ब्राउनियन शीट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
यह परिभाषा निकोलाई चेंटसोव के कारण है, पॉल लेवी के कारण न्यूनतम भिन्न संस्करण उपस्थित है।
यह परिभाषा निकोलाई चेंटसोव के कारण है, पॉल लेवी के कारण न्यूनतम भिन्न संस्करण उपस्थित है।


== (एन,डी)-ब्राउनियन शीट ==
== (n,d)-ब्राउनियन शीट ==
<math>d</math>-आयामी [[गाऊसी प्रक्रिया]] <math>B=(B_t,t\in \mathbb{R}_+^n)</math> कहा जाता है<math>(n,d)</math>-ब्राउनियन शीट अगर
A <math>d</math>-आयामी [[गाऊसी प्रक्रिया]] <math>B=(B_t,t\in \mathbb{R}_+^n)</math> को a कहा जाता है <math>(n,d)</math>-ब्राउनियन शीट यदि है तो,
* इसका माध्य शून्य है, अर्थात्। <math>\mathbb{E}[B_t]=0</math> सभी के लिए <math>t=(t_1,\dots t_n)\in \mathbb{R}_+^n</math>
* इसका माध्य शून्य है, अर्थात्। <math>\mathbb{E}[B_t]=0</math> सभी के लिए <math>t=(t_1,\dots t_n)\in \mathbb{R}_+^n</math> है।
* सहप्रसरण फलन के लिए
* सहप्रसरण फलन के लिए है:
::<math>\operatorname{cov}(B_s^{(i)},B_t^{(j)})=\begin{cases}
::<math>\operatorname{cov}(B_s^{(i)},B_t^{(j)})=\begin{cases}
       \prod\limits_{l=1}^n \operatorname{min} (s_l,t_l) & \text{if }i=j,\\
       \prod\limits_{l=1}^n \operatorname{min} (s_l,t_l) & \text{if }i=j,\\
Line 19: Line 19:
परिभाषा से इस प्रकार है
परिभाषा से इस प्रकार है
:<math>B(0,t_2,\dots,t_n)=B(t_1,0,\dots,t_n)=\cdots=B(t_1,t_2,\dots,0)=0</math>
:<math>B(0,t_2,\dots,t_n)=B(t_1,0,\dots,t_n)=\cdots=B(t_1,t_2,\dots,0)=0</math>
लगभग निश्चित रूप से.
लगभग निश्चित रूप से है।


=== उदाहरण ===
=== उदाहरण ===
*<math>(1,1)</math>-ब्राउनियन शीट ब्राउनियन गति है <math>\mathbb{R}^1</math>.
*<math>(1,1)</math>-ब्राउनियन शीट <math>\mathbb{R}^1</math> ब्राउनियन गति है।
*<math>(1,d)</math>-ब्राउनियन शीट ब्राउनियन गति है <math>\mathbb{R}^d</math>.
*<math>(1,d)</math>-ब्राउनियन शीट <math>\mathbb{R}^d</math> ब्राउनियन गति है।
*<math>(2,1)</math>-ब्राउनियन शीट बहुपैरामीट्रिक ब्राउनियन गति है <math>X_{t,s}</math> सूचकांक सेट के साथ <math>(t,s)\in [0,\infty)\times [0,\infty)</math>.
*<math>(2,1)</math>-ब्राउनियन शीट बहुपैरामीट्रिक ब्राउनियन गति है <math>X_{t,s}</math> सूचकांक समुच्चय के साथ <math>(t,s)\in [0,\infty)\times [0,\infty)</math> है।


=== मल्टीपैरामीट्रिक ब्राउनियन गति की लेवी की परिभाषा ===
=== मल्टीपैरामीट्रिक ब्राउनियन गति की लेवी की परिभाषा ===
लेवी की परिभाषा में उपरोक्त सहप्रसरण स्थिति को निम्नलिखित स्थिति से प्रतिस्थापित किया जाता है
लेवी की परिभाषा में उपरोक्त सहप्रसरण स्थिति को निम्नलिखित स्थिति से प्रतिस्थापित किया जाता है:
::<math>\operatorname{cov}(B_s,B_t)=\frac{(|t|+|s|-|t-s|)}{2}</math>
::<math>\operatorname{cov}(B_s,B_t)=\frac{(|t|+|s|-|t-s|)}{2}</math>
जहाँ <math>|\cdot|</math> यूक्लिडियन मीट्रिक चालू है <math>\R^n</math>.<ref>{{cite journal|title = Lévy's Brownian motion as a set-indexed process and a related central limit theorem |first1=Mina |last1=Ossiander |first2=Ronald |last2=Pyke|journal = Stochastic Processes and their Applications|volume = 21|number=1|pages = 133-145|year=1985|doi=10.1016/0304-4149(85)90382-5}}</ref>
जहाँ <math>|\cdot|</math> यूक्लिडियन मीट्रिक <math>\R^n</math> प्रारंभ है।<ref>{{cite journal|title = Lévy's Brownian motion as a set-indexed process and a related central limit theorem |first1=Mina |last1=Ossiander |first2=Ronald |last2=Pyke|journal = Stochastic Processes and their Applications|volume = 21|number=1|pages = 133-145|year=1985|doi=10.1016/0304-4149(85)90382-5}}</ref>


== अमूर्त वीनर माप का अस्तित्व ==
== अमूर्त वीनर माप का अस्तित्व ==
समष्टि पर विचार करें <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)</math> प्रपत्र के निरंतर कार्यों का <math>f:\mathbb R^n\to\mathbb R</math> संतुष्टि देने वाला
समष्टि <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)</math> पर विचार करें, प्रपत्र के निरंतर कार्यों का <math>f:\mathbb R^n\to\mathbb R</math> संतोषजनक विचार है:
<math display="block">\lim\limits_{|x|\to \infty}\left(\log(e+|x|)\right)^{-1}|f(x)|=0.</math>
<math display="block">\lim\limits_{|x|\to \infty}\left(\log(e+|x|)\right)^{-1}|f(x)|=0.</math>मानक से सुसज्जित होने पर यह समष्टि पृथक्करणीय [[बनच स्थान|बनच समष्टि]] बन जाता है:
आदर्श से सुसज्जित होने पर यह समष्टि पृथक्करणीय समष्टि [[बनच स्थान|बनच समष्टि]] बन जाता है
<math display="block">\|f\|_{\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)} := \sup_{x\in\mathbb R^n}\left(\log(e+|x|)\right)^{-1}|f(x)|.</math>ध्यान दें कि इस समष्टि में अनंत पर शून्य का समष्टि <math>C_0(\mathbb{R}^n;\mathbb{R})</math> सघन रूप से सम्मिलित है समान नॉर्म से सुसज्जित है, क्योंकि कोई समान नॉर्म को बांध सकता है फूरियर व्युत्क्रम प्रमेय के माध्यम से ऊपर से <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)</math> है।
<math display="block">\|f\|_{\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)} := \sup_{x\in\mathbb R^n}\left(\log(e+|x|)\right)^{-1}|f(x)|.</math>ध्यान दें कि इस समष्टि में अनंत पर शून्य का समष्टि सघन रूप से शामिल है <math>C_0(\mathbb{R}^n;\mathbb{R})</math> समान मानदंड से सुसज्जित, क्योंकि कोई समान मानदंड को के मानदंड से बांध सकता है <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)</math> ऊपर से फूरियर व्युत्क्रम प्रमेय#श्वार्ट्ज फ़ंक्शंस के माध्यम से।


होने देना <math>\mathcal{S}'(\mathbb{R}^{n};\mathbb{R})</math> टेम्पर्ड वितरण का समष्टि बनें। फिर कोई यह दिखा सकता है कि उपयुक्त पृथक्करण योग्य हिल्बर्ट समष्टि (और [[सोबोलेव स्थान|सोबोलेव समष्टि]]) उपस्थित है
 
मान लीजिये  <math>\mathcal{S}'(\mathbb{R}^{n};\mathbb{R})</math> टेम्पर्ड वितरण का समष्टि हो। फिर कोई यह दिखा सकता है कि उपयुक्त पृथक्करण करने योग्य हिल्बर्ट समष्टि (और [[सोबोलेव स्थान|सोबोलेव समष्टि]]) उपस्थित है:
:<math>H^\frac{n+1}{2}(\mathbb R^n,\mathbb R)\subseteq \mathcal{S}'(\mathbb{R}^{n};\mathbb{R})</math>
:<math>H^\frac{n+1}{2}(\mathbb R^n,\mathbb R)\subseteq \mathcal{S}'(\mathbb{R}^{n};\mathbb{R})</math>
जो लगातार  घने उपसमष्टि के रूप में अंतर्निहित है <math>C_0(\mathbb{R}^n;\mathbb{R})</math> और इस प्रकार में भी <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R})</math> और यह कि संभाव्यता माप उपस्थित है <math>\omega</math> पर <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R})</math> ऐसे कि त्रिगुण<math display="block">(H^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\omega)</math>अमूर्त वीनर समष्टि है।
जो निरंतर घने उपसमष्टि <math>C_0(\mathbb{R}^n;\mathbb{R})</math> के रूप में अंतर्निहित है और इस प्रकार में भी <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R})</math> और यह कि संभाव्यता माप <math>\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R})</math> उपस्थित है <math>\omega</math> पर ऐसा त्रिगुण है कि,<math display="block">(H^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\omega)</math>अमूर्त वीनर समष्टि है।
 
मार्ग <math>\theta \in \Theta^{\frac{n+1}{2}}(\mathbb{R}^n;\mathbb{R})</math> है <math>\omega</math>-लगभग निश्चित रूप से है,
 
* घातांक का धारक सतत <math>\alpha \in (0,1/2)</math> है।
मार्ग <math>\theta \in \Theta^{\frac{n+1}{2}}(\mathbb{R}^n;\mathbb{R})</math> है <math>\omega</math>-लगभग निश्चित रूप से
* कहीं भी होल्डर <math>\alpha> 1/2</math> किसी के लिए निरंतर नहीं है।<ref>{{citation|first=Daniel|last=Stroock|authorlink=Daniel Stroock|title=Probability theory: an analytic view|publisher=Cambridge|year=2011|edition=2nd|page=349-352}}</ref>
* घातांक का धारक निरंतर <math>\alpha \in (0,1/2)</math>
यह केस में ब्राउनियन शीट का हैंडल <math>d=1</math> है उच्च आयामी के लिए <math>d</math>, निर्माण समान है।
* कहीं भी होल्डर किसी के लिए निरंतर नहीं है <math>\alpha> 1/2</math>.<ref>{{citation|first=Daniel|last=Stroock|authorlink=Daniel Stroock|title=Probability theory: an analytic view|publisher=Cambridge|year=2011|edition=2nd|page=349-352}}</ref>
यह केस में ब्राउनियन शीट का हैंडल है <math>d=1</math>. उच्च आयामी के लिए <math>d</math>, निर्माण समान है.


== यह भी देखें ==
== यह भी देखें ==

Revision as of 22:53, 6 December 2023

गणित में, ब्राउनियन शीट या मल्टीपैरामीट्रिक ब्राउनियन गति, गॉसियन यादृच्छिक क्षेत्र के लिए बहुपैरामीट्रिक सामान्यीकरण है। इसका तात्पर्य है कि हम "समय" पैरामीटर को सामान्यीकृत करते हैं ब्राउनियन गति का , से का से सम्बन्ध है।

त्रुटिहीन आयाम नए समय पैरामीटर के समष्टि का लेखकों से भिन्न होता है। हम जॉन बी. वॉल्श का अनुसरण करते हैं और परिभाषित करते हैं कि -ब्राउनियन शीट, जबकि कुछ लेखक ब्राउनियन शीट को केवल विशेष रूप से परिभाषित करते हैं, जिसे हम कहते हैं ब्राउनियन शीट है।[1]

यह परिभाषा निकोलाई चेंटसोव के कारण है, पॉल लेवी के कारण न्यूनतम भिन्न संस्करण उपस्थित है।

(n,d)-ब्राउनियन शीट

A -आयामी गाऊसी प्रक्रिया को a कहा जाता है -ब्राउनियन शीट यदि है तो,

  • इसका माध्य शून्य है, अर्थात्। सभी के लिए है।
  • सहप्रसरण फलन के लिए है:
के लिए .[2]

गुण

परिभाषा से इस प्रकार है

लगभग निश्चित रूप से है।

उदाहरण

  • -ब्राउनियन शीट ब्राउनियन गति है।
  • -ब्राउनियन शीट ब्राउनियन गति है।
  • -ब्राउनियन शीट बहुपैरामीट्रिक ब्राउनियन गति है सूचकांक समुच्चय के साथ है।

मल्टीपैरामीट्रिक ब्राउनियन गति की लेवी की परिभाषा

लेवी की परिभाषा में उपरोक्त सहप्रसरण स्थिति को निम्नलिखित स्थिति से प्रतिस्थापित किया जाता है:

जहाँ यूक्लिडियन मीट्रिक प्रारंभ है।[3]

अमूर्त वीनर माप का अस्तित्व

समष्टि पर विचार करें, प्रपत्र के निरंतर कार्यों का संतोषजनक विचार है:

मानक से सुसज्जित होने पर यह समष्टि पृथक्करणीय बनच समष्टि बन जाता है:
ध्यान दें कि इस समष्टि में अनंत पर शून्य का समष्टि सघन रूप से सम्मिलित है समान नॉर्म से सुसज्जित है, क्योंकि कोई समान नॉर्म को बांध सकता है फूरियर व्युत्क्रम प्रमेय के माध्यम से ऊपर से है।


मान लीजिये टेम्पर्ड वितरण का समष्टि हो। फिर कोई यह दिखा सकता है कि उपयुक्त पृथक्करण करने योग्य हिल्बर्ट समष्टि (और सोबोलेव समष्टि) उपस्थित है:

जो निरंतर घने उपसमष्टि के रूप में अंतर्निहित है और इस प्रकार में भी और यह कि संभाव्यता माप उपस्थित है पर ऐसा त्रिगुण है कि,

अमूर्त वीनर समष्टि है। मार्ग है -लगभग निश्चित रूप से है,

  • घातांक का धारक सतत है।
  • कहीं भी होल्डर किसी के लिए निरंतर नहीं है।[4]

यह केस में ब्राउनियन शीट का हैंडल है उच्च आयामी के लिए , निर्माण समान है।

यह भी देखें

साहित्य

  • Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge.
  • Walsh, John B. (1986). स्टोकेस्टिक आंशिक अंतर समीकरणों का परिचय. Springer Berlin Heidelberg. ISBN 978-3-540-39781-6.
  • Khoshnevisan, Davar. मल्टीपैरामीटर प्रक्रियाएं: यादृच्छिक फ़ील्ड का एक परिचय. Springer. ISBN 978-0387954592.

संदर्भ

  1. Walsh, John B. (1986). स्टोकेस्टिक आंशिक अंतर समीकरणों का परिचय. Springer Berlin Heidelberg. p. 269. ISBN 978-3-540-39781-6.
  2. Davar Khoshnevisan und Yimin Xiao (2004), Images of the Brownian Sheet, arXiv:math/0409491
  3. Ossiander, Mina; Pyke, Ronald (1985). "Lévy's Brownian motion as a set-indexed process and a related central limit theorem". Stochastic Processes and their Applications. 21 (1): 133–145. doi:10.1016/0304-4149(85)90382-5.
  4. Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge, p. 349-352