नियंत्रण प्रणाली: Difference between revisions
No edit summary |
m (33 revisions imported from alpha:नियंत्रण_प्रणाली) |
||
(28 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
{{More citations needed|article|date=December 2010}} | {{More citations needed|article|date=December 2010}} | ||
[[File:Loaded centrifugal governor (New Catechism of the Steam Engine, 1904).jpg|thumb|[[ केन्द्रापसारक राज्यपाल ]] एक प्रारंभिक [[ आनुपातिक नियंत्रण ]] तंत्र है।]] | [[File:Loaded centrifugal governor (New Catechism of the Steam Engine, 1904).jpg|thumb|[[ केन्द्रापसारक राज्यपाल | अपकेन्द्री अधिनियंत्रक]] एक प्रारंभिक [[ आनुपातिक नियंत्रण ]] तंत्र है।]] | ||
एक नियंत्रण प्रणाली नियंत्रण लूप का उपयोग करके अन्य उपकरणों या प्रणालियों के व्यवहार का प्रबंधन, आदेश, निर्देशन या विनियमन करती है। यह घरेलू बॉयलर को नियंत्रित करने वाले | एक नियंत्रण प्रणाली नियंत्रण लूप का उपयोग करके अन्य उपकरणों या प्रणालियों के व्यवहार का प्रबंधन, आदेश, निर्देशन या विनियमन करती है। यह घरेलू बॉयलर को नियंत्रित करने वाले [[Index.php?title=Index.php?title=थर्मोस्टेट|थर्मोस्टेट]] का उपयोग करने वाले एकल घरेलू ताप नियंत्रक से लेकर बड़े औद्योगिक नियंत्रण प्रणालियों तक हो सकता है जो प्रक्रिया (अभियांत्रिकी) या मशीनों को नियंत्रित करने के लिए उपयोग किए जाते हैं। नियंत्रण प्रणाली को [[Index.php?title=Index.php?title=Index.php?title=नियंत्रण अभियांत्रिकी|नियंत्रण अभियांत्रिकी]] प्रक्रिया के माध्यम से डिज़ाइन किया गया है। | ||
निरंतर संशोधित नियंत्रण के लिए, एक [[ प्रतिक्रिया | निरंतर संशोधित नियंत्रण प्रणाली के लिए, एक [[Index.php?title=प्रतिक्रिया नियंत्रण|प्रतिक्रिया नियंत्रण]] का उपयोग किसी प्रक्रिया या संचालन को स्वचालित रूप से नियंत्रित करने के लिए किया जाता है। नियंत्रण प्रणाली वांछित मूल्य या [[ सेटपॉइंट (नियंत्रण प्रणाली) | निर्देश बिंदु (नियंत्रण प्रणाली)]] (एसपी) के साथ नियंत्रित होने वाले [[Index.php?title=Index.php?title=प्रक्रिया चर|प्रक्रिया चर]] (पीवी) के मूल्य या स्थिति की समानता करती है, और संयंत्र के प्रक्रिया परिवर्तनीय आउटपुट(नियंत्रण) लाने के लिए अंतर को नियंत्रण प्रणाली संकेत के रूप में प्रयुक्त करती है। | ||
[[ अनुक्रमिक तर्क ]] और [[ संयोजन तर्क ]] के लिए, [[ कलन विधि ]], जैसे कि प्रोग्राम करने योग्य तर्क | [[ अनुक्रमिक तर्क ]] और [[ संयोजन तर्क ]] के लिए, [[ कलन विधि ]], जैसे कि प्रोग्राम करने योग्य तर्क नियंत्रण प्रणाली, का उपयोग किया जाता है।{{Clarify|date=July 2022}} | ||
==ओपन-लूप और क्लोज्ड-लूप नियंत्रण== | ==ओपन-लूप और क्लोज्ड-लूप नियंत्रण== | ||
नियंत्रण प्रणाली क्रिया के दो सामान्य वर्ग हैं: खुला लूप और बंद लूप। एक ओपन-लूप नियंत्रण | नियंत्रण प्रणाली क्रिया के दो सामान्य वर्ग हैं: खुला लूप और बंद लूप। एक ओपन-लूप नियंत्रण बहुत ही साधारण सा परिपथ होता है,जो हमारे घरों में पानी गर्म करने वाला हीटर होता है इसका एक उदाहरण केवल टाइमर द्वारा नियंत्रित एक केंद्रीय हीटिंग बॉयलर है। नियंत्रण प्रणाली बॉयलर को चालू या बंद करना होता है। प्रक्रिया अस्थिर संरचना का तापमान है, यह नियंत्रक संरचना के तापमान की संरक्षण किए बिना निरंतर समय के लिए हीटिंग सिस्टम संचालित करता है। | ||
एक बंद-लूप नियंत्रण प्रणाली में, नियंत्रक से नियंत्रण प्रणाली क्रिया वांछित और वास्तविक प्रक्रिया अस्थिर पर निर्भर होती है। बॉयलर सादृश्य | एक बंद-लूप नियंत्रण प्रणाली में, नियंत्रक से नियंत्रण प्रणाली क्रिया वांछित और वास्तविक प्रक्रिया अस्थिर पर निर्भर होती है। बॉयलर सादृश्य की स्थिति में, यह संरचना के तापमान की निगरानी के लिए थर्मोस्टैट का उपयोग करेगा, और यह सुनिश्चित करने के लिए एक संकेत को वापस फीड करेगा कि नियंत्रक आउटपुट थर्मोस्टैट पर उस सेट के करीब संरचना के तापमान को बनाए रखता है। बंद लूप नियंत्रक में प्रतिपुष्टि लूप होता है जो यह सुनिश्चित करता है कि नियंत्रक एक प्रक्रिया चर को निर्देश बिंदु के समान मान पर नियंत्रित करने के लिए नियंत्रण क्रिया करता है। इस कारण से,बंद -लूप नियंत्रकों को प्रतिपुष्टि नियंत्रक भी कहा जाता है।<ref>"Feedback and control systems" - JJ Di Steffano, AR Stubberud, IJ Williams. Schaums outline series, McGraw-Hill 1967</ref> | ||
Line 21: | Line 21: | ||
[[File:Industrial control loop.jpg|thumb|300px|एकल औद्योगिक नियंत्रण लूप का उदाहरण; प्रक्रिया प्रवाह का निरंतर संशोधित नियंत्रण दिखा रहा है।]] | [[File:Industrial control loop.jpg|thumb|300px|एकल औद्योगिक नियंत्रण लूप का उदाहरण; प्रक्रिया प्रवाह का निरंतर संशोधित नियंत्रण दिखा रहा है।]] | ||
[[File:Ideal feedback model.svg|thumb|right |एक बुनियादी प्रतिक्रिया पाश]] | [[File:Ideal feedback model.svg|thumb|right |एक बुनियादी प्रतिक्रिया पाश]] | ||
रैखिक [[ प्रतिक्रिया | प्रतिक्रिया नियंत्रण]] प्रणालियों | रैखिक [[Index.php?title=प्रतिक्रिया नियंत्रण|प्रतिक्रिया नियंत्रण]] प्रणालियों की स्थिति में, एक निर्देश बिंदु (एसपी) पर एक अस्थिर को विनियमित करने के प्रयास में [[ सेंसर ]], नियंत्रण प्रणाली कलन विधि और प्रवर्तक सहित एक नियंत्रण प्रणाली लूप की व्यवस्था की जाती है। एक प्रतिदिन का उदाहरण सड़क वाहन पर पर्यटन नियंत्रण है; जहां बाहरी प्रभाव जैसे कि पहाड़ियां गति परिवर्तन का कारण बनती हैं, और चालक के पास वांछित संग्रह गति को बदलने की क्षमता होती है। नियंत्रक में [[ पीआईडी एल्गोरिथम ]] वाहन के इंजन के पावर आउटपुट को नियंत्रित करके, न्यूनतम देरी या [[ ओवरशूट (संकेत) ]]के साथ, वास्तविक गति को अनुकूलतम तरीके से वांछित गति में पुनर्स्थापित करता है। | ||
नियंत्रण प्रणालियाँ जिनमें परिणामों की कुछ | नियंत्रण प्रणालियाँ जिनमें परिणामों की कुछ अभिप्राय शामिल है जिन्हें वे प्राप्त करने का प्रयास कर रहे हैं साथ ही प्रतिक्रिया का उपयोग कर रहे हैं और कुछ हद तक अलग-अलग परिस्थितियों के अनुकूल हो सकते हैं। [[ ओपन-लूप नियंत्रक ]] नियंत्रण प्रणाली प्रतिक्रिया का उपयोग नहीं करते हैं यद्यपि पूर्व-व्यवस्थित तरीकों से चलते हैं। | ||
==तर्क नियंत्रण== | ==तर्क नियंत्रण== | ||
औद्योगिक और वाणिज्यिक | औद्योगिक और वाणिज्यिक यांत्रिकी के लिए तर्क नियंत्रण प्रणाली ऐतिहासिक रूप से सीढ़ी तर्क का उपयोग करते हुए परस्पर विद्युतीय [[ रिले ]] और [[ कैम टाइमर ]] द्वारा कार्यान्वित किए गए थे। आज, इस तरह के अधिकांश सिस्टम [[Index.php?title=सूक्ष्म नियंत्रक|सूक्ष्म नियंत्रक]] या अधिक विशिष्ट प्रोग्राम योग्य तर्क नियंत्रक (पीएलसी) के साथ बनाए जाते हैं। पीएलसी के लिए प्रोग्राम योग्य पद्धति के रूप में [[ सीढ़ी तर्क ]] का अंकन अभी भी उपयोग में है।<ref name="Kuphaldt LADDER LOGIC">{{cite web|last=Kuphaldt|first=Tony R.|title=Chapter 6 LADDER LOGIC|url=http://www.ibiblio.org/kuphaldt/electricCircuits/Digital/DIGI_6.html|work=Lessons In Electric Circuits -- Volume IV|access-date=22 September 2010|url-status=live|archive-url=https://web.archive.org/web/20100912090415/http://www.ibiblio.org/kuphaldt/electricCircuits/Digital/DIGI_6.html|archive-date=12 September 2010}}</ref> | ||
तर्क नियंत्रक स्विच और सेंसर का जवाब दे सकते हैं, और [[Index.php?title=गति देनेवाले|गति देने]] वाले उपयोग के माध्यम से यांत्रिकी को विभिन्न कार्यों को शुरू और बंद करने का कारण बन सकते हैं। कई अनुप्रयोगों में यांत्रिक संचालन को अनुक्रमित करने के लिए तर्क नियंत्रकों का उपयोग किया जाता है। उदाहरणों में शामिल हैं लिफ्ट, वाशिंग मशीन और परस्पर संबंधित संचालन वाली अन्य प्रणालियां। एक स्वचालित अनुक्रमिक नियंत्रण प्रणाली किसी कार्य को करने के लिए सही क्रम में यांत्रिक प्रवर्तक की एक श्रृंखला को चालू कर सकती है। उदाहरण के लिए, विभिन्न विद्युत और वायवीय ट्रांसड्यूसर एक कार्डबोर्ड बॉक्स को मोड़ सकते हैं और गोंद कर सकते हैं, इसे उत्पाद से भर सकते हैं और फिर इसे एक स्वचालित पैकेजिंग मशीन में सील कर सकते हैं। | |||
पीएलसी सॉफ्टवेयर कई अलग-अलग तरीकों से लिखा जा सकता है - सीढ़ी आरेख, एसएफसी (अनुक्रमिक फ़ंक्शन चार्ट) या [[ निर्देश सूची ]]।<ref name="Ian Brady PLCs">{{cite web|last=Brady|first=Ian|title=Programmable logic controllers - benefits and applications|url=http://www.optimacs.com/wp-content/uploads/2012/03/PLC-report.pdf|work=PLCs|access-date=5 December 2011|url-status=live|archive-url=https://web.archive.org/web/20140202000040/http://www.optimacs.com/wp-content/uploads/2012/03/PLC-report.pdf|archive-date=2 February 2014}}</ref> | पीएलसी सॉफ्टवेयर कई अलग-अलग तरीकों से लिखा जा सकता है - सीढ़ी आरेख, एसएफसी (अनुक्रमिक फ़ंक्शन चार्ट) या [[ निर्देश सूची ]]।<ref name="Ian Brady PLCs">{{cite web|last=Brady|first=Ian|title=Programmable logic controllers - benefits and applications|url=http://www.optimacs.com/wp-content/uploads/2012/03/PLC-report.pdf|work=PLCs|access-date=5 December 2011|url-status=live|archive-url=https://web.archive.org/web/20140202000040/http://www.optimacs.com/wp-content/uploads/2012/03/PLC-report.pdf|archive-date=2 February 2014}}</ref> | ||
== ऑन-ऑफ | == ऑन-ऑफ नियंत्रण == | ||
{{main| | {{main|ऑन-ऑफ नियंत्रण}} | ||
ऑन-ऑफ नियंत्रण एक प्रतिक्रिया नियंत्रक का उपयोग | ऑन-ऑफ नियंत्रण एक प्रतिक्रिया नियंत्रक का उपयोग करते है तो दो अवस्थाओं के बीच परिवर्तन होता है। एक साधारण द्वि-धातु घरेलू तापस्थापी को ऑन-ऑफ नियंत्रक के रूप में वर्णित किया जा सकता है। जब कमरे में तापमान (पीवी) उपयोगकर्ता समायोजन (एसपी) से नीचे चला जाता है, तो हीटर चालू हो जाता है। एक अन्य उदाहरण एक एयर कंप्रेसर पर दबाव परिवर्तन होता है। जब दबाव (पीवी) निर्देश बिंदु (एसपी) से नीचे चला जाता है तो कंप्रेसर संचालित होता है। रेफ्रिजरेटर और वैक्यूम पंप में समान तंत्र होते हैं। इस तरह की सरल ऑन-ऑफ नियंत्रण प्रणालियां अल्पव्यय और प्रभावी हो सकती हैं। | ||
==रैखिक नियंत्रण== | ==रैखिक नियंत्रण== | ||
रैखिक नियंत्रण प्रणाली वांछित एसपी पर नियंत्रित पीवी को बनाए रखने के लिए नियंत्रण संकेत उत्पन्न करने के लिए नकारात्मक प्रतिक्रिया का उपयोग करती है। विभिन्न क्षमताओं के साथ कई प्रकार के रैखिक नियंत्रण प्रणालियां हैं। | रैखिक नियंत्रण प्रणाली वांछित एसपी पर नियंत्रित पीवी को बनाए रखने के लिए रैखिक नियंत्रण संकेत उत्पन्न करने के लिए नकारात्मक प्रतिक्रिया का उपयोग करती है। विभिन्न क्षमताओं के साथ कई प्रकार के रैखिक नियंत्रण प्रणालियां हैं। | ||
=== आनुपातिक नियंत्रण === | === आनुपातिक नियंत्रण === | ||
{{main| | {{main|आनुपातिक नियंत्रण}} | ||
[[File:Second order transfer function.svg|thumb|right|300px|[[ स्थानांतरण प्रकार्य ]] द्वारा परिभाषित दूसरे ऑर्डर सिस्टम के लिए चरण प्रतिक्रियाएं <math>H(s)=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n}</math>, कहाँ पे <math>\zeta</math> अवमंदन अनुपात है और <math>\omega_n</math> असिंचित प्राकृतिक आवृत्ति है।]] | [[File:Second order transfer function.svg|thumb|right|300px|[[ स्थानांतरण प्रकार्य ]] द्वारा परिभाषित दूसरे ऑर्डर सिस्टम के लिए चरण प्रतिक्रियाएं <math>H(s)=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n}</math>, कहाँ पे <math>\zeta</math> अवमंदन अनुपात है और <math>\omega_n</math> असिंचित प्राकृतिक आवृत्ति है।]] | ||
आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया नियंत्रण प्रणाली है जिसमें नियंत्रित | आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया आनुपातिक नियंत्रण प्रणाली है जिसमें नियंत्रित अस्थिर पर एक सुधार लागू किया जाता है जो वांछित मूल्य (एसपी) और मापा मूल्य (पीवी) के बीच के अंतर के समानुपाती होता है। दो उत्कृष्ट यांत्रिक उदाहरण टॉयलेट बाउल [[Index.php?title=बॉल कॉक|बॉल कॉक]] और केन्द्रापसारक राज्यपाल | फ्लाई-बॉल गवर्नर हैं। | ||
आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन पीआईडी नियंत्रक की तुलना में सरल है|आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली, उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में उपयोग की जाती है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिन्हें उच्च | आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन पीआईडी नियंत्रक की तुलना में सरल है| आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली, उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में उपयोग की जाती है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिन्हें उच्च यथार्थता या प्रतिक्रिया की आवश्यकता नहीं है, लेकिन तेजी से और समय पर सुधार और प्रतिक्रियाओं के लिए प्रभावी नहीं है। आनुपातिक नियंत्रण एक लाभ स्तर पर परिपथता किए गए अस्थिर (एमवी), जैसे नियंत्रण वाल्व को संशोधित करके इस पर नियंत्रण पाता है, जो अस्थिरता से बचा जाता है, लेकिन आनुपातिक संशोधन की इष्टतम मात्रा को लागू करके संशोधन को यथासंभव तेजी से उपयुक्त करता है। | ||
आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए एक [[ पीआई नियंत्रक ]] का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए आनुपातिक शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट | आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए एक [[ पीआई नियंत्रक ]] का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए आनुपातिक नियंत्रण शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट समायोजन त्रुटि को खत्म करने के लिए एक अभिन्न शब्द (आई) का उपयोग करता है। | ||
कुछ प्रणालियों में, एमवी की | कुछ प्रणालियों में, एमवी की श्रेणी के लिए व्यावहारिक श्रेणीयां होती हैं। उदाहरण के लिए, एक हीटर की एक श्रेणी होती है कि वह कितनी गर्मी पैदा कर सकता है और एक वाल्व केवल इतनी दूर में ही खुल सकता है। लाभ में समायोजन एक साथ त्रुटि मानों की श्रेणी को बदल देता है जिस पर एमवी इन श्रेणीओं के बीच होता है। इस रेंज की चौड़ाई, त्रुटि अस्थिर की इकाइयों में और इसलिए पीवी की, आनुपातिक पट्टी (पीबी) कहलाती है। | ||
==== भट्ठी उदाहरण ==== | ==== भट्ठी उदाहरण ==== | ||
एक [[ औद्योगिक भट्टी ]] के तापमान को नियंत्रित करते समय, | एक [[ औद्योगिक भट्टी |औद्योगिक भट्टी]] के तापमान को नियंत्रित करते समय, प्रायः भट्ठी की वर्तमान जरूरतों के अनुपात में ईंधन वाल्व के उद्घाटन को नियंत्रित करना श्रेष्ठ होता है यह उष्ण कंपन से बचने में मदद करता है और गर्मी को अधिक प्रभावी ढंग से उपयुक्त करता है। | ||
कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सुधारात्मक कार्रवाई | कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सुधारात्मक कार्रवाई उपयुक्त की जाती है। प्रणाली सुरक्षित और स्थिर हो सकती है, लेकिन बदलती परिस्थितियों के जवाब में निष्क्रिय हो सकती है। त्रुटियां अपेक्षाकृत लंबे समय तक ठीक नहीं होंगी और सिस्टम [[Index.php?title=ओवर वापेड|ओवर वापेड]] है। यदि आनुपातिक लाभ बढ़ाया जाता है, तो ऐसी प्रणालियाँ अधिक प्रतिक्रियाशील हो जाती हैं और त्रुटियों से अधिक तेज़ी से पहुंचाया जाता है। जब समग्र प्रणाली को गंभीर रूप से भीगने के लिए कहा जाता है, तो लाभ समायोजन के लिए एक इष्टतम मूल्य होता है। इस बिंदु से आगे लूप लाभ में वृद्धि से पीवी में दोलन होते हैं और ऐसी प्रणाली कम हो जाती है। [[ गंभीर रूप से नम ]] व्यवहार को प्राप्त करने के लिए समायोजन लाभ को नियंत्रण प्रणाली को समंजन के रूप में जाना जाता है। | ||
[[ | [[Index.php?title=Index.php?title= अस्थिर|अस्थिर]] स्थिति में, भट्टी जल्दी गर्म हो जाती है। एक बार निर्देश बिंदु पर पहुंचने के बाद, हीटर उप-प्रणाली के अन्दर और भट्ठी की दीवारों में संग्रहित गर्मी मापी गई तापमान को आवश्यकता से अधिक बढ़ाएगी। निर्देश बिंदु से ऊपर उठने के बाद, तापमान पुनः गिर जाता है और अंततः गर्मी फिर से उपयुक्त होती है। हीटर उप-प्रणाली को फिर से गर्म करने में कोई भी देरी भट्ठी के तापमान को निर्देश बिंदु से नीचे गिरने देती है और चक्र दोहराता है। तापमान में उतार-चढ़ाव जो एक अंडरडम्प्ड फर्नेस नियंत्रण प्रणाली पैदा करता है वह अवांछनीय है। | ||
एक गंभीर रूप से नम प्रणाली में, जैसे ही तापमान | एक गंभीर रूप से नम प्रणाली में, जैसे ही तापमान निर्देश बिंदु के करीब पहुंचता है, गर्मी इनपुट कम होना शुरू हो जाता है, भट्ठी के हीटिंग की दर को धीमा करने का समय होता है और प्रणाली ओवरशूट से बचता है। ओवरडैम्प्ड प्रणाली में ओवरशूट से भी बचा जाता है लेकिन एक ओवरडैम्प्ड प्रणाली में बाहरी परिवर्तनों के लिए शुरू में निर्देश बिंदु प्रतिक्रिया तक पहुंचने के लिए अनावश्यक रूप से धीमा होता है, उदाहरण। भट्ठी का दरवाजा खोलना। | ||
===पीआईडी नियंत्रण === | ===पीआईडी नियंत्रण === | ||
[[File:PID en updated feedback.svg|right|thumb|300px|पीआईडी नियंत्रक का [[ ब्लॉक आरेख ]]]] | [[File:PID en updated feedback.svg|right|thumb|300px|पीआईडी नियंत्रक का [[ ब्लॉक आरेख ]]]] | ||
[[File:PID Compensation Animated.gif|right|thumb|300px|अलग-अलग पीआईडी पैरामीटर (के .) के प्रभाव<sub>p</sub>,क<sub>i</sub>,क<sub>d</sub>) सिस्टम की स्टेप रिस्पांस पर।]] | [[File:PID Compensation Animated.gif|right|thumb|300px|अलग-अलग पीआईडी पैरामीटर (के .) के प्रभाव<sub>p</sub>,क<sub>i</sub>,क<sub>d</sub>) सिस्टम की स्टेप रिस्पांस पर।]] | ||
{{main| | {{main|पीआईडी नियंत्रण}} | ||
शुद्ध आनुपातिक नियंत्रकों को | शुद्ध आनुपातिक नियंत्रकों को प्रणाली में अवशिष्ट त्रुटि के साथ काम करना चाहिए। यद्यपि अनुकरणीय नियंत्रक इस त्रुटि को समाप्त कर देते हैं, फिर भी वे निष्क्रिय हो सकते हैं या दोलन उत्पन्न कर सकते हैं। पीआईडी नियंत्रक स्थिरता बनाए रखने के लिए व्युत्पन्न (डी) क्रिया शुरू करके इन अंतिम कमियों को संबोधित करता है जबकि प्रतिक्रिया में सुधार होता है। | ||
==== व्युत्पन्न क्रिया ==== | ==== व्युत्पन्न क्रिया ==== | ||
व्युत्पन्न समय के साथ त्रुटि के दर-परिवर्तन से संबंधित है: यदि | व्युत्पन्न क्रिया समय के साथ त्रुटि के दर-परिवर्तन से संबंधित है: यदि माप को अस्थिर तेजी से निर्देश बिंदु तक पहुंचता है, तो इसे आवश्यक स्तर तक तट पर जाने की अनुमति देने के लिए एक्ट्यूएटर को जल्दी से बंद कर दिया जाता है; इसके विपरीत, यदि मापा गया मान निर्देश बिंदु से तेजी से दूर जाने लगता है, तो अतिरिक्त प्रयास उपयुक्त किया जाता है - उस गति के अनुपात में इसे वापस ले जाने में समर्थन करने के लिए। | ||
एक चलती वाहन पर बंदूक या कैमरे जैसी भारी वस्तु के गति नियंत्रण से जुड़े नियंत्रण प्रणालियों पर, एक अच्छी तरह से ट्यून किए गए पीआईडी | एक चलती वाहन पर बंदूक या कैमरे जैसी भारी वस्तु के गति नियंत्रण से जुड़े नियंत्रण प्रणालियों पर, एक अच्छी तरह से ट्यून किए गए पीआईडी नियंत्रण की व्युत्पन्न क्रिया इसे सबसे कुशल मानव ऑपरेटरों की तुलना में एक निर्देश बिंदु तक पहुंचने और बनाए रखने की अनुमति दे सकती है। यदि व्युत्पन्न क्रिया को अधिक प्रयुक्त किया जाता है, तो यह दोलनों को जन्म दे सकता है। | ||
==== अभिन्न क्रिया ==== | ==== अभिन्न क्रिया ==== | ||
[[File:Change with Ki.png|thumb|right|300px|अलग-अलग Ki मानों के लिए दूसरे क्रम के सिस्टम की प्रतिक्रिया को चरण इनपुट में बदलना।]] | [[File:Change with Ki.png|thumb|right|300px|अलग-अलग Ki मानों के लिए दूसरे क्रम के सिस्टम की प्रतिक्रिया को चरण इनपुट में बदलना।]] | ||
[[ अभिन्न ]] शब्द दीर्घकालिक स्थिर-राज्य त्रुटियों के प्रभाव को बढ़ाता है, जब तक त्रुटि को हटा नहीं दिया जाता है, तब तक लगातार बढ़ते प्रयास को | [[ अभिन्न | अभिन्न क्रिया]] शब्द दीर्घकालिक स्थिर-राज्य त्रुटियों के प्रभाव को बढ़ाता है, जब तक त्रुटि को हटा नहीं दिया जाता है, तब तक लगातार बढ़ते प्रयास को प्रयुक्त करते हैं। ऊपर विभिन्न तापमानों पर काम करने वाली भट्ठी के उदाहरण में, यदि प्रयुक्त की जा रही गर्म भट्ठी को निर्देश बिंदु तक नहीं लाती है, किसी भी कारण से, अभिन्न क्रिया तेजी से निर्देश बिंदु के सापेक्ष आनुपातिक बैंड को तब तक ले जाती है जब तक कि पीवी त्रुटि शून्य तक कम नहीं हो जाती है और निर्देश बिंदु हासिल किया जाता है। | ||
====% प्रति मिनट रैंप अप ==== | ====% प्रति मिनट रैंप अप ==== | ||
कुछ नियंत्रकों में रैंप को% प्रति मिनट तक सीमित करने का विकल्प शामिल है। यह विकल्प छोटे बॉयलर (3 एमबीटीयूएच) को स्थिर करने में बहुत | कुछ नियंत्रकों में रैंप को % प्रति मिनट तक सीमित करने का विकल्प शामिल है। यह विकल्प छोटे बॉयलर (3 एमबीटीयूएच) को स्थिर करने में बहुत उपयोगी हो सकता है, खासकर गर्मियों के दौरान, हल्के भार के दौरान। एक उपयोगिता बॉयलर इकाई को 5% प्रति मिनट (आईईए कोयला ऑनलाइन - 2, 2007) की दर से भार बदलने की आवश्यकता हो सकती है।<ref>{{cite web |url=http://www.seeei.org.il/prdFiles/2702_desc3.pdf |access-date=2014-04-07 |url-status=live |archive-url=https://web.archive.org/web/20140805131600/http://www.seeei.org.il/prdFiles/2702_desc3.pdf |archive-date=2014-08-05 |publisher=ABB |title=Energy Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants |page=262 }}</ref>{{failed verification|reason=Source does not talk about controllers on this page.|date=May 2020}} | ||
=== अन्य तकनीक === | === अन्य तकनीक === | ||
पीवी या त्रुटि संकेत को | पीवी या त्रुटि संकेत को निस्पंदन (संकेत प्रक्रमण) करना संभव है। ऐसा करने से अवांछित आवृत्तियों पर प्रणाली की प्रतिक्रिया को कम करके अस्थिरता या दोलनों को कम करने में सहायता मिल सकती है। कई प्रणालियों में एक [[Index.php?title=प्रतिध्वनित आवृत्ति|प्रतिध्वनित आवृत्ति]] होती है। उस आवृत्ति को निस्पंदन करके, दोलन होने से पहले मजबूत समग्र प्रतिक्रिया प्रयुक्त की जा सकती है, जिससे प्रणाली खुद को अलग किए बिना अधिक प्रतिक्रियाशील बना देता है। | ||
प्रतिक्रिया प्रणाली को जोड़ा जा सकता है। पीआईडी नियंत्रक # जलप्रपात नियंत्रण में,एक नियंत्रण लूप एक निर्देश बिंदु के प्रतिकूल एक मापा अस्थिर पर नियंत्रण प्रणाली कलन विधि प्रयुक्त करता है लेकिन फिर प्रक्रिया अस्थिर को सीधे प्रभावित करने के बजाय दूसरे नियंत्रण प्रणाली लूप को एक अलग निर्देश बिंदु प्रदान करता है। यदि किसी प्रणाली में नियंत्रित करने के लिए कई अलग-अलग मापा अस्थिर हैं, तो उनमें से प्रत्येक के लिए अलग नियंत्रण प्रणाली मौजूद होगी। | |||
कई अनुप्रयोगों में नियंत्रण | कई अनुप्रयोगों में नियंत्रण प्रणाली अभियांत्रिकी नियंत्रण प्रणाली का उत्पादन करती है जो पीआईडी नियंत्रण से अधिक कठिन होती है। ऐसे क्षेत्र अनुप्रयोगों के उदाहरणों में [[Index.php?title=सितारों के माध्यम से उड़ना|सितारों के माध्यम से उड़ना]] विमान नियंत्रण प्रणाली, रासायनिक संयंत्र और तेल रिफाइनरी शामिल हैं। [[Index.php?title=मॉडल भविष्य कहने वाले नियंत्रण|मॉडल भविष्य कहने वाले नियंत्रण]] प्रणाली को विशेष [[ कंप्यूटर एडेड डिजाइन ]] | प्रक्रिया सामग्री और प्रणाली के अनुभवजन्य गणितीय मॉडल का उपयोग करके नियंत्रित किया जाता है। | ||
== | == अस्पष्ट तर्क == | ||
{{main| | {{main|अस्पष्ट तर्क}} | ||
अस्पष्ट तर्क मिश्रित लगातार बदलती प्रणालियों के नियंत्रण प्रणाली के लिए तर्क नियंत्रक के आसान डिज़ाइन को लागू करने का एक प्रयास है। मूल रूप से, अस्पष्ट तर्क व्यवस्था में माप आंशिक रूप से वास्तविक हो सकता है। | |||
प्रणाली के नियम प्राकृतिक | प्रणाली के नियम प्राकृतिक व्याकरण में लिखे गए हैं और [[ अस्पष्ट तर्क ]] में अनुवादित हैं। उदाहरण के लिए, भट्ठी के लिए डिजाइन शुरू होगा: यदि तापमान बहुत अधिक है, तो भट्ठी में ईंधन कम करें। यदि तापमान बहुत कम है, तो भट्टी में ईंधन बढ़ाएँ। | ||
वास्तविक दुनिया से माप (जैसे भट्ठी का तापमान) | वास्तविक दुनिया से माप (जैसे भट्ठी का तापमान) अस्पष्ट डिज़ाइन होते हैं और [[ बूलियन तर्क ]] के विपरीत तर्क की गणना अंकगणितीय की जाती है, और आउटपुट उपकरण को नियंत्रित करने के लिए अस्पष्ट डिज़ाइन होते हैं। | ||
जब एक | जब एक ठोस अस्पष्ट डिज़ाइन को एकल, त्वरित गणना में घटा दिया जाता है, तो यह एक पारंपरिक प्रतिक्रिया पाश समाधान जैसा दिखने लगता है और ऐसा लग सकता है कि अस्पष्ट डिज़ाइन अनावश्यक था। तथापि, अस्पष्ट तर्क प्रतिमान बड़े नियंत्रण प्रणालियों के लिए मापनीयता प्रदान कर सकता है जहाँ पारंपरिक विधियाँ दुष्कर या मूल्यवान हो जाती हैं।{{cn|reason=See [[Talk:Control system#Fuzzy logic]]|date=April 2022}} | ||
[[ | [[Index.php?title=अस्पष्ट इलेक्ट्रॉनिक्स|अस्पष्ट इलेक्ट्रॉनिक्स]] एक इलेक्ट्रॉनिक तकनीक है जो [[ डिजिटल इलेक्ट्रॉनिक्स ]] में आमतौर पर उपयोग किए जाने वाले दो-मूल्य वाले तर्क के जगह में अस्पष्ट तर्क का उपयोग करती है। | ||
== भौतिक कार्यान्वयन == | == भौतिक कार्यान्वयन == | ||
[[File:Leitstand 2.jpg|thumb|एक डीसीएस नियंत्रण कक्ष जहां बड़ी स्क्रीन पौधों की जानकारी प्रदर्शित करती है। बड़ी स्क्रीन पर प्लांट के अवलोकन को बनाए रखते हुए, ऑपरेटर अपने कंप्यूटर स्क्रीन से प्रक्रिया के किसी भी हिस्से को देख और नियंत्रित कर सकते हैं।]] | [[File:Leitstand 2.jpg|thumb|एक डीसीएस नियंत्रण कक्ष जहां बड़ी स्क्रीन पौधों की जानकारी प्रदर्शित करती है। बड़ी स्क्रीन पर प्लांट के अवलोकन को बनाए रखते हुए, ऑपरेटर अपने कंप्यूटर स्क्रीन से प्रक्रिया के किसी भी हिस्से को देख और नियंत्रित कर सकते हैं।]] | ||
[[File:Hydraulic press control panel.jpg|thumb|right|हाइड्रोलिक हीट प्रेस मशीन का एक नियंत्रण कक्ष]] | [[File:Hydraulic press control panel.jpg|thumb|right|हाइड्रोलिक हीट प्रेस मशीन का एक नियंत्रण कक्ष]] | ||
नियंत्रण प्रणाली के कार्यान्वयन की सीमा एक बड़े [[ भौतिक संयंत्र ]] के लिए औद्योगिक प्रक्रिया | नियंत्रण प्रणाली के कार्यान्वयन की सीमा एक बड़े [[ भौतिक संयंत्र ]] के लिए औद्योगिक प्रक्रिया नियंत्रण प्रणाली के लिए, एक विशेष मशीन या डिवाइस के लिए समर्पित सॉफ्टवेयर के साथ अक्सर [[Index.php?title=ठोस नियंत्रक|ठोस नियंत्रक]] से होती है। | ||
तर्क प्रणाली और पुनर्निवेश नियंत्रक आमतौर पर प्रोग्रामेबल तर्क नियंत्रक के साथ लागू किए जाते हैं। | |||
==यह भी देखें== | ==यह भी देखें== | ||
Line 134: | Line 134: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== |
Latest revision as of 13:57, 14 December 2023
This article needs additional citations for verification. (December 2010) (Learn how and when to remove this template message) |
एक नियंत्रण प्रणाली नियंत्रण लूप का उपयोग करके अन्य उपकरणों या प्रणालियों के व्यवहार का प्रबंधन, आदेश, निर्देशन या विनियमन करती है। यह घरेलू बॉयलर को नियंत्रित करने वाले थर्मोस्टेट का उपयोग करने वाले एकल घरेलू ताप नियंत्रक से लेकर बड़े औद्योगिक नियंत्रण प्रणालियों तक हो सकता है जो प्रक्रिया (अभियांत्रिकी) या मशीनों को नियंत्रित करने के लिए उपयोग किए जाते हैं। नियंत्रण प्रणाली को नियंत्रण अभियांत्रिकी प्रक्रिया के माध्यम से डिज़ाइन किया गया है।
निरंतर संशोधित नियंत्रण प्रणाली के लिए, एक प्रतिक्रिया नियंत्रण का उपयोग किसी प्रक्रिया या संचालन को स्वचालित रूप से नियंत्रित करने के लिए किया जाता है। नियंत्रण प्रणाली वांछित मूल्य या निर्देश बिंदु (नियंत्रण प्रणाली) (एसपी) के साथ नियंत्रित होने वाले प्रक्रिया चर (पीवी) के मूल्य या स्थिति की समानता करती है, और संयंत्र के प्रक्रिया परिवर्तनीय आउटपुट(नियंत्रण) लाने के लिए अंतर को नियंत्रण प्रणाली संकेत के रूप में प्रयुक्त करती है।
अनुक्रमिक तर्क और संयोजन तर्क के लिए, कलन विधि , जैसे कि प्रोग्राम करने योग्य तर्क नियंत्रण प्रणाली, का उपयोग किया जाता है।[clarification needed]
ओपन-लूप और क्लोज्ड-लूप नियंत्रण
नियंत्रण प्रणाली क्रिया के दो सामान्य वर्ग हैं: खुला लूप और बंद लूप। एक ओपन-लूप नियंत्रण बहुत ही साधारण सा परिपथ होता है,जो हमारे घरों में पानी गर्म करने वाला हीटर होता है इसका एक उदाहरण केवल टाइमर द्वारा नियंत्रित एक केंद्रीय हीटिंग बॉयलर है। नियंत्रण प्रणाली बॉयलर को चालू या बंद करना होता है। प्रक्रिया अस्थिर संरचना का तापमान है, यह नियंत्रक संरचना के तापमान की संरक्षण किए बिना निरंतर समय के लिए हीटिंग सिस्टम संचालित करता है।
एक बंद-लूप नियंत्रण प्रणाली में, नियंत्रक से नियंत्रण प्रणाली क्रिया वांछित और वास्तविक प्रक्रिया अस्थिर पर निर्भर होती है। बॉयलर सादृश्य की स्थिति में, यह संरचना के तापमान की निगरानी के लिए थर्मोस्टैट का उपयोग करेगा, और यह सुनिश्चित करने के लिए एक संकेत को वापस फीड करेगा कि नियंत्रक आउटपुट थर्मोस्टैट पर उस सेट के करीब संरचना के तापमान को बनाए रखता है। बंद लूप नियंत्रक में प्रतिपुष्टि लूप होता है जो यह सुनिश्चित करता है कि नियंत्रक एक प्रक्रिया चर को निर्देश बिंदु के समान मान पर नियंत्रित करने के लिए नियंत्रण क्रिया करता है। इस कारण से,बंद -लूप नियंत्रकों को प्रतिपुष्टि नियंत्रक भी कहा जाता है।[1]
प्रतिक्रिया नियंत्रण प्रणाली
रैखिक प्रतिक्रिया नियंत्रण प्रणालियों की स्थिति में, एक निर्देश बिंदु (एसपी) पर एक अस्थिर को विनियमित करने के प्रयास में सेंसर , नियंत्रण प्रणाली कलन विधि और प्रवर्तक सहित एक नियंत्रण प्रणाली लूप की व्यवस्था की जाती है। एक प्रतिदिन का उदाहरण सड़क वाहन पर पर्यटन नियंत्रण है; जहां बाहरी प्रभाव जैसे कि पहाड़ियां गति परिवर्तन का कारण बनती हैं, और चालक के पास वांछित संग्रह गति को बदलने की क्षमता होती है। नियंत्रक में पीआईडी एल्गोरिथम वाहन के इंजन के पावर आउटपुट को नियंत्रित करके, न्यूनतम देरी या ओवरशूट (संकेत) के साथ, वास्तविक गति को अनुकूलतम तरीके से वांछित गति में पुनर्स्थापित करता है।
नियंत्रण प्रणालियाँ जिनमें परिणामों की कुछ अभिप्राय शामिल है जिन्हें वे प्राप्त करने का प्रयास कर रहे हैं साथ ही प्रतिक्रिया का उपयोग कर रहे हैं और कुछ हद तक अलग-अलग परिस्थितियों के अनुकूल हो सकते हैं। ओपन-लूप नियंत्रक नियंत्रण प्रणाली प्रतिक्रिया का उपयोग नहीं करते हैं यद्यपि पूर्व-व्यवस्थित तरीकों से चलते हैं।
तर्क नियंत्रण
औद्योगिक और वाणिज्यिक यांत्रिकी के लिए तर्क नियंत्रण प्रणाली ऐतिहासिक रूप से सीढ़ी तर्क का उपयोग करते हुए परस्पर विद्युतीय रिले और कैम टाइमर द्वारा कार्यान्वित किए गए थे। आज, इस तरह के अधिकांश सिस्टम सूक्ष्म नियंत्रक या अधिक विशिष्ट प्रोग्राम योग्य तर्क नियंत्रक (पीएलसी) के साथ बनाए जाते हैं। पीएलसी के लिए प्रोग्राम योग्य पद्धति के रूप में सीढ़ी तर्क का अंकन अभी भी उपयोग में है।[2] तर्क नियंत्रक स्विच और सेंसर का जवाब दे सकते हैं, और गति देने वाले उपयोग के माध्यम से यांत्रिकी को विभिन्न कार्यों को शुरू और बंद करने का कारण बन सकते हैं। कई अनुप्रयोगों में यांत्रिक संचालन को अनुक्रमित करने के लिए तर्क नियंत्रकों का उपयोग किया जाता है। उदाहरणों में शामिल हैं लिफ्ट, वाशिंग मशीन और परस्पर संबंधित संचालन वाली अन्य प्रणालियां। एक स्वचालित अनुक्रमिक नियंत्रण प्रणाली किसी कार्य को करने के लिए सही क्रम में यांत्रिक प्रवर्तक की एक श्रृंखला को चालू कर सकती है। उदाहरण के लिए, विभिन्न विद्युत और वायवीय ट्रांसड्यूसर एक कार्डबोर्ड बॉक्स को मोड़ सकते हैं और गोंद कर सकते हैं, इसे उत्पाद से भर सकते हैं और फिर इसे एक स्वचालित पैकेजिंग मशीन में सील कर सकते हैं।
पीएलसी सॉफ्टवेयर कई अलग-अलग तरीकों से लिखा जा सकता है - सीढ़ी आरेख, एसएफसी (अनुक्रमिक फ़ंक्शन चार्ट) या निर्देश सूची ।[3]
ऑन-ऑफ नियंत्रण
ऑन-ऑफ नियंत्रण एक प्रतिक्रिया नियंत्रक का उपयोग करते है तो दो अवस्थाओं के बीच परिवर्तन होता है। एक साधारण द्वि-धातु घरेलू तापस्थापी को ऑन-ऑफ नियंत्रक के रूप में वर्णित किया जा सकता है। जब कमरे में तापमान (पीवी) उपयोगकर्ता समायोजन (एसपी) से नीचे चला जाता है, तो हीटर चालू हो जाता है। एक अन्य उदाहरण एक एयर कंप्रेसर पर दबाव परिवर्तन होता है। जब दबाव (पीवी) निर्देश बिंदु (एसपी) से नीचे चला जाता है तो कंप्रेसर संचालित होता है। रेफ्रिजरेटर और वैक्यूम पंप में समान तंत्र होते हैं। इस तरह की सरल ऑन-ऑफ नियंत्रण प्रणालियां अल्पव्यय और प्रभावी हो सकती हैं।
रैखिक नियंत्रण
रैखिक नियंत्रण प्रणाली वांछित एसपी पर नियंत्रित पीवी को बनाए रखने के लिए रैखिक नियंत्रण संकेत उत्पन्न करने के लिए नकारात्मक प्रतिक्रिया का उपयोग करती है। विभिन्न क्षमताओं के साथ कई प्रकार के रैखिक नियंत्रण प्रणालियां हैं।
आनुपातिक नियंत्रण
आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया आनुपातिक नियंत्रण प्रणाली है जिसमें नियंत्रित अस्थिर पर एक सुधार लागू किया जाता है जो वांछित मूल्य (एसपी) और मापा मूल्य (पीवी) के बीच के अंतर के समानुपाती होता है। दो उत्कृष्ट यांत्रिक उदाहरण टॉयलेट बाउल बॉल कॉक और केन्द्रापसारक राज्यपाल | फ्लाई-बॉल गवर्नर हैं।
आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन पीआईडी नियंत्रक की तुलना में सरल है| आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली, उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में उपयोग की जाती है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिन्हें उच्च यथार्थता या प्रतिक्रिया की आवश्यकता नहीं है, लेकिन तेजी से और समय पर सुधार और प्रतिक्रियाओं के लिए प्रभावी नहीं है। आनुपातिक नियंत्रण एक लाभ स्तर पर परिपथता किए गए अस्थिर (एमवी), जैसे नियंत्रण वाल्व को संशोधित करके इस पर नियंत्रण पाता है, जो अस्थिरता से बचा जाता है, लेकिन आनुपातिक संशोधन की इष्टतम मात्रा को लागू करके संशोधन को यथासंभव तेजी से उपयुक्त करता है।
आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए एक पीआई नियंत्रक का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए आनुपातिक नियंत्रण शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट समायोजन त्रुटि को खत्म करने के लिए एक अभिन्न शब्द (आई) का उपयोग करता है।
कुछ प्रणालियों में, एमवी की श्रेणी के लिए व्यावहारिक श्रेणीयां होती हैं। उदाहरण के लिए, एक हीटर की एक श्रेणी होती है कि वह कितनी गर्मी पैदा कर सकता है और एक वाल्व केवल इतनी दूर में ही खुल सकता है। लाभ में समायोजन एक साथ त्रुटि मानों की श्रेणी को बदल देता है जिस पर एमवी इन श्रेणीओं के बीच होता है। इस रेंज की चौड़ाई, त्रुटि अस्थिर की इकाइयों में और इसलिए पीवी की, आनुपातिक पट्टी (पीबी) कहलाती है।
भट्ठी उदाहरण
एक औद्योगिक भट्टी के तापमान को नियंत्रित करते समय, प्रायः भट्ठी की वर्तमान जरूरतों के अनुपात में ईंधन वाल्व के उद्घाटन को नियंत्रित करना श्रेष्ठ होता है यह उष्ण कंपन से बचने में मदद करता है और गर्मी को अधिक प्रभावी ढंग से उपयुक्त करता है।
कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सुधारात्मक कार्रवाई उपयुक्त की जाती है। प्रणाली सुरक्षित और स्थिर हो सकती है, लेकिन बदलती परिस्थितियों के जवाब में निष्क्रिय हो सकती है। त्रुटियां अपेक्षाकृत लंबे समय तक ठीक नहीं होंगी और सिस्टम ओवर वापेड है। यदि आनुपातिक लाभ बढ़ाया जाता है, तो ऐसी प्रणालियाँ अधिक प्रतिक्रियाशील हो जाती हैं और त्रुटियों से अधिक तेज़ी से पहुंचाया जाता है। जब समग्र प्रणाली को गंभीर रूप से भीगने के लिए कहा जाता है, तो लाभ समायोजन के लिए एक इष्टतम मूल्य होता है। इस बिंदु से आगे लूप लाभ में वृद्धि से पीवी में दोलन होते हैं और ऐसी प्रणाली कम हो जाती है। गंभीर रूप से नम व्यवहार को प्राप्त करने के लिए समायोजन लाभ को नियंत्रण प्रणाली को समंजन के रूप में जाना जाता है।
अस्थिर स्थिति में, भट्टी जल्दी गर्म हो जाती है। एक बार निर्देश बिंदु पर पहुंचने के बाद, हीटर उप-प्रणाली के अन्दर और भट्ठी की दीवारों में संग्रहित गर्मी मापी गई तापमान को आवश्यकता से अधिक बढ़ाएगी। निर्देश बिंदु से ऊपर उठने के बाद, तापमान पुनः गिर जाता है और अंततः गर्मी फिर से उपयुक्त होती है। हीटर उप-प्रणाली को फिर से गर्म करने में कोई भी देरी भट्ठी के तापमान को निर्देश बिंदु से नीचे गिरने देती है और चक्र दोहराता है। तापमान में उतार-चढ़ाव जो एक अंडरडम्प्ड फर्नेस नियंत्रण प्रणाली पैदा करता है वह अवांछनीय है।
एक गंभीर रूप से नम प्रणाली में, जैसे ही तापमान निर्देश बिंदु के करीब पहुंचता है, गर्मी इनपुट कम होना शुरू हो जाता है, भट्ठी के हीटिंग की दर को धीमा करने का समय होता है और प्रणाली ओवरशूट से बचता है। ओवरडैम्प्ड प्रणाली में ओवरशूट से भी बचा जाता है लेकिन एक ओवरडैम्प्ड प्रणाली में बाहरी परिवर्तनों के लिए शुरू में निर्देश बिंदु प्रतिक्रिया तक पहुंचने के लिए अनावश्यक रूप से धीमा होता है, उदाहरण। भट्ठी का दरवाजा खोलना।
पीआईडी नियंत्रण
शुद्ध आनुपातिक नियंत्रकों को प्रणाली में अवशिष्ट त्रुटि के साथ काम करना चाहिए। यद्यपि अनुकरणीय नियंत्रक इस त्रुटि को समाप्त कर देते हैं, फिर भी वे निष्क्रिय हो सकते हैं या दोलन उत्पन्न कर सकते हैं। पीआईडी नियंत्रक स्थिरता बनाए रखने के लिए व्युत्पन्न (डी) क्रिया शुरू करके इन अंतिम कमियों को संबोधित करता है जबकि प्रतिक्रिया में सुधार होता है।
व्युत्पन्न क्रिया
व्युत्पन्न क्रिया समय के साथ त्रुटि के दर-परिवर्तन से संबंधित है: यदि माप को अस्थिर तेजी से निर्देश बिंदु तक पहुंचता है, तो इसे आवश्यक स्तर तक तट पर जाने की अनुमति देने के लिए एक्ट्यूएटर को जल्दी से बंद कर दिया जाता है; इसके विपरीत, यदि मापा गया मान निर्देश बिंदु से तेजी से दूर जाने लगता है, तो अतिरिक्त प्रयास उपयुक्त किया जाता है - उस गति के अनुपात में इसे वापस ले जाने में समर्थन करने के लिए।
एक चलती वाहन पर बंदूक या कैमरे जैसी भारी वस्तु के गति नियंत्रण से जुड़े नियंत्रण प्रणालियों पर, एक अच्छी तरह से ट्यून किए गए पीआईडी नियंत्रण की व्युत्पन्न क्रिया इसे सबसे कुशल मानव ऑपरेटरों की तुलना में एक निर्देश बिंदु तक पहुंचने और बनाए रखने की अनुमति दे सकती है। यदि व्युत्पन्न क्रिया को अधिक प्रयुक्त किया जाता है, तो यह दोलनों को जन्म दे सकता है।
अभिन्न क्रिया
अभिन्न क्रिया शब्द दीर्घकालिक स्थिर-राज्य त्रुटियों के प्रभाव को बढ़ाता है, जब तक त्रुटि को हटा नहीं दिया जाता है, तब तक लगातार बढ़ते प्रयास को प्रयुक्त करते हैं। ऊपर विभिन्न तापमानों पर काम करने वाली भट्ठी के उदाहरण में, यदि प्रयुक्त की जा रही गर्म भट्ठी को निर्देश बिंदु तक नहीं लाती है, किसी भी कारण से, अभिन्न क्रिया तेजी से निर्देश बिंदु के सापेक्ष आनुपातिक बैंड को तब तक ले जाती है जब तक कि पीवी त्रुटि शून्य तक कम नहीं हो जाती है और निर्देश बिंदु हासिल किया जाता है।
% प्रति मिनट रैंप अप
कुछ नियंत्रकों में रैंप को % प्रति मिनट तक सीमित करने का विकल्प शामिल है। यह विकल्प छोटे बॉयलर (3 एमबीटीयूएच) को स्थिर करने में बहुत उपयोगी हो सकता है, खासकर गर्मियों के दौरान, हल्के भार के दौरान। एक उपयोगिता बॉयलर इकाई को 5% प्रति मिनट (आईईए कोयला ऑनलाइन - 2, 2007) की दर से भार बदलने की आवश्यकता हो सकती है।[4][failed verification]
अन्य तकनीक
पीवी या त्रुटि संकेत को निस्पंदन (संकेत प्रक्रमण) करना संभव है। ऐसा करने से अवांछित आवृत्तियों पर प्रणाली की प्रतिक्रिया को कम करके अस्थिरता या दोलनों को कम करने में सहायता मिल सकती है। कई प्रणालियों में एक प्रतिध्वनित आवृत्ति होती है। उस आवृत्ति को निस्पंदन करके, दोलन होने से पहले मजबूत समग्र प्रतिक्रिया प्रयुक्त की जा सकती है, जिससे प्रणाली खुद को अलग किए बिना अधिक प्रतिक्रियाशील बना देता है।
प्रतिक्रिया प्रणाली को जोड़ा जा सकता है। पीआईडी नियंत्रक # जलप्रपात नियंत्रण में,एक नियंत्रण लूप एक निर्देश बिंदु के प्रतिकूल एक मापा अस्थिर पर नियंत्रण प्रणाली कलन विधि प्रयुक्त करता है लेकिन फिर प्रक्रिया अस्थिर को सीधे प्रभावित करने के बजाय दूसरे नियंत्रण प्रणाली लूप को एक अलग निर्देश बिंदु प्रदान करता है। यदि किसी प्रणाली में नियंत्रित करने के लिए कई अलग-अलग मापा अस्थिर हैं, तो उनमें से प्रत्येक के लिए अलग नियंत्रण प्रणाली मौजूद होगी।
कई अनुप्रयोगों में नियंत्रण प्रणाली अभियांत्रिकी नियंत्रण प्रणाली का उत्पादन करती है जो पीआईडी नियंत्रण से अधिक कठिन होती है। ऐसे क्षेत्र अनुप्रयोगों के उदाहरणों में सितारों के माध्यम से उड़ना विमान नियंत्रण प्रणाली, रासायनिक संयंत्र और तेल रिफाइनरी शामिल हैं। मॉडल भविष्य कहने वाले नियंत्रण प्रणाली को विशेष कंप्यूटर एडेड डिजाइन | प्रक्रिया सामग्री और प्रणाली के अनुभवजन्य गणितीय मॉडल का उपयोग करके नियंत्रित किया जाता है।
अस्पष्ट तर्क
अस्पष्ट तर्क मिश्रित लगातार बदलती प्रणालियों के नियंत्रण प्रणाली के लिए तर्क नियंत्रक के आसान डिज़ाइन को लागू करने का एक प्रयास है। मूल रूप से, अस्पष्ट तर्क व्यवस्था में माप आंशिक रूप से वास्तविक हो सकता है।
प्रणाली के नियम प्राकृतिक व्याकरण में लिखे गए हैं और अस्पष्ट तर्क में अनुवादित हैं। उदाहरण के लिए, भट्ठी के लिए डिजाइन शुरू होगा: यदि तापमान बहुत अधिक है, तो भट्ठी में ईंधन कम करें। यदि तापमान बहुत कम है, तो भट्टी में ईंधन बढ़ाएँ।
वास्तविक दुनिया से माप (जैसे भट्ठी का तापमान) अस्पष्ट डिज़ाइन होते हैं और बूलियन तर्क के विपरीत तर्क की गणना अंकगणितीय की जाती है, और आउटपुट उपकरण को नियंत्रित करने के लिए अस्पष्ट डिज़ाइन होते हैं।
जब एक ठोस अस्पष्ट डिज़ाइन को एकल, त्वरित गणना में घटा दिया जाता है, तो यह एक पारंपरिक प्रतिक्रिया पाश समाधान जैसा दिखने लगता है और ऐसा लग सकता है कि अस्पष्ट डिज़ाइन अनावश्यक था। तथापि, अस्पष्ट तर्क प्रतिमान बड़े नियंत्रण प्रणालियों के लिए मापनीयता प्रदान कर सकता है जहाँ पारंपरिक विधियाँ दुष्कर या मूल्यवान हो जाती हैं।[citation needed] अस्पष्ट इलेक्ट्रॉनिक्स एक इलेक्ट्रॉनिक तकनीक है जो डिजिटल इलेक्ट्रॉनिक्स में आमतौर पर उपयोग किए जाने वाले दो-मूल्य वाले तर्क के जगह में अस्पष्ट तर्क का उपयोग करती है।
भौतिक कार्यान्वयन
नियंत्रण प्रणाली के कार्यान्वयन की सीमा एक बड़े भौतिक संयंत्र के लिए औद्योगिक प्रक्रिया नियंत्रण प्रणाली के लिए, एक विशेष मशीन या डिवाइस के लिए समर्पित सॉफ्टवेयर के साथ अक्सर ठोस नियंत्रक से होती है।
तर्क प्रणाली और पुनर्निवेश नियंत्रक आमतौर पर प्रोग्रामेबल तर्क नियंत्रक के साथ लागू किए जाते हैं।
यह भी देखें
- बिल्डिंग ऑटोमेशन
- गुणांक आरेख विधि
- नियंत्रण सिद्धांत
- साइबरनेटिक्स
- वितरित कोटा पद्धति
- ड्रॉप गति नियंत्रण
- इलेक्ट्रिकल और इलेक्ट्रॉनिक्स इंजीनियरों की शिक्षा और प्रशिक्षण
- महाकाव्य
- अच्छा नियामक
- मार्गदर्शन, नेविगेशन और नियंत्रण
- पदानुक्रमित नियंत्रण प्रणाली
- एचवीएसी नियंत्रण प्रणाली
- औद्योगिक नियंत्रण प्रणाली
- गति नियंत्रण
- नेटवर्क नियंत्रण प्रणाली
- संख्यात्मक नियंत्रण
- अवधारणात्मक नियंत्रण सिद्धांत
- पीआईडी नियंत्रक
- प्रक्रिया नियंत्रण
- प्रक्रिया का इष्टतीमीकरण
- निर्देशयोग्य तर्क नियंत्रक
- नमूना डेटा सिस्टम
- स्काडा
- विससिम
संदर्भ
- ↑ "Feedback and control systems" - JJ Di Steffano, AR Stubberud, IJ Williams. Schaums outline series, McGraw-Hill 1967
- ↑ Kuphaldt, Tony R. "Chapter 6 LADDER LOGIC". Lessons In Electric Circuits -- Volume IV. Archived from the original on 12 September 2010. Retrieved 22 September 2010.
- ↑ Brady, Ian. "Programmable logic controllers - benefits and applications" (PDF). PLCs. Archived (PDF) from the original on 2 February 2014. Retrieved 5 December 2011.
- ↑ "Energy Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants" (PDF). ABB. p. 262. Archived (PDF) from the original on 2014-08-05. Retrieved 2014-04-07.
बाहरी संबंध
- SystemControl Create, simulate or HWIL control loops with Python. Includes Kalman filter, LQG control among others.
- Semiautonomous Flight Direction - Reference unmannedaircraft.org
- Control System Toolbox for design and analysis of control systems.
- Control Systems Manufacturer Design and Manufacture of control systems.
- Mathematica functions for the analysis, design, and simulation of control systems
- Python Control System (PyConSys) Create and simulate control loops with Python. AI for setting PID parameters.