अंतिम मान प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[गणितीय विश्लेषण]] में, अंतिम मूल्य प्रमेय (एफवीटी) कई समान प्रमेयों में से एक है जिसका उपयोग [[आवृत्ति डोमेन]] अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।<ref name="RWang2010">{{cite web |url=http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html |title=प्रारंभिक और अंतिम मूल्य प्रमेय|first=Ruye |last=Wang |date=2010-02-17 |accessdate=2011-10-21}}</ref><ref name="OppenheimWillskyNawab1997">{{cite book |isbn=0-13-814757-4 |title=Signals &amp; Systems |author1=Alan V. Oppenheim |author2=Alan S. Willsky |author3=S. Hamid Nawab |location=New Jersey, USA |publisher=Prentice Hall |year=1997}}</ref><ref name="Schiff1999">{{cite book |last1=Schiff |first1=Joel L. |title=The Laplace Transform: Theory and Applications |date=1999 |publisher=Springer |location=New York |isbn=978-1-4757-7262-3}}</ref><ref name="Graf2004">{{cite book |last1=Graf |first1=Urs |title=वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म|date=2004 |publisher=Birkhäuser Verlag |location=Basel |isbn=3-7643-2427-9}}</ref>
[[गणितीय विश्लेषण]] में, '''अंतिम मान प्रमेय''' ('''एफवीटी''') कई समान प्रमेयों में से एक है जिसका उपयोग [[आवृत्ति डोमेन]] अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।<ref name="RWang2010">{{cite web |url=http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html |title=प्रारंभिक और अंतिम मूल्य प्रमेय|first=Ruye |last=Wang |date=2010-02-17 |accessdate=2011-10-21}}</ref><ref name="OppenheimWillskyNawab1997">{{cite book |isbn=0-13-814757-4 |title=Signals &amp; Systems |author1=Alan V. Oppenheim |author2=Alan S. Willsky |author3=S. Hamid Nawab |location=New Jersey, USA |publisher=Prentice Hall |year=1997}}</ref><ref name="Schiff1999">{{cite book |last1=Schiff |first1=Joel L. |title=The Laplace Transform: Theory and Applications |date=1999 |publisher=Springer |location=New York |isbn=978-1-4757-7262-3}}</ref><ref name="Graf2004">{{cite book |last1=Graf |first1=Urs |title=वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म|date=2004 |publisher=Birkhäuser Verlag |location=Basel |isbn=3-7643-2427-9}}</ref>


गणितीय रूप से, यदि <math>f(t)</math> निरंतर समय में (एकतरफा) [[लाप्लास परिवर्तन]] होता है <math>F(s)</math>, तो एक अंतिम मूल्य प्रमेय उन स्थितियों को स्थापित करता है जिनके तहत
गणितीय रूप से, यदि <math>f(t)</math> निरंतर समय में (एकतरफा) [[लाप्लास परिवर्तन]] <math>F(s)</math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
:<math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>
:<math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>
इसी प्रकार यदि <math>f[k]</math> असतत समय में (एकतरफा) Z-परिवर्तन होता है <math>F(z)</math>, तो एक अंतिम मूल्य प्रमेय उन स्थितियों को स्थापित करता है जिनके तहत
इसी प्रकार यदि <math>f[k]</math> असतत समय में (एकतरफा) Z-परिवर्तन <math>F(z)</math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
:<math>\lim_{k\to\infty}f[k] = \lim_{z\to 1}{(z-1)F(z)}</math>
:<math>\lim_{k\to\infty}f[k] = \lim_{z\to 1}{(z-1)F(z)}</math>
एबेलियन अंतिम मूल्य प्रमेय समय-डोमेन व्यवहार के बारे में धारणा बनाता है <math>f(t)</math> (या <math>f[k]</math>) की गणना करना <math>\lim_{s\,\to\, 0}{sF(s)}</math>.
एबेलियन अंतिम मान प्रमेय <math>\lim_{s\,\to\, 0}{sF(s)}</math> की गणना करने के लिए <math>f(t)</math> (या <math>f[k]</math>) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।
इसके विपरीत, एक टूबेरियन अंतिम मूल्य प्रमेय आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है <math>F(s)</math> की गणना करना <math>\lim_{t\to\infty}f(t)</math> (या <math>\lim_{k\to\infty}f[k]</math>)
([[एबेलियन और टूबेरियन प्रमेय]] देखें)।


== लाप्लास परिवर्तन के लिए अंतिम मूल्य प्रमेय ==
इसके विपरीत, एक टूबेरियन अंतिम मूल्य प्रमेय <math>\lim_{t\to\infty}f(t)</math> (या <math>\lim_{k\to\infty}f[k]</math>) (अभिन्न परिवर्तनों के लिए [[एबेलियन और टूबेरियन प्रमेय]] देखें) की गणना करने के लिए <math>F(s)</math> के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।
 
== लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय ==


=== कटौती करना {{math|lim<sub>''t'' → ∞</sub> ''f''(''t'')}} ===
=== कटौती करना {{math|lim<sub>''t'' → ∞</sub> ''f''(''t'')}} ===
Line 15: Line 15:
निम्नलिखित कथनों में, संकेतन '<math>s \to 0</math>' मतलब कि <math>s</math> 0 के करीब पहुंचता है, जबकि '<math>s \downarrow 0</math>' मतलब कि <math>s</math> सकारात्मक संख्याओं के माध्यम से 0 तक पहुंचता है।
निम्नलिखित कथनों में, संकेतन '<math>s \to 0</math>' मतलब कि <math>s</math> 0 के करीब पहुंचता है, जबकि '<math>s \downarrow 0</math>' मतलब कि <math>s</math> सकारात्मक संख्याओं के माध्यम से 0 तक पहुंचता है।


==== मानक अंतिम मूल्य प्रमेय ====
==== मानक अंतिम मान प्रमेय ====


मान लीजिए कि प्रत्येक ध्रुव <math>F(s)</math> या तो खुले बाएँ आधे तल में है या मूल में है, और वह <math>F(s)</math> मूल बिंदु पर अधिकतम एक ही ध्रुव होता है। तब <math>sF(s) \to L \in \mathbb{R}</math> जैसा <math>s \to 0</math>, और <math>\lim_{t\to\infty}f(t) = L</math>.<ref name="ChenLundbergDavisonBernstein2007">{{cite journal |last1=Chen |first1=Jie |last2=Lundberg |first2=Kent H. |last3=Davison |first3=Daniel E. |last4=Bernstein |first4=Dennis S. |title=अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य|journal=IEEE Control Systems Magazine |date=June 2007 |volume=27 |issue=3 |pages=97-99 |doi=10.1109/MCS.2007.365008}}</ref>
मान लीजिए कि प्रत्येक ध्रुव <math>F(s)</math> या तो खुले बाएँ आधे तल में है या मूल में है, और वह <math>F(s)</math> मूल बिंदु पर अधिकतम एक ही ध्रुव होता है। तब <math>sF(s) \to L \in \mathbb{R}</math> जैसा <math>s \to 0</math>, और <math>\lim_{t\to\infty}f(t) = L</math>.<ref name="ChenLundbergDavisonBernstein2007">{{cite journal |last1=Chen |first1=Jie |last2=Lundberg |first2=Kent H. |last3=Davison |first3=Daniel E. |last4=Bernstein |first4=Dennis S. |title=अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य|journal=IEEE Control Systems Magazine |date=June 2007 |volume=27 |issue=3 |pages=97-99 |doi=10.1109/MCS.2007.365008}}</ref>




==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मूल्य प्रमेय ====
==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय ====


लगता है कि <math>f(t)</math> और <math>f'(t)</math> दोनों में लाप्लास परिवर्तन हैं जो सभी के लिए मौजूद हैं <math>s > 0</math>. अगर <math>\lim_{t\to\infty}f(t)</math> मौजूद है और <math>\lim_{s\,\to\, 0}{sF(s)}</math> तब मौजूद है <math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>.{{r|"Schiff1999"|page=Theorem 2.36}}{{r|"Graf2004"|page=20}}<ref>{{cite web |title=लाप्लास ट्रांसफॉर्म का अंतिम मूल्य प्रमेय|url=https://proofwiki.org/wiki/Final_Value_Theorem_of_Laplace_Transform |website=ProofWiki |accessdate=12 April 2020}}</ref>
लगता है कि <math>f(t)</math> और <math>f'(t)</math> दोनों में लाप्लास परिवर्तन हैं जो सभी के लिए मौजूद हैं <math>s > 0</math>. अगर <math>\lim_{t\to\infty}f(t)</math> मौजूद है और <math>\lim_{s\,\to\, 0}{sF(s)}</math> तब मौजूद है <math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>.{{r|"Schiff1999"|page=Theorem 2.36}}{{r|"Graf2004"|page=20}}<ref>{{cite web |title=लाप्लास ट्रांसफॉर्म का अंतिम मूल्य प्रमेय|url=https://proofwiki.org/wiki/Final_Value_Theorem_of_Laplace_Transform |website=ProofWiki |accessdate=12 April 2020}}</ref>
Line 30: Line 30:
  <math>\lim_{s\,\to\, 0}{sF(s)} = \lim_{s\,\to\, 0}{\frac{s}{s^2+1}} = 0</math>.{{r|"Schiff1999"|page=Example 2.37}}{{r|"Graf2004"|page=20}}
  <math>\lim_{s\,\to\, 0}{sF(s)} = \lim_{s\,\to\, 0}{\frac{s}{s^2+1}} = 0</math>.{{r|"Schiff1999"|page=Example 2.37}}{{r|"Graf2004"|page=20}}


==== बेहतर टूबेरियन वार्तालाप अंतिम मूल्य प्रमेय ====
==== बेहतर टूबेरियन वार्तालाप अंतिम मान प्रमेय ====


लगता है कि <math>f : (0,\infty) \to \mathbb{C} </math> बंधा हुआ और भिन्न है, और वह
लगता है कि <math>f : (0,\infty) \to \mathbb{C} </math> बंधा हुआ और भिन्न है, और वह
Line 36: Line 36:




==== विस्तारित अंतिम मूल्य प्रमेय ====
==== विस्तारित अंतिम मान प्रमेय ====


मान लीजिए कि प्रत्येक ध्रुव <math>F(s)</math> या तो खुले बाएँ आधे तल में है या मूल में है। तब निम्न में से एक होता है:
मान लीजिए कि प्रत्येक ध्रुव <math>F(s)</math> या तो खुले बाएँ आधे तल में है या मूल में है। तब निम्न में से एक होता है:
Line 45: Line 45:




==== सामान्यीकृत अंतिम मूल्य प्रमेय ====
==== सामान्यीकृत अंतिम मान प्रमेय ====


लगता है कि <math>f(t)</math> लाप्लास परिवर्तनीय है. होने देना <math>\lambda > -1</math>. अगर <math>\lim_{t\to\infty}\frac{f(t)}{t^\lambda}</math> मौजूद है और <math>\lim_{s\downarrow0}{s^{\lambda+1}F(s)}</math> तब मौजूद है
लगता है कि <math>f(t)</math> लाप्लास परिवर्तनीय है. होने देना <math>\lambda > -1</math>. अगर <math>\lim_{t\to\infty}\frac{f(t)}{t^\lambda}</math> मौजूद है और <math>\lim_{s\downarrow0}{s^{\lambda+1}F(s)}</math> तब मौजूद है
Line 54: Line 54:
==== अनुप्रयोग ====
==== अनुप्रयोग ====


प्राप्त करने के लिए अंतिम मूल्य प्रमेय <math>\lim_{t\to\infty}f(t)</math> किसी प्रणाली के [[नियंत्रण सिद्धांत]]|दीर्घकालिक स्थिरता को स्थापित करने में इसका अनुप्रयोग होता है।
प्राप्त करने के लिए अंतिम मान प्रमेय <math>\lim_{t\to\infty}f(t)</math> किसी प्रणाली के [[नियंत्रण सिद्धांत]]|दीर्घकालिक स्थिरता को स्थापित करने में इसका अनुप्रयोग होता है।


=== कटौती करना {{math|lim<sub>''s'' → 0</sub> ''s''&thinsp;''F''(''s'')}} ===
=== कटौती करना {{math|lim<sub>''s'' → 0</sub> ''s''&thinsp;''F''(''s'')}} ===


==== एबेलियन अंतिम मूल्य प्रमेय ====
==== एबेलियन अंतिम मान प्रमेय ====


लगता है कि <math>f : (0,\infty) \to \mathbb{C} </math> परिबद्ध एवं मापने योग्य है तथा <math>\lim_{t\to\infty}f(t) = \alpha \in \mathbb{C}</math>. तब <math>F(s)</math> सभी के लिए मौजूद है <math>s > 0</math> और <math>\lim_{s\,\to\, 0^{+}}{sF(s)} = \alpha</math>.<ref name="UllrichTauberian"/>
लगता है कि <math>f : (0,\infty) \to \mathbb{C} </math> परिबद्ध एवं मापने योग्य है तथा <math>\lim_{t\to\infty}f(t) = \alpha \in \mathbb{C}</math>. तब <math>F(s)</math> सभी के लिए मौजूद है <math>s > 0</math> और <math>\lim_{s\,\to\, 0^{+}}{sF(s)} = \alpha</math>.<ref name="UllrichTauberian"/>
Line 75: Line 75:
दूसरी ओर, चूंकि <math>A<\infty</math> तय हो गया है यह स्पष्ट है <math>\lim_{s\to 0}I=0</math>, इसलिए <math>|sF(s)-\alpha| < \epsilon</math> अगर <math>s>0</math> काफी छोटा है.
दूसरी ओर, चूंकि <math>A<\infty</math> तय हो गया है यह स्पष्ट है <math>\lim_{s\to 0}I=0</math>, इसलिए <math>|sF(s)-\alpha| < \epsilon</math> अगर <math>s>0</math> काफी छोटा है.


==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मूल्य प्रमेय ====
==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय ====


मान लीजिए कि निम्नलिखित सभी शर्तें पूरी हो गई हैं:
मान लीजिए कि निम्नलिखित सभी शर्तें पूरी हो गई हैं:
Line 95: Line 95:




==== आवधिक कार्यों के स्पर्शोन्मुख योग के लिए अंतिम मूल्य प्रमेय ====
==== आवधिक कार्यों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय ====


लगता है कि <math>f : [0,\infty) \to \mathbb{R} </math> में सतत एवं पूर्णतया एकीकृत है <math>[0,\infty)</math>. आगे मान लीजिए <math>f</math> आवर्ती कार्यों के एक सीमित योग के बराबर है <math>f_{\mathrm{as}}</math>, वह है
लगता है कि <math>f : [0,\infty) \to \mathbb{R} </math> में सतत एवं पूर्णतया एकीकृत है <math>[0,\infty)</math>. आगे मान लीजिए <math>f</math> आवर्ती कार्यों के एक सीमित योग के बराबर है <math>f_{\mathrm{as}}</math>, वह है
Line 111: Line 111:




==== अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मूल्य प्रमेय (अभिन्न के लिए एबेल का प्रमेय) ====
==== अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय) ====


होने देना <math>h : [0,\infty) \to \mathbb{R}</math> मापने योग्य हो और ऐसा हो कि (संभवतः अनुचित) अभिन्न हो <math>f(x) := \int_0^x h(t)\, dt</math> के लिए एकत्रित होता है <math>x\to\infty</math>. तब
होने देना <math>h : [0,\infty) \to \mathbb{R}</math> मापने योग्य हो और ऐसा हो कि (संभवतः अनुचित) अभिन्न हो <math>f(x) := \int_0^x h(t)\, dt</math> के लिए एकत्रित होता है <math>x\to\infty</math>. तब
Line 128: Line 128:
==== अनुप्रयोग ====
==== अनुप्रयोग ====


प्राप्त करने के लिए अंतिम मूल्य प्रमेय <math>\lim_{s\,\to\, 0}{sF(s)}</math> [[क्षण (गणित)]] की गणना करने के लिए संभाव्यता और सांख्यिकी में अनुप्रयोग हैं। होने देना <math>R(x)</math> एक सतत यादृच्छिक चर का संचयी वितरण फ़ंक्शन बनें <math>X</math> और जाने <math>\rho(s)</math> का लाप्लास-स्टिल्टजेस रूपांतरण हो <math>R(x)</math>. फिर <math>n</math>-वें क्षण का <math>X</math> के रूप में गणना की जा सकती है
प्राप्त करने के लिए अंतिम मान प्रमेय <math>\lim_{s\,\to\, 0}{sF(s)}</math> [[क्षण (गणित)]] की गणना करने के लिए संभाव्यता और सांख्यिकी में अनुप्रयोग हैं। होने देना <math>R(x)</math> एक सतत यादृच्छिक चर का संचयी वितरण फ़ंक्शन बनें <math>X</math> और जाने <math>\rho(s)</math> का लाप्लास-स्टिल्टजेस रूपांतरण हो <math>R(x)</math>. फिर <math>n</math>-वें क्षण का <math>X</math> के रूप में गणना की जा सकती है
:<math>E[X^n] = (-1)^n\left.\frac{d^n\rho(s)}{ds^n}\right|_{s=0}</math>
:<math>E[X^n] = (-1)^n\left.\frac{d^n\rho(s)}{ds^n}\right|_{s=0}</math>
रणनीति लिखने की है
रणनीति लिखने की है
:<math>\frac{d^n\rho(s)}{ds^n} = \mathcal{F}\bigl(G_1(s), G_2(s), \dots, G_k(s), \dots\bigr)</math> कहाँ <math>\mathcal{F}(\dots)</math> निरंतर है और
:<math>\frac{d^n\rho(s)}{ds^n} = \mathcal{F}\bigl(G_1(s), G_2(s), \dots, G_k(s), \dots\bigr)</math> कहाँ <math>\mathcal{F}(\dots)</math> निरंतर है और
प्रत्येक के लिए <math>k</math>, <math>G_k(s) = sF_k(s)</math> एक समारोह के लिए <math>F_k(s)</math>. प्रत्येक के लिए <math>k</math>, रखना <math>f_k(t)</math> के [[व्युत्क्रम लाप्लास परिवर्तन]] के रूप में <math>F_k(s)</math>, प्राप्त
प्रत्येक के लिए <math>k</math>, <math>G_k(s) = sF_k(s)</math> एक समारोह के लिए <math>F_k(s)</math>. प्रत्येक के लिए <math>k</math>, रखना <math>f_k(t)</math> के [[व्युत्क्रम लाप्लास परिवर्तन]] के रूप में <math>F_k(s)</math>, प्राप्त
  <math>\lim_{t\to\infty}f_k(t)</math>, और निष्कर्ष निकालने के लिए अंतिम मूल्य प्रमेय लागू करें
  <math>\lim_{t\to\infty}f_k(t)</math>, और निष्कर्ष निकालने के लिए अंतिम मान प्रमेय लागू करें
  <math>\lim_{s\,\to\, 0}{G_k(s)} =\lim_{s\,\to\, 0}{sF_k(s)} = \lim_{t\to\infty}f_k(t)</math>. तब
  <math>\lim_{s\,\to\, 0}{G_k(s)} =\lim_{s\,\to\, 0}{sF_k(s)} = \lim_{t\to\infty}f_k(t)</math>. तब
:<math>\left.\frac{d^n\rho(s)}{ds^n}\right|_{s=0} = \mathcal{F}\Bigl(\lim_{s\,\to\, 0} G_1(s), \lim_{s\,\to\, 0} G_2(s), \dots, \lim_{s\,\to\, 0} G_k(s), \dots\Bigr)</math> और इसलिए <math>E[X^n]</math> प्राप्त होना।
:<math>\left.\frac{d^n\rho(s)}{ds^n}\right|_{s=0} = \mathcal{F}\Bigl(\lim_{s\,\to\, 0} G_1(s), \lim_{s\,\to\, 0} G_2(s), \dots, \lim_{s\,\to\, 0} G_k(s), \dots\Bigr)</math> और इसलिए <math>E[X^n]</math> प्राप्त होना।
Line 155: Line 155:


:<math>H(s) = \frac{9}{s^2 + 9},</math>
:<math>H(s) = \frac{9}{s^2 + 9},</math>
ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। हालाँकि, कोई भी समय-डोमेन सीमा मौजूद नहीं है, और इसलिए अंतिम मूल्य प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष मामले में) अंतिम मूल्य प्रमेय उन औसत मूल्यों का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।
ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। हालाँकि, कोई भी समय-डोमेन सीमा मौजूद नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष मामले में) अंतिम मान प्रमेय उन औसत मूल्यों का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।


नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मूल्य प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:
नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:
# हर के सभी गैर-शून्य मूल <math>H(s)</math> नकारात्मक वास्तविक भाग होने चाहिए।
# हर के सभी गैर-शून्य मूल <math>H(s)</math> नकारात्मक वास्तविक भाग होने चाहिए।
# <math>H(s)</math> मूल स्थान पर एक से अधिक ध्रुव नहीं होने चाहिए।
# <math>H(s)</math> मूल स्थान पर एक से अधिक ध्रुव नहीं होने चाहिए।
Line 163: Line 163:
इस उदाहरण में नियम 1 संतुष्ट नहीं था, इसमें हर की जड़ें हैं <math>0+j3</math> और <math>0-j3</math>.
इस उदाहरण में नियम 1 संतुष्ट नहीं था, इसमें हर की जड़ें हैं <math>0+j3</math> और <math>0-j3</math>.


== Z परिवर्तन के लिए अंतिम मूल्य प्रमेय ==
== Z परिवर्तन के लिए अंतिम मान प्रमेय ==


=== कटौती करना {{math|lim<sub>''k'' → ∞</sub> ''f''[''k'']}} ===
=== कटौती करना {{math|lim<sub>''k'' → ∞</sub> ''f''[''k'']}} ===


==== अंतिम मूल्य प्रमेय ====
==== अंतिम मान प्रमेय ====


अगर <math>\lim_{k\to\infty}f[k]</math> मौजूद है और <math>\lim_{z\,\to\, 1}{(z-1)F(z)}</math> तब मौजूद है <math>\lim_{k\to\infty}f[k] = \lim_{z\,\to\, 1}{(z-1)F(z)}</math>.{{r|"Graf2004"|page=101}}
अगर <math>\lim_{k\to\infty}f[k]</math> मौजूद है और <math>\lim_{z\,\to\, 1}{(z-1)F(z)}</math> तब मौजूद है <math>\lim_{k\to\infty}f[k] = \lim_{z\,\to\, 1}{(z-1)F(z)}</math>.{{r|"Graf2004"|page=101}}


== रैखिक प्रणालियों का अंतिम मूल्य ==
== रैखिक प्रणालियों का अंतिम मान ==


=== सतत-समय एलटीआई सिस्टम ===
=== सतत-समय एलटीआई सिस्टम ===
सिस्टम का अंतिम मूल्य
सिस्टम का अंतिम मान
:<math>\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)</math>
:<math>\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)</math>
:<math>\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)</math>
:<math>\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)</math>
Line 189: Line 189:
कहाँ <math>h_{i} = t_{i+1}-t_{i}</math> और
कहाँ <math>h_{i} = t_{i+1}-t_{i}</math> और
:<math>\mathbf{\Phi}(h_{i})=e^{\mathbf{A}h_{i}}</math>,  <math>\mathbf{\Gamma}(h_{i})=\int_0^{h_{i}} e^{\mathbf{A}s} \,ds</math>
:<math>\mathbf{\Phi}(h_{i})=e^{\mathbf{A}h_{i}}</math>,  <math>\mathbf{\Gamma}(h_{i})=\int_0^{h_{i}} e^{\mathbf{A}s} \,ds</math>
एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मूल्य <math>\mathbf{u}(t)</math> आयाम के साथ <math>R</math> यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। <ref name="MohajeriMadadiTavassoli2021">{{cite journal |last1=Mohajeri |first1=Kamran |last2=Madadi |first2=Ali |last3=Tavassoli |first3=Babak |title= विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण|journal= International Journal of Systems Science |date=2021 |volume=52 |issue=10 |pages= 1987-2002 |doi=10.1080/00207721.2021.1874074}}</ref>
एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान <math>\mathbf{u}(t)</math> आयाम के साथ <math>R</math> यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। <ref name="MohajeriMadadiTavassoli2021">{{cite journal |last1=Mohajeri |first1=Kamran |last2=Madadi |first2=Ali |last3=Tavassoli |first3=Babak |title= विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण|journal= International Journal of Systems Science |date=2021 |volume=52 |issue=10 |pages= 1987-2002 |doi=10.1080/00207721.2021.1874074}}</ref>




==यह भी देखें==
==यह भी देखें==
* [[प्रारंभिक मूल्य प्रमेय]]
* [[प्रारंभिक मूल्य प्रमेय|प्रारंभिक मान प्रमेय]]
* Z-परिवर्तन
* Z-परिवर्तन
* [[लाप्लास परिवर्तन]]
* [[लाप्लास परिवर्तन]]

Revision as of 18:36, 11 December 2023

गणितीय विश्लेषण में, अंतिम मान प्रमेय (एफवीटी) कई समान प्रमेयों में से एक है जिसका उपयोग आवृत्ति डोमेन अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।[1][2][3][4]

गणितीय रूप से, यदि निरंतर समय में (एकतरफा) लाप्लास परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत

इसी प्रकार यदि असतत समय में (एकतरफा) Z-परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत

एबेलियन अंतिम मान प्रमेय की गणना करने के लिए (या ) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।

इसके विपरीत, एक टूबेरियन अंतिम मूल्य प्रमेय (या ) (अभिन्न परिवर्तनों के लिए एबेलियन और टूबेरियन प्रमेय देखें) की गणना करने के लिए के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।

लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय

कटौती करना limt → ∞ f(t)

निम्नलिखित कथनों में, संकेतन '' मतलब कि 0 के करीब पहुंचता है, जबकि '' मतलब कि सकारात्मक संख्याओं के माध्यम से 0 तक पहुंचता है।

मानक अंतिम मान प्रमेय

मान लीजिए कि प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल में है, और वह मूल बिंदु पर अधिकतम एक ही ध्रुव होता है। तब जैसा , और .[5]


व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय

लगता है कि और दोनों में लाप्लास परिवर्तन हैं जो सभी के लिए मौजूद हैं . अगर मौजूद है और तब मौजूद है .[3]: Theorem 2.36 [4]: 20 [6]

टिप्पणी

प्रमेय को धारण करने के लिए दोनों सीमाएँ मौजूद होनी चाहिए। उदाहरण के लिए, यदि तब मौजूद नहीं है, लेकिन

.[3]: Example 2.37 [4]: 20 

बेहतर टूबेरियन वार्तालाप अंतिम मान प्रमेय

लगता है कि बंधा हुआ और भिन्न है, और वह पर भी बाध्य है . अगर जैसा तब .[7]


विस्तारित अंतिम मान प्रमेय

मान लीजिए कि प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल में है। तब निम्न में से एक होता है:

  1. जैसा , और .
  2. जैसा , और जैसा .
  3. जैसा , और जैसा .

विशेषकर, यदि का एक बहु ध्रुव है तब स्थिति 2 या 3 लागू होती है ( या ).[5]


सामान्यीकृत अंतिम मान प्रमेय

लगता है कि लाप्लास परिवर्तनीय है. होने देना . अगर मौजूद है और तब मौजूद है

कहाँ गामा फ़ंक्शन को दर्शाता है।[5]


अनुप्रयोग

प्राप्त करने के लिए अंतिम मान प्रमेय किसी प्रणाली के नियंत्रण सिद्धांत|दीर्घकालिक स्थिरता को स्थापित करने में इसका अनुप्रयोग होता है।

कटौती करना lims → 0 sF(s)

एबेलियन अंतिम मान प्रमेय

लगता है कि परिबद्ध एवं मापने योग्य है तथा . तब सभी के लिए मौजूद है और .[7]

प्राथमिक प्रमाण[7]

सुविधा के लिए मान लीजिए कि पर , और जाने . होने देना , और चुनें ताकि सभी के लिए . तब से , हरएक के लिए हमारे पास है

इस तरह

अब प्रत्येक के लिए हमारे पास है

.

दूसरी ओर, चूंकि तय हो गया है यह स्पष्ट है , इसलिए अगर काफी छोटा है.

व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय

मान लीजिए कि निम्नलिखित सभी शर्तें पूरी हो गई हैं:

  1. निरंतर भिन्न है और दोनों और एक लाप्लास परिवर्तन है
  2. बिल्कुल अभिन्न है - अर्थात, परिमित है
  3. अस्तित्व में है और सीमित है

तब

.[8]

टिप्पणी

प्रमाण प्रभुत्व अभिसरण प्रमेय का उपयोग करता है।[8]


किसी फ़ंक्शन के माध्य के लिए अंतिम मान प्रमेय

होने देना एक सतत और परिबद्ध फलन इस प्रकार हो कि निम्नलिखित सीमा मौजूद हो

तब .[9]


आवधिक कार्यों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय

लगता है कि में सतत एवं पूर्णतया एकीकृत है . आगे मान लीजिए आवर्ती कार्यों के एक सीमित योग के बराबर है , वह है

कहाँ में बिल्कुल एकीकृत है और अनंत पर लुप्त हो जाता है। तब

.[10]


अनंत तक विचलन करने वाले फ़ंक्शन के लिए अंतिम मान प्रमेय

होने देना और का लाप्लास रूपांतरण हो . लगता है कि निम्नलिखित सभी शर्तों को पूरा करता है:

  1. शून्य पर असीम रूप से भिन्न है
  2. सभी गैर-नकारात्मक पूर्णांकों के लिए लाप्लास परिवर्तन है # अनंत की ओर विचरण करता है

तब अनंत की ओर विचरण करता है .[11]


अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय)

होने देना मापने योग्य हो और ऐसा हो कि (संभवतः अनुचित) अभिन्न हो के लिए एकत्रित होता है . तब

यह हाबिल के प्रमेय का एक संस्करण है।

इसे देखने के लिए उस पर ध्यान दें और अंतिम मान प्रमेय को लागू करें भागों द्वारा एकीकरण के बाद: के लिए ,

अंतिम मान प्रमेय के अनुसार, बाईं ओर अभिसरण होता है के लिए .

अनुचित अभिन्न का अभिसरण स्थापित करना व्यवहार में, डिरिचलेट का परीक्षण#अनुचित समाकलन |अनुचित समाकलन के लिए डिरिचलेट का परीक्षण अक्सर सहायक होता है। एक उदाहरण डिरिचलेट इंटीग्रल है।

अनुप्रयोग

प्राप्त करने के लिए अंतिम मान प्रमेय क्षण (गणित) की गणना करने के लिए संभाव्यता और सांख्यिकी में अनुप्रयोग हैं। होने देना एक सतत यादृच्छिक चर का संचयी वितरण फ़ंक्शन बनें और जाने का लाप्लास-स्टिल्टजेस रूपांतरण हो . फिर -वें क्षण का के रूप में गणना की जा सकती है

रणनीति लिखने की है

कहाँ निरंतर है और

प्रत्येक के लिए , एक समारोह के लिए . प्रत्येक के लिए , रखना के व्युत्क्रम लाप्लास परिवर्तन के रूप में , प्राप्त

, और निष्कर्ष निकालने के लिए अंतिम मान प्रमेय लागू करें
. तब
और इसलिए प्राप्त होना।

उदाहरण

==== उदाहरण जहां एफवीटी ==== रखता है

उदाहरण के लिए, स्थानांतरण प्रकार्य द्वारा वर्णित सिस्टम के लिए

आवेग प्रतिक्रिया परिवर्तित हो जाती है

अर्थात्, एक छोटे आवेग से परेशान होने के बाद सिस्टम शून्य पर लौट आता है। हालाँकि, चरण प्रतिक्रिया का लाप्लास परिवर्तन है

और इस प्रकार चरण प्रतिक्रिया अभिसरित हो जाती है

तो एक शून्य-अवस्था प्रणाली 3 के अंतिम मान तक तेजी से वृद्धि का अनुसरण करेगी।

उदाहरण जहां FVT मान्य नहीं है

स्थानांतरण फ़ंक्शन द्वारा वर्णित सिस्टम के लिए

ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। हालाँकि, कोई भी समय-डोमेन सीमा मौजूद नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष मामले में) अंतिम मान प्रमेय उन औसत मूल्यों का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।

नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:

  1. हर के सभी गैर-शून्य मूल नकारात्मक वास्तविक भाग होने चाहिए।
  2. मूल स्थान पर एक से अधिक ध्रुव नहीं होने चाहिए।

इस उदाहरण में नियम 1 संतुष्ट नहीं था, इसमें हर की जड़ें हैं और .

Z परिवर्तन के लिए अंतिम मान प्रमेय

कटौती करना limk → ∞ f[k]

अंतिम मान प्रमेय

अगर मौजूद है और तब मौजूद है .[4]: 101 

रैखिक प्रणालियों का अंतिम मान

सतत-समय एलटीआई सिस्टम

सिस्टम का अंतिम मान

एक चरण इनपुट के जवाब में आयाम के साथ है:


नमूना-डेटा सिस्टम

उपरोक्त निरंतर-समय एलटीआई प्रणाली की नमूना-डेटा प्रणाली, एपेरियोडिक नमूनाकरण समय पर असतत-समय प्रणाली है

कहाँ और

,

एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान आयाम के साथ यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। [12]


यह भी देखें

टिप्पणियाँ

  1. Wang, Ruye (2010-02-17). "प्रारंभिक और अंतिम मूल्य प्रमेय". Retrieved 2011-10-21.
  2. Alan V. Oppenheim; Alan S. Willsky; S. Hamid Nawab (1997). Signals & Systems. New Jersey, USA: Prentice Hall. ISBN 0-13-814757-4.
  3. 3.0 3.1 3.2 Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. New York: Springer. ISBN 978-1-4757-7262-3.
  4. 4.0 4.1 4.2 4.3 Graf, Urs (2004). वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म. Basel: Birkhäuser Verlag. ISBN 3-7643-2427-9.
  5. 5.0 5.1 5.2 Chen, Jie; Lundberg, Kent H.; Davison, Daniel E.; Bernstein, Dennis S. (June 2007). "अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य". IEEE Control Systems Magazine. 27 (3): 97–99. doi:10.1109/MCS.2007.365008.
  6. "लाप्लास ट्रांसफॉर्म का अंतिम मूल्य प्रमेय". ProofWiki. Retrieved 12 April 2020.
  7. 7.0 7.1 7.2 Ullrich, David C. (2018-05-26). "टूबेरियन अंतिम मूल्य प्रमेय". Math Stack Exchange.
  8. 8.0 8.1 Sopasakis, Pantelis (2019-05-18). "डोमिनेटेड कन्वर्जेन्स प्रमेय का उपयोग करके अंतिम मूल्य प्रमेय के लिए एक प्रमाण". Math Stack Exchange.
  9. Murthy, Kavi Rama (2019-05-07). "लाप्लास ट्रांसफॉर्म के लिए अंतिम मूल्य प्रमेय का वैकल्पिक संस्करण". Math Stack Exchange.
  10. Gluskin, Emanuel (1 November 2003). "आइए हम अंतिम-मूल्य प्रमेय के इस सामान्यीकरण को सिखाएं". European Journal of Physics. 24 (6): 591–597. doi:10.1088/0143-0807/24/6/005.
  11. Hew, Patrick (2020-04-22). "Final Value Theorem for function that diverges to infinity?". Math Stack Exchange.
  12. Mohajeri, Kamran; Madadi, Ali; Tavassoli, Babak (2021). "विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण". International Journal of Systems Science. 52 (10): 1987–2002. doi:10.1080/00207721.2021.1874074.


बाहरी संबंध