.
  3. Fletcher, L. S. (November 1988). "Recent Developments in Contact Conductance Heat Transfer". Journal of Heat Transfer. 110 (4b): 1059–1070. Bibcode:1988ATJHT.110.1059F. doi:10.1115/1.3250610.
  4. Madhusudana, C. V.; Ling, F. F. (1995). Thermal Contact Conductance. Springer.
  5. Lambert, M. A.; Fletcher, L. S. (November 1997). "Thermal Contact Conductance of Spherical Rough Metals". Journal of Heat Transfer. 119 (4): 684–690. doi:10.1115/1.2824172.
  6. 6.0 6.1 Gan, Y; Hernandez, F; et al. (2014). "न्यूट्रॉन विकिरण के अधीन ईयू सॉलिड ब्रीडर कंबल का थर्मल असतत तत्व विश्लेषण". Fusion Science and Technology. 66 (1): 83–90. arXiv:1406.4199. Bibcode:2014FuST...66...83G. doi:10.13182/FST13-727. S2CID 51903434.
  7. Williamson, M.; Majumdar, A. (November 1992). "Effect of Surface Deformations on Contact Conductance". Journal of Heat Transfer. 114 (4): 802–810. doi:10.1115/1.2911886.
  8. Heat Transfer Division (November 1970). "Conduction in Solids - Steady State, Imperfect Metal-to-Metal Surface Contact". General Electric Inc.
  9. ASTM D 5470 – 06 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials