उलझाव आसवन: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Short description|Process of "purifying" entangled quantum states}} | {{Short description|Process of "purifying" entangled quantum states}} | ||
उलझाव आसवन (जिसे | '''उलझाव आसवन''' (जिसे उलझाव शुद्धि भी कहा जाता है) केवल स्थानीय संचालन और मौलिक संचार का उपयोग करके, एक इच्छानुसार [[उलझी हुई अवस्था|उलझी हुई स्थिति]] <math>\rho</math> की एन प्रतियों को लगभग शुद्ध बेल जोड़े की कुछ संख्या में परिवर्तित करना है। | ||
क्वांटम उलझाव आसवन इस तरह | क्वांटम उलझाव आसवन इस तरह ध्वनि वाले [[क्वांटम चैनल|क्वांटम चैनलो]] के अपक्षयी प्रभाव को<ref name="BDSW96"/> पहले से साझा की गई कम उलझी हुई जोड़ियों को कम संख्या में [[अधिकतम उलझी हुई अवस्था]] वाली जोड़ियों में परिवर्तित करके दूर कर सकता है। | ||
==इतिहास== | ==इतिहास== | ||
उलझाव तनुकरण और आसवन की सीमाएं | उलझाव तनुकरण और आसवन की सीमाएं सी. एच. बेनेट, एच. बर्नस्टीन, एस. पोपेस्कु और बी. शूमाकर के कारण हैं,<ref name="BBSP">{{cite journal | last1 = Bennett | first1 = Charles H. | last2 = Bernstein | first2 = Herbert J. | last3 = Popescu | first3 = Sandu | last4 = Schumacher | first4 = Benjamin | year = 1996 | title = स्थानीय संचालन द्वारा आंशिक उलझाव पर ध्यान केंद्रित करना| journal = Phys. Rev. A | volume = 53 | issue = 4| pages = 2046–2052 | doi=10.1103/physreva.53.2046| pmid = 9913106 | arxiv = quant-ph/9511030 | bibcode = 1996PhRvA..53.2046B | s2cid = 8032709 }}</ref> जिन्होंने 1996 में [[शुद्ध अवस्था]]ओं के लिए पहला आसवन प्रोटोकॉल प्रस्तुत किया; [[मिश्रित अवस्था (भौतिकी)]] के लिए उलझाव आसवन प्रोटोकॉल उसी वर्ष बेनेट, [[गाइल्स ब्रासार्ड]], पोपेस्कु, शूमाकर, जॉन ए. स्मोलिन और [[विलियम वूटर्स]] द्वारा पेश किए गए थे।<ref name = "BBPSSW">{{cite journal | last1 = Bennett | first1 = Charles H. | last2 = Brassard | first2 = Gilles | last3 = Popescu | first3 = Sandu | last4 = Schumacher | first4 = Benjamin | last5 = Smolin | first5 = John A. | last6 = Wooters | first6 = William K. | year = 1996 | title = शोर चैनलों के माध्यम से शोर उलझाव और वफादार टेलीपोर्टेशन की शुद्धि| journal = Phys. Rev. Lett. | volume = 76 | issue = 5| pages = 722–725 | doi=10.1103/physrevlett.76.722 | bibcode=1996PhRvL..76..722B | pmid=10061534| arxiv = quant-ph/9511027 | s2cid = 8236531 }}</ref> बेनेट, डेविड पी. डिविन्सेन्ज़ो, स्मोलिन और वूटर्स<ref name="BDSW96">{{cite journal | last1 = Bennett | first1 = Charles H. | last2 = DiVincenzo | first2 = David P. | last3 = Smolin | first3 = John A. | last4 = Wooters | first4 = William K. | year = 1996 | title = मिश्रित अवस्था उलझाव और क्वांटम त्रुटि सुधार| journal = Phys. Rev. A | volume = 54 | issue = 5| pages = 3824–3851 | doi=10.1103/physreva.54.3824 | pmid=9913930| arxiv = quant-ph/9604024 | bibcode = 1996PhRvA..54.3824B | s2cid = 3059636 }}</ref> ने अगस्त 1996 में फिजिकल रिव्यू जर्नल में प्रकाशित अभूतपूर्व पेपर में क्वांटम त्रुटि-सुधार के संबंध को स्थापित किया गया, जिसने बाद के कई शोधों को प्रेरित किया है। | ||
==उलझाव का परिमाणीकरण== | ==उलझाव का परिमाणीकरण== | ||
एक दो क्विबिट प्रणाली को संभावित कम्प्यूटेशनल आधार [[qubit]] | एक दो क्विबिट प्रणाली को संभावित कम्प्यूटेशनल आधार [[qubit|क्वबिट]] अवस्थाओ के सुपरपोजिशन के रूप में लिखा जा सकता है: <math>|00\rangle, |01\rangle, |10\rangle, |11\rangle</math>, प्रत्येक संबद्ध जटिल गुणांक <math>\alpha\,\!</math> के साथ : | ||
<math display="block">|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle</math> | <math display="block">|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle</math> | ||
जैसे कि एकल क्वबिट के मामले में, विशेष कम्प्यूटेशनल आधार स्थिति | जैसे कि एकल क्वबिट के मामले में, विशेष कम्प्यूटेशनल आधार स्थिति <math>|x\rangle</math> को मापने की संभावना इसके आयाम, या संबंधित गुणांक <math>|\alpha_{x}|^{2}\,\!</math>, के मापांक का वर्ग है, सामान्यीकरण की स्थिति के अधीन <math display="inline">\sum_{x \in {0,1}} |\alpha_{x}|^{2} = 1</math>. सामान्यीकरण की स्थिति यह गारंटी देती है कि संभावनाओं का योग 1 तक पहुंचता है, जिसका अर्थ है कि माप करने पर, किसी एक अवस्था का अवलोकन किया जाएगा। | ||
बेल अवस्था दो क्विबिट अवस्था | बेल अवस्था दो क्विबिट अवस्था <math display="inline">\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)</math> का विशेष रूप से महत्वपूर्ण उदाहरण है: | ||
बेल | |||
बेल अवस्थाओ के पास यह गुण है कि दोनों क्वैबिट पर माप परिणाम सहसंबद्ध होते हैं। जैसा कि उपरोक्त अभिव्यक्ति से देखा जा सकता है, दो संभावित माप परिणाम शून्य और हैं, दोनों की संभावना 50% है। परिणामस्वरूप, दूसरे क्वबिट का माप सदैव पहले क्वबिट के माप के समान परिणाम देता है। | |||
बेल अवस्था का उपयोग उलझाव को मापने के लिए किया जा सकता है। मान लीजिए m बेल अवस्था की उच्च-निष्ठा प्रतियों की संख्या है जिसे स्थानीय संचालन और मौलिक संचार (एलओसीसी) का उपयोग करके उत्पादित किया जा सकता है। बेल की बड़ी संख्या को देखते हुए शुद्ध अवस्था <math>|\psi\rangle</math> में उपस्तिथ उलझाव की मात्रा बताई गई है फिर के अनुपात <math>n/m</math> के रूप में परिभाषित किया जा सकता है , किसी विशेष अवस्था <math>|\phi\rangle</math> का आसुत उलझाव कहा जाता है , जो किसी दिए गए सिस्टम में उपस्तिथ उलझाव की मात्रा का मात्रात्मक माप देता है। उलझाव आसवन की प्रक्रिया का उद्देश्य इस सीमित अनुपात को संतृप्त करना है। शुद्ध अवस्था की प्रतियों की संख्या जिसे अधिकतम उलझी हुई अवस्था में परिवर्तित किया जा सकता है, वॉन न्यूमैन एन्ट्रापी <math>S(p)</math> के बराबर है अवस्था का, जो क्वांटम प्रणालियों के लिए मौलिक एन्ट्रापी की अवधारणा का विस्तार है। गणितीय रूप से, किसी दिए गए घनत्व आव्यूह <math>p</math> के लिए , वॉन न्यूमैन एन्ट्रापी <math>S(p)</math>, <math>S(p) = -\mathrm{Tr}(p \ln p)</math> है. उलझाव को उलझाव की एन्ट्रापी के रूप में परिमाणित किया जा सकता है, जो कि <math>p_{A}</math> या <math>p_{B}</math> में से किसी एक की वॉन न्यूमैन एन्ट्रापी हैː | |||
<math display="block">E = -\mathrm{Tr}(p_{A} \ln p_{A}) = -\mathrm{Tr}(p_{B} \ln p_{B}),</math> | <math display="block">E = -\mathrm{Tr}(p_{A} \ln p_{A}) = -\mathrm{Tr}(p_{B} \ln p_{B}),</math> | ||
जो किसी उत्पाद स्थिति के लिए 0 से लेकर | |||
जो किसी उत्पाद स्थिति के लिए 0 से लेकर <math> \ln 2 </math> तक होता है अधिकतम उलझी हुई स्थिति के लिए (यदि <math> \ln </math> द्वारा <math> \log_2 </math> प्रतिस्थापित किया जाता है तब अधिकतम उलझे हुए का मान 1) होता है। | |||
==प्रेरणा== | ==प्रेरणा== | ||
मान लीजिए कि दो पक्ष, [[ऐलिस और बॉब]], | मान लीजिए कि दो पक्ष, [[ऐलिस और बॉब]], ध्वनि वाले क्वांटम चैनल पर मौलिक जानकारी का संचार करना चाहते हैं। या तो मौलिक या क्वांटम जानकारी को क्वांटम अवस्था में जानकारी को एन्कोड करके क्वांटम चैनल पर प्रसारित किया जा सकता है। इस ज्ञान के साथ, ऐलिस उस मौलिक जानकारी को एन्कोड करती है जिसे वह बॉब को (क्वांटम) उत्पाद स्थिति में, कम घनत्व वाले आव्यूह <math>p_{1} \otimes p_{2} \otimes \cdots</math> के [[टेंसर उत्पाद]] के रूप में भेजना चाहती है। जहां प्रत्येक <math>p</math> विकर्ण है और इसका उपयोग केवल किसी विशेष चैनल <math>\epsilon</math> के लिए बार के इनपुट के रूप में किया जा सकता है . | ||
ध्वनि वाले क्वांटम चैनल की निष्ठा इस तथ्य का माप है कि क्वांटम चैनल का आउटपुट इनपुट से कितना मिलता-जुलता है, और इसलिए यह माप है कि क्वांटम चैनल कितनी अच्छी तरह जानकारी को संरक्षित करता है। यदि शुद्ध अवस्था <math>\psi</math> है क्वांटम चैनल में भेजा जाता है जो घनत्व आव्यूह <math>p</math> द्वारा दर्शाई गई स्थिति के रूप में उभरता है , संचरण की निष्ठा <math>F = \langle\psi|p|\psi\rangle</math> को इस प्रकार परिभाषित किया गया है . | |||
ऐलिस और बॉब के सामने अब जो समस्या है वह यह है कि बड़ी दूरी पर क्वांटम संचार अत्यधिक उलझे हुए क्वांटम | ऐलिस और बॉब के सामने अब जो समस्या है वह यह है कि बड़ी दूरी पर क्वांटम संचार अत्यधिक उलझे हुए क्वांटम अवस्थाओ के सफल वितरण पर निर्भर करता है, और क्वांटम संचार चैनलों में अपरिहार्य ध्वनि के कारण, उलझे हुए अवस्थाओ की गुणवत्ता सामान्यतः चैनल की लंबाई के साथ तेजी से घट जाती है। चैनल की निष्ठा. उलझाव आसवन इच्छानुसार रूप से उलझी हुई स्थिति <math>\rho</math> की एन प्रतियों को परिवर्तित करके वितरित क्वांटम अवस्थाओ के मध्य उच्च स्तर के उलझाव को बनाए रखने की इस समस्या का समाधान करता है लगभग में <math>S(\rho)N</math> बेल जोड़े, केवल स्थानीय संचालन और मौलिक संचार का उपयोग करते हुए। इसका उद्देश्य विश्वसनीय [[क्वांटम टेलीपोर्टेशन]] या [[क्वांटम क्रिप्टोग्राफी]] की अनुमति देने के लिए दूर के पक्षों (ऐलिस और बॉब) के मध्य दृढ़ता से सहसंबद्ध क्वैबिट साझा करना है। | ||
==उलझाव एकाग्रता== | ==उलझाव एकाग्रता== | ||
===शुद्ध अवस्थाएँ=== | ===शुद्ध अवस्थाएँ=== | ||
[[Image:Fidelitypure.png|thumb|शुद्ध अवस्थाओं के लिए आसवन प्रोटोकॉल के पुनरावृत्ति के बाद नई निष्ठा।]]ऐलिस और बॉब के | [[Image:Fidelitypure.png|thumb|शुद्ध अवस्थाओं के लिए आसवन प्रोटोकॉल के पुनरावृत्ति के बाद नई निष्ठा।]]ऐलिस और बॉब के मध्य साझा [[एकल अवस्था]] में एन कणों को देखते हुए, स्थानीय क्रियाएं और मौलिक संचार इच्छानुसार रूप से अच्छी प्रतियां तैयार करने के लिए पर्याप्त होंगे <math>\phi</math> उपज के साथ | ||
{{block indent | em = 1.5 | text = <math>\frac{m}{n} \to \frac{1}{E(\phi)}</math> as <math>n \to \infty</math>.}} | {{block indent | em = 1.5 | text = <math>\frac{m}{n} \to \frac{1}{E(\phi)}</math> as <math>n \to \infty</math>.}} | ||
उलझी हुई | मान लीजिए कि एक उलझी हुई अवस्था <math>|\psi\rangle</math> में [[श्मिट अपघटन]] है: | ||
<math display="block">|\psi\rangle = \sum_{x}\sqrt{p(x)}|x_{A}\rangle|x_{B}\rangle</math> | <math display="block">|\psi\rangle = \sum_{x}\sqrt{p(x)}|x_{A}\rangle|x_{B}\rangle</math> | ||
जहां गुणांक पी(एक्स) संभाव्यता वितरण बनाते हैं, और इस प्रकार | |||
जहां गुणांक पी(एक्स) संभाव्यता वितरण बनाते हैं, और इस प्रकार धनात्मक मूल्य होते हैं और [[एकता (गणित)]] के योग होते हैं। इस अवस्था का टेंसर उत्पाद तब है, | |||
<math display="block">|\psi\rangle^{\otimes m} = \sum_{x_{1},x_{2},\dots,x_{m}}\sqrt{p(x_{1}) p(x_{2}) \dots p(x_{m})}|x_{1A} x_{2A} \dots x_{mA}\rangle | x_{1B} x_{2B} \dots x_{mB}\rangle</math> | <math display="block">|\psi\rangle^{\otimes m} = \sum_{x_{1},x_{2},\dots,x_{m}}\sqrt{p(x_{1}) p(x_{2}) \dots p(x_{m})}|x_{1A} x_{2A} \dots x_{mA}\rangle | x_{1B} x_{2B} \dots x_{mB}\rangle</math> | ||
अब, सभी | अब, उन सभी पदों <math>x_{1}, \dots, x_{m}</math> को हटा देना जो किसी भी अनुक्रम का भाग नहीं हैं जो उच्च संभावना के साथ घटित होने की संभावना है, [[विशिष्ट सेट|विशिष्ट]] समुच्चय के रूप में जाना जाता है: <math> A_{\epsilon}^{(n)} </math> नई अवस्था हैː | ||
<math display="block">|\phi_{m}\rangle = \sum_{x \epsilon A_{\epsilon}^{(n)}} \sqrt{p(x_{1}) p(x_{2}) \dots p(x_{m})} |x_{1A} x_{2A} \dots x_{mA} \rangle | x_{1B} x_{2B} \dots x_{mB} \rangle</math> | <math display="block">|\phi_{m}\rangle = \sum_{x \epsilon A_{\epsilon}^{(n)}} \sqrt{p(x_{1}) p(x_{2}) \dots p(x_{m})} |x_{1A} x_{2A} \dots x_{mA} \rangle | x_{1B} x_{2B} \dots x_{mB} \rangle</math> | ||
और पुनर्सामान्यीकरण, | और पुनर्सामान्यीकरण, | ||
Line 46: | Line 53: | ||
{{block indent | em = 1.5 | text = <math>F(|\psi\rangle ^{\otimes m}, |\phi_{m}^{'}\rangle) \to 1</math> as <math>m \to \infty</math>.}} | {{block indent | em = 1.5 | text = <math>F(|\psi\rangle ^{\otimes m}, |\phi_{m}^{'}\rangle) \to 1</math> as <math>m \to \infty</math>.}} | ||
मान लीजिए कि ऐलिस और बॉब के पास एम प्रतियां हैं <math>|\psi\rangle</math>. ऐलिस विशिष्ट | '''मान लीजिए कि ऐलिस और बॉब के पास एम प्रतियां''' हैं <math>|\psi\rangle</math>. ऐलिस विशिष्ट समुच्चय पर माप कर सकती है <math>A_{\epsilon}^{(n)}</math> का भाग <math>p_{\psi}\,\!</math>, अवस्था को परिवर्तित करना <math>|\psi\rangle^{\otimes m} \rightarrow |\phi_{m}\rangle</math> उच्च निष्ठा के साथ. विशिष्ट अनुक्रमों का प्रमेय हमें यह दिखाता है <math>1 - \delta</math> संभावना है कि दिया गया अनुक्रम विशिष्ट समुच्चय का भाग है, और पर्याप्त रूप से बड़े एम के लिए इच्छानुसार रूप से 1 के करीब बनाया जा सकता है, और इसलिए पुनर्सामान्यीकृत बेल अवस्था के श्मिट गुणांक <math>|\phi_{m}'\rangle</math> अधिक से अधिक कारक होगा <math display="inline">{1}/{\sqrt{1-\delta}}</math> बड़ा. ऐलिस और बॉब अब अवस्था पर एलओसीसी निष्पादित करके n बेल अवस्थाओ का छोटा समुच्चय प्राप्त कर सकते हैं <math>|\phi_{m}'\rangle</math> जिसके साथ वे सफलतापूर्वक संचार करने के लिए क्वांटम चैनल के ध्वनि पर काबू पा सकते हैं। | ||
===मिश्रित अवस्थाएँ=== | ===मिश्रित अवस्थाएँ=== | ||
[[Image:Fidelitymixed.png|thumb|आसवन प्रोटोकॉल के पुनरावृत्ति के बाद नई निष्ठा मिश्रित अवस्थाओं के लिए यहां प्रस्तुत की गई है]]मिश्रित अवस्थाओं के लिए उलझाव आसवन करने के लिए कई तकनीकों का विकास किया गया है, जिससे आसुत उलझाव के मूल्य पर कम सीमा मिलती है <math>D(p)</math> | [[Image:Fidelitymixed.png|thumb|आसवन प्रोटोकॉल के पुनरावृत्ति के बाद नई निष्ठा मिश्रित अवस्थाओं के लिए यहां प्रस्तुत की गई है]]मिश्रित अवस्थाओं के लिए उलझाव आसवन करने के लिए कई तकनीकों का विकास किया गया है, जिससे आसुत उलझाव के मूल्य पर कम सीमा मिलती है <math>D(p)</math> अवस्थाओ के विशिष्ट वर्गों के लिए <math>p</math>. | ||
एक सामान्य विधि में ऐलिस सीधे स्रोत | एक सामान्य विधि में ऐलिस सीधे स्रोत अवस्थाओ को प्रसारित करने के लिए ध्वनि चैनल का उपयोग नहीं करती है, बल्कि बड़ी संख्या में बेल अवस्थाओ को तैयार करती है, प्रत्येक बेल जोड़ी का आधा भाग बॉब को भेजती है। ध्वनि चैनल के माध्यम से संचरण का परिणाम मिश्रित उलझन वाली स्थिति बनाना है <math>p</math>, ताकि ऐलिस और बॉब साझा करना समाप्त कर दें <math>m</math> की प्रतियाँ <math>p</math>. ऐलिस और बॉब फिर उलझाव आसवन का उत्पादन करते हैं <math>m \cdot D(p)</math> मिश्रित उलझी हुई अवस्थाओं से लगभग पूरी तरह उलझी हुई अवस्थाएँ <math>p</math> साझा उलझी जोड़ियों पर स्थानीय एकात्मक संचालन और माप करके, मौलिक संदेशों के माध्यम से अपने कार्यों का समन्वय करके, और शेष उलझी जोड़ियों की शुद्धता बढ़ाने के लिए कुछ उलझी जोड़ियों का त्याग करना। ऐलिस अब तैयार कर सकती है <math>m \cdot D(p)</math> क्वबिट स्टेट और इसका उपयोग करके बॉब को टेलीपोर्ट करें <math>m \cdot D(p)</math> बेल जोड़े जिन्हें वे उच्च निष्ठा के साथ साझा करते हैं। ऐलिस और बॉब ने तब प्रभावी ढंग से जो हासिल किया है, वह स्थानीय क्रियाओं और मौलिक संचार की सहायता से ध्वनि रहित क्वांटम चैनल का अनुकरण करना है। | ||
होने देना <math>M</math> दो स्पिन-1/2 कणों की सामान्य मिश्रित अवस्था हो, जो प्रारंभिक शुद्ध एकल अवस्था के संचरण के परिणामस्वरूप हो सकती है | होने देना <math>M</math> दो स्पिन-1/2 कणों की सामान्य मिश्रित अवस्था हो, जो प्रारंभिक शुद्ध एकल अवस्था के संचरण के परिणामस्वरूप हो सकती है | ||
<math display="block">\psi^{-} = (\uparrow\downarrow-\downarrow\uparrow)/\sqrt{2}</math> | <math display="block">\psi^{-} = (\uparrow\downarrow-\downarrow\uparrow)/\sqrt{2}</math> | ||
ऐलिस और बॉब के | ऐलिस और बॉब के मध्य ध्वनि चैनल के माध्यम से, जिसका उपयोग कुछ शुद्ध उलझाव को दूर करने के लिए किया जाएगा। की निष्ठा {{math|''M''}} | ||
<math display="block">F = \langle\psi^{-}|M|\psi^{-}\rangle</math> | <math display="block">F = \langle\psi^{-}|M|\psi^{-}\rangle</math> | ||
एक आदर्श सिंगलेट के सापेक्ष इसकी शुद्धता की सुविधाजनक अभिव्यक्ति है। मान लीजिए कि M पहले से ही दो कणों की शुद्ध अवस्था है <math>M = |\phi\rangle\langle\phi|</math> कुछ के लिए <math>\phi</math>. के लिए उलझाव <math>\phi</math>, जैसा कि पहले से ही स्थापित है, वॉन न्यूमैन एन्ट्रॉपी है <math>E(\phi) = S(p_{A}) = S(p_{B})</math> कहाँ | एक आदर्श सिंगलेट के सापेक्ष इसकी शुद्धता की सुविधाजनक अभिव्यक्ति है। मान लीजिए कि M पहले से ही दो कणों की शुद्ध अवस्था है <math>M = |\phi\rangle\langle\phi|</math> कुछ के लिए <math>\phi</math>. के लिए उलझाव <math>\phi</math>, जैसा कि पहले से ही स्थापित है, वॉन न्यूमैन एन्ट्रॉपी है <math>E(\phi) = S(p_{A}) = S(p_{B})</math> कहाँ | ||
<math display="block">p_{A} = \operatorname{tr}^{}_{B}(|\phi\rangle\langle\phi|),</math> | <math display="block">p_{A} = \operatorname{tr}^{}_{B}(|\phi\rangle\langle\phi|),</math> | ||
और इसी तरह के लिए <math>p_{B}</math>, किसी भी कण के लिए कम घनत्व | और इसी तरह के लिए <math>p_{B}</math>, किसी भी कण के लिए कम घनत्व आव्यूह का प्रतिनिधित्व करते हैं। फिर निम्नलिखित प्रोटोकॉल का उपयोग किया जाता है:<ref name="BBPSSW" /> | ||
#प्रत्येक साझा जोड़ी पर यादृच्छिक [[द्विपक्षीय रोटेशन]] करना, प्रत्येक जोड़ी के लिए स्वतंत्र रूप से यादृच्छिक एसयू (2) रोटेशन का चयन करना और इसे जोड़ी के दोनों सदस्यों पर स्थानीय रूप से लागू करना प्रारंभिक सामान्य दो-स्पिन मिश्रित स्थिति एम को घूर्णी रूप से सममित मिश्रण में बदल देता है। एकल अवस्था <math>\psi^{-}</math> और तीन त्रिक अवस्थाएँ <math>\psi^{+}</math> और <math>\phi^{\pm}</math>: <math display="block">W_{F} = F \cdot |\psi^{-}\rangle\langle\psi^{-}| + \frac{1-F}{3}|\phi^{+}\rangle\langle\phi^{+}| + \frac{1-F}{3}|\psi^{+}\rangle\langle\psi^{+}| + \frac{1-F}{3}|\phi^{-}\rangle\langle\phi^{-}|</math> [[वर्नर राज्य]] <math>W_{F}</math> इसकी प्रारंभिक मिश्रित अवस्था M के समान शुद्धता F है, जहाँ से इसे द्विपक्षीय घुमावों के तहत एकल के अपरिवर्तन के कारण प्राप्त किया गया था। | #प्रत्येक साझा जोड़ी पर यादृच्छिक [[द्विपक्षीय रोटेशन]] करना, प्रत्येक जोड़ी के लिए स्वतंत्र रूप से यादृच्छिक एसयू (2) रोटेशन का चयन करना और इसे जोड़ी के दोनों सदस्यों पर स्थानीय रूप से लागू करना प्रारंभिक सामान्य दो-स्पिन मिश्रित स्थिति एम को घूर्णी रूप से सममित मिश्रण में बदल देता है। एकल अवस्था <math>\psi^{-}</math> और तीन त्रिक अवस्थाएँ <math>\psi^{+}</math> और <math>\phi^{\pm}</math>: <math display="block">W_{F} = F \cdot |\psi^{-}\rangle\langle\psi^{-}| + \frac{1-F}{3}|\phi^{+}\rangle\langle\phi^{+}| + \frac{1-F}{3}|\psi^{+}\rangle\langle\psi^{+}| + \frac{1-F}{3}|\phi^{-}\rangle\langle\phi^{-}|</math> [[वर्नर राज्य|वर्नर अवस्था]] <math>W_{F}</math> इसकी प्रारंभिक मिश्रित अवस्था M के समान शुद्धता F है, जहाँ से इसे द्विपक्षीय घुमावों के तहत एकल के अपरिवर्तन के कारण प्राप्त किया गया था। | ||
#दोनों जोड़ियों में से प्रत्येक पर एकतरफ़ा घुमाव द्वारा कार्रवाई की जाती है, जिसे हम कह सकते हैं <math>\sigma_{y}</math>, जो उन्हें मुख्य रूप से परिवर्तित करने का प्रभाव रखता है <math>\psi^{-}</math> वर्नर मुख्य रूप से कहते हैं <math>\phi^{+}</math> बड़े घटक वाले | #दोनों जोड़ियों में से प्रत्येक पर एकतरफ़ा घुमाव द्वारा कार्रवाई की जाती है, जिसे हम कह सकते हैं <math>\sigma_{y}</math>, जो उन्हें मुख्य रूप से परिवर्तित करने का प्रभाव रखता है <math>\psi^{-}</math> वर्नर मुख्य रूप से कहते हैं <math>\phi^{+}</math> बड़े घटक वाले अवस्था <math>F > \frac{1}{2}</math> का <math>\phi^{+}</math> जबकि अन्य तीन बेल अवस्थाओं के घटक समान हैं। | ||
#दो नापाक <math>\phi^{+}</math> फिर | #दो नापाक <math>\phi^{+}</math> फिर अवस्थाओ पर द्विपक्षीय [[XOR]] द्वारा कार्य किया जाता है, और उसके बाद लक्ष्य जोड़ी को z अक्ष के साथ स्थानीय रूप से मापा जाता है। यदि दोनों इनपुट सत्य होने की स्थिति में लक्ष्य जोड़ी के स्पिन समानांतर आते हैं तो बिना मापी गई स्रोत जोड़ी रखी जाती है <math>\phi^{+}</math> अवस्था; और अन्यथा इसे त्याग दिया जाता है। | ||
#यदि स्रोत जोड़ी को हटाया नहीं गया है तो इसे वापस मुख्य रूप से परिवर्तित कर दिया जाता है <math>\psi^{-}</math> एकतरफ़ा | #यदि स्रोत जोड़ी को हटाया नहीं गया है तो इसे वापस मुख्य रूप से परिवर्तित कर दिया जाता है <math>\psi^{-}</math> एकतरफ़ा अवस्था <math>\sigma_{y}</math> घूर्णन, और यादृच्छिक द्विपक्षीय घूर्णन द्वारा घूर्णी रूप से सममित बनाया गया। | ||
ऊपर उल्लिखित प्रोटोकॉल को दोहराने से वर्नर | ऊपर उल्लिखित प्रोटोकॉल को दोहराने से वर्नर अवस्थाओ को डिस्टिल किया जाएगा जिनकी शुद्धता को इच्छानुसार रूप से उच्च चुना जा सकता है <math>F_\text{out} < 1</math> शुद्धता की इनपुट मिश्रित अवस्थाओं के संग्रह एम से <math display="inline">F_\text{in} > \frac{1}{2}</math> लेकिन सीमा में उपज शून्य की ओर बढ़ रही है <math>F_\text{out} \to 1</math>. अन्य द्विपक्षीय XOR ऑपरेशन निष्पादित करके, इस बार चर संख्या पर <math display="inline">k(F) \approx \frac{1}{\sqrt{1-F}}</math> स्रोत जोड़े की, 1 के विपरीत, प्रत्येक लक्ष्य जोड़ी को मापने से पहले, उपज को धनात्मक सीमा तक पहुंचने के लिए बनाया जा सकता है <math>F_\text{out} \to 1</math>. इससे भी अधिक उपज प्राप्त करने के लिए इस विधि को दूसरों के साथ जोड़ा जा सकता है। | ||
==प्रोक्रस्टियन विधि== | ==प्रोक्रस्टियन विधि== | ||
Line 72: | Line 79: | ||
उलझाव एकाग्रता की प्रोक्रस्टियन विधि का उपयोग केवल आंशिक रूप से उलझी हुई जोड़ी के लिए किया जा सकता है, जो 5 से कम जोड़ी को उलझाने के लिए श्मिट प्रक्षेपण विधि की तुलना में अधिक कुशल है।<ref name="BBSP" /> और ऐलिस और बॉब को पूर्वाग्रह जानने की आवश्यकता है (<math>\theta</math>) n जोड़े पहले से। विधि का नाम [[प्रोक्रस्टेस]] से लिया गया है क्योंकि यह शुद्ध अवस्थाओं के आंशिक उलझाव में बड़े पद से जुड़ी अतिरिक्त संभावना को काटकर पूरी तरह से उलझी हुई स्थिति पैदा करती है: | उलझाव एकाग्रता की प्रोक्रस्टियन विधि का उपयोग केवल आंशिक रूप से उलझी हुई जोड़ी के लिए किया जा सकता है, जो 5 से कम जोड़ी को उलझाने के लिए श्मिट प्रक्षेपण विधि की तुलना में अधिक कुशल है।<ref name="BBSP" /> और ऐलिस और बॉब को पूर्वाग्रह जानने की आवश्यकता है (<math>\theta</math>) n जोड़े पहले से। विधि का नाम [[प्रोक्रस्टेस]] से लिया गया है क्योंकि यह शुद्ध अवस्थाओं के आंशिक उलझाव में बड़े पद से जुड़ी अतिरिक्त संभावना को काटकर पूरी तरह से उलझी हुई स्थिति पैदा करती है: | ||
<math display="block">\cos\theta \left|\uparrow_{A}\right\rangle \otimes \left|\downarrow_{B}\right\rangle - \sin\theta \left|\downarrow_{A}\right\rangle \otimes \left|\uparrow_{B}\right\rangle</math> | <math display="block">\cos\theta \left|\uparrow_{A}\right\rangle \otimes \left|\downarrow_{B}\right\rangle - \sin\theta \left|\downarrow_{A}\right\rangle \otimes \left|\uparrow_{B}\right\rangle</math> | ||
जिसके लिए कणों का संग्रह मान लिया गया है <math>\theta</math> से कम या उससे अधिक होने के रूप में जाना जाता है <math>\pi / 4</math> प्रोक्रस्टियन विधि उन सभी कणों को रखकर की जा सकती है, जो ध्रुवीकरण-निर्भर अवशोषक, या ध्रुवीकरण-निर्भर-परावर्तक के माध्यम से पारित होने पर, अंश को अवशोषित या प्रतिबिंबित करते हैं <math>\tan^{2}\theta</math> अधिक संभावित परिणाम को अवशोषित या विक्षेपित नहीं किया जाता है। इसलिए, यदि ऐलिस के पास कण हैं जिसके लिए <math>\theta \neq \pi/4</math>, वह उन कणों को अलग कर सकती है जिन्हें ऊपर/नीचे के आधार पर मापने की अधिक संभावना है, और कणों को स्पिन अप और स्पिन डाउन की अधिकतम मिश्रित अवस्था में छोड़ दिया जाता है। यह उपचार [[POVM]] ( | जिसके लिए कणों का संग्रह मान लिया गया है <math>\theta</math> से कम या उससे अधिक होने के रूप में जाना जाता है <math>\pi / 4</math> प्रोक्रस्टियन विधि उन सभी कणों को रखकर की जा सकती है, जो ध्रुवीकरण-निर्भर अवशोषक, या ध्रुवीकरण-निर्भर-परावर्तक के माध्यम से पारित होने पर, अंश को अवशोषित या प्रतिबिंबित करते हैं <math>\tan^{2}\theta</math> अधिक संभावित परिणाम को अवशोषित या विक्षेपित नहीं किया जाता है। इसलिए, यदि ऐलिस के पास कण हैं जिसके लिए <math>\theta \neq \pi/4</math>, वह उन कणों को अलग कर सकती है जिन्हें ऊपर/नीचे के आधार पर मापने की अधिक संभावना है, और कणों को स्पिन अप और स्पिन डाउन की अधिकतम मिश्रित अवस्था में छोड़ दिया जाता है। यह उपचार [[POVM]] (धनात्मक-ऑपरेटर-मूल्य माप) से मेल खाता है। दो कणों की पूरी तरह से उलझी हुई स्थिति प्राप्त करने के लिए, ऐलिस बॉब को अपने सामान्यीकृत माप के परिणाम के बारे में सूचित करती है जबकि बॉब अपने कण को बिल्कुल नहीं मापता है, बल्कि अगर ऐलिस उसे त्याग देता है तो वह अपने कण को छोड़ देता है। | ||
==स्टेबलाइजर प्रोटोकॉल== | ==स्टेबलाइजर प्रोटोकॉल== | ||
एक का उद्देश्य <math>\left[ n,k\right]</math> उलझाव आसवन प्रोटोकॉल आसवन करना है <math>k</math> शुद्ध बेल | एक का उद्देश्य <math>\left[ n,k\right]</math> उलझाव आसवन प्रोटोकॉल आसवन करना है <math>k</math> शुद्ध बेल अवस्थाओ से <math>n</math> ध्वनि मचाने वाली बेल बताती है कि कहां <math>0\leq k\leq n</math>. ऐसे प्रोटोकॉल की उपज है <math>k/n</math>. फिर दो पक्ष [[क्वांटम संचार]] प्रोटोकॉल के लिए नीरव बेल अवस्थाओ का उपयोग कर सकते हैं। | ||
दोनों पार्टियाँ निम्नलिखित तरीके से साझा | दोनों पार्टियाँ निम्नलिखित तरीके से साझा ध्वनि वाले बेल अवस्थाओ का समुच्चय स्थापित करती हैं। प्रेषक ऐलिस पहले तैयारी करता है <math>n</math> बेल बताती है <math>\left\vert \Phi^{+}\right\rangle ^{\otimes n}</math> स्थानीय स्तर पर. वह प्रत्येक जोड़ी की दूसरी क्वबिट को ध्वनि वाले क्वांटम चैनल पर रिसीवर बॉब को भेजती है। होने देना <math>\left\vert \Phi_{n}^{+}\right\rangle</math> अवस्था हो <math>\left\vert \Phi^{+}\right\rangle^{\otimes n}</math> पुनर्व्यवस्थित किया गया ताकि ऐलिस के सभी क्वबिट बाईं ओर हों और बॉब के सभी क्वबिट दाईं ओर हों। ध्वनि मचाने वाला क्वांटम चैनल त्रुटि समुच्चय में पाउली त्रुटि लागू करता है <math>\mathcal{E}\subset\Pi^{n}</math> के समुच्चय पर <math>n</math> चैनल पर क्वैबिट भेजे गए। फिर प्रेषक और प्राप्तकर्ता समुच्चय साझा करते हैं <math>n</math> फॉर्म की ध्वनि भरी बेल अवस्थाएँ <math>\left( \mathbf{I}\otimes\mathbf{A}\right) \left\vert \Phi_{n}^{+}\right\rangle</math> जहां पहचान <math>\mathbf{I}</math> ऐलिस की qubits पर कार्य करता है और <math>\mathbf{A}</math> में कुछ [[पॉल के संचालक]] है <math>\mathcal{E}</math> बॉब की qubits पर अभिनय। | ||
एक तरफ़ा स्टेबलाइज़र उलझाव आसवन प्रोटोकॉल आसवन प्रक्रिया के लिए [[स्टेबलाइजर कोड]] का उपयोग करता है। मान लीजिए स्टेबलाइजर <math>\mathcal{S}</math> के लिए <math>\left[ n,k\right]</math> क्वांटम त्रुटि सुधार कोड में जनरेटर होते हैं <math>g_{1},\ldots,g_{n-k}</math>. आसवन प्रक्रिया ऐलिस [[क्वांटम माप]] के साथ शुरू होती है <math>n-k</math> जनरेटर में <math>\mathcal{S}</math>. होने देना <math>\left\{ \mathbf{P}_{i}\right\}</math> का | एक तरफ़ा स्टेबलाइज़र उलझाव आसवन प्रोटोकॉल आसवन प्रक्रिया के लिए [[स्टेबलाइजर कोड]] का उपयोग करता है। मान लीजिए स्टेबलाइजर <math>\mathcal{S}</math> के लिए <math>\left[ n,k\right]</math> क्वांटम त्रुटि सुधार कोड में जनरेटर होते हैं <math>g_{1},\ldots,g_{n-k}</math>. आसवन प्रक्रिया ऐलिस [[क्वांटम माप]] के साथ शुरू होती है <math>n-k</math> जनरेटर में <math>\mathcal{S}</math>. होने देना <math>\left\{ \mathbf{P}_{i}\right\}</math> का समुच्चय हो <math>2^{n-k}</math> [[प्रक्षेपण (रैखिक बीजगणित)]] वह प्रक्षेपण है <math>2^{n-k}</math> जेनरेटर के अनुरूप ऑर्थोगोनल उप-स्थान <math>\mathcal{S}</math>. क्वांटम माप परियोजनाएँ <math>\left\vert \Phi_{n}^{+}\right\rangle</math> बेतरतीब ढंग से किसी पर <math>i</math> उपस्थान प्रत्येक <math>\mathbf{P}_{i}</math> ध्वनि ऑपरेटर के साथ [[ क्रमपरिवर्तनशीलता |क्रमपरिवर्तनशीलता]] ज <math>\mathbf{A}</math> बॉब की तरफ ताकि | ||
<math display="block"> | <math display="block"> | ||
\left( \mathbf{P}_{i}\otimes\mathbf{I}\right) \left( \mathbf{I} | \left( \mathbf{P}_{i}\otimes\mathbf{I}\right) \left( \mathbf{I} | ||
Line 87: | Line 94: | ||
\mathbf{I}\right) \left\vert \Phi_{n}^{+}\right\rangle . | \mathbf{I}\right) \left\vert \Phi_{n}^{+}\right\rangle . | ||
</math> | </math> | ||
निम्नलिखित महत्वपूर्ण बेल-स्टेट | निम्नलिखित महत्वपूर्ण बेल-स्टेट आव्यूह पहचान मनमाना आव्यूह के लिए लागू होती है <math>\mathbf{M}</math>: | ||
<math display="block"> | <math display="block"> | ||
\left( \mathbf{M}\otimes\mathbf{I}\right) \left\vert \Phi_{n}^{+} | \left( \mathbf{M}\otimes\mathbf{I}\right) \left\vert \Phi_{n}^{+} | ||
Line 108: | Line 115: | ||
लुओ और डेवेटक ने उपरोक्त प्रोटोकॉल का सीधा विस्तार प्रदान किया (लुओ और डेवेटक 2007)। उनकी विधि [[उलझाव-सहायता प्राप्त स्टेबलाइजर कोड]] को उलझाव-सहायता प्राप्त उलझाव आसवन प्रोटोकॉल में परिवर्तित करती है। | लुओ और डेवेटक ने उपरोक्त प्रोटोकॉल का सीधा विस्तार प्रदान किया (लुओ और डेवेटक 2007)। उनकी विधि [[उलझाव-सहायता प्राप्त स्टेबलाइजर कोड]] को उलझाव-सहायता प्राप्त उलझाव आसवन प्रोटोकॉल में परिवर्तित करती है। | ||
लुओ और डेवेटक उलझाव आसवन प्रोटोकॉल बनाते हैं जिसमें कुछ नीरव बेल | लुओ और डेवेटक उलझाव आसवन प्रोटोकॉल बनाते हैं जिसमें कुछ नीरव बेल अवस्थाओ से उलझाव सहायता होती है। उलझाव-सहायता प्राप्त उलझाव आसवन प्रोटोकॉल के लिए महत्वपूर्ण धारणा यह है कि ऐलिस और बॉब के पास है <math>c</math> उनके अलावा नीरव बेल अवस्था भी <math>n</math> शोरगुल वाली बेल बताती है। ध्वनि और नीरव बेल अवस्थाओ की कुल स्थिति है | ||
<math display="block"> | <math display="block"> | ||
\left(\mathbf{I}^{A}\otimes\left( \mathbf{A\otimes I}\right) ^{B}\right)\left\vert | \left(\mathbf{I}^{A}\otimes\left( \mathbf{A\otimes I}\right) ^{B}\right)\left\vert | ||
\Phi_{n+c}^{+}\right\rangle | \Phi_{n+c}^{+}\right\rangle | ||
</math> | </math> | ||
कहाँ <math>\mathbf{I}^{A}</math> है <math>2^{n+c}\times2^{n+c}</math> ऐलिस के क्वैबिट और | कहाँ <math>\mathbf{I}^{A}</math> है <math>2^{n+c}\times2^{n+c}</math> ऐलिस के क्वैबिट और ध्वनि मचाने वाले पाउली ऑपरेटर पर अभिनय करने वाला पहचान आव्यूह <math>\left( \mathbf{A \otimes I}\right) ^{B}</math> सबसे पहले बॉब को प्रभावित करता है <math>n</math> केवल qubits. इस प्रकार अंतिम <math>c</math> बेल स्थितियाँ नीरव हैं, और ऐलिस और बॉब को पहली त्रुटियों को ठीक करना है <math>n</math> बेल केवल बताता है. | ||
प्रोटोकॉल बिल्कुल वैसे ही आगे बढ़ता है जैसा पिछले अनुभाग में बताया गया है। एकमात्र अंतर यह है कि ऐलिस और बॉब जनरेटर को उलझाव-सहायता वाले स्टेबलाइज़र कोड में मापते हैं। प्रत्येक जनरेटर फैला हुआ है <math>n+c</math> qubits जहां आखिरी है <math>c</math> क्वैबिट नीरव हैं। | प्रोटोकॉल बिल्कुल वैसे ही आगे बढ़ता है जैसा पिछले अनुभाग में बताया गया है। एकमात्र अंतर यह है कि ऐलिस और बॉब जनरेटर को उलझाव-सहायता वाले स्टेबलाइज़र कोड में मापते हैं। प्रत्येक जनरेटर फैला हुआ है <math>n+c</math> qubits जहां आखिरी है <math>c</math> क्वैबिट नीरव हैं। | ||
Line 121: | Line 128: | ||
==उलझाव कमजोर पड़ना== | ==उलझाव कमजोर पड़ना== | ||
उलझाव आसवन की विपरीत प्रक्रिया उलझाव कमजोर पड़ने है, जहां बेल | उलझाव आसवन की विपरीत प्रक्रिया उलझाव कमजोर पड़ने है, जहां बेल अवस्था की बड़ी प्रतियों को उच्च निष्ठा के साथ एलओसीसी का उपयोग करके कम उलझी हुई अवस्थाओं में परिवर्तित किया जाता है। उलझाव कमजोर पड़ने की प्रक्रिया का उद्देश्य, एन से एम के व्युत्क्रम अनुपात को संतृप्त करना है, जिसे आसुत उलझाव के रूप में परिभाषित किया गया है। | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
क्वांटम संचार में इसके महत्वपूर्ण अनुप्रयोग के अलावा, उलझाव शुद्धि भी [[क्वांटम गणना]] के लिए [[त्रुटि सुधार]] में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह विभिन्न क्वैबिट के | क्वांटम संचार में इसके महत्वपूर्ण अनुप्रयोग के अलावा, उलझाव शुद्धि भी [[क्वांटम गणना]] के लिए [[त्रुटि सुधार]] में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह विभिन्न क्वैबिट के मध्य तर्क संचालन की गुणवत्ता में काफी वृद्धि कर सकती है। निम्नलिखित अनुप्रयोगों के लिए उलझाव आसवन की भूमिका पर संक्षेप में चर्चा की गई है। | ||
===क्वांटम त्रुटि सुधार=== | ===क्वांटम त्रुटि सुधार=== | ||
{{main article|Quantum error correction}} | {{main article|Quantum error correction}} | ||
मिश्रित अवस्थाओं के लिए एंटैंगलमेंट डिस्टिलेशन प्रोटोकॉल का उपयोग दो पक्षों ऐलिस और बॉब के | मिश्रित अवस्थाओं के लिए एंटैंगलमेंट डिस्टिलेशन प्रोटोकॉल का उपयोग दो पक्षों ऐलिस और बॉब के मध्य क्वांटम संचार चैनलों के लिए प्रकार के त्रुटि-सुधार के रूप में किया जा सकता है, जो ऐलिस को बॉब को जानकारी के एमडी (पी) क्यूबिट को विश्वसनीय रूप से भेजने में सक्षम बनाता है, जहां डी (पी) डिस्टिलेबल है। पी का उलझाव, वह स्थिति जो तब उत्पन्न होती है जब बेल जोड़ी का आधा भाग ध्वनि वाले चैनल के माध्यम से भेजा जाता है <math>\epsilon</math> ऐलिस और बॉब को जोड़ना। | ||
कुछ मामलों में, पारंपरिक क्वांटम त्रुटि-सुधार तकनीक विफल होने पर उलझाव आसवन काम कर सकता है। एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल ज्ञात हैं जो चैनलों के लिए ट्रांसमिशन डी (पी) की गैर-शून्य दर उत्पन्न कर सकते हैं जो संपत्ति के कारण क्वांटम जानकारी के प्रसारण की अनुमति नहीं देते हैं कि एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल पारंपरिक त्रुटि-सुधार के विपरीत पार्टियों के | कुछ मामलों में, पारंपरिक क्वांटम त्रुटि-सुधार तकनीक विफल होने पर उलझाव आसवन काम कर सकता है। एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल ज्ञात हैं जो चैनलों के लिए ट्रांसमिशन डी (पी) की गैर-शून्य दर उत्पन्न कर सकते हैं जो संपत्ति के कारण क्वांटम जानकारी के प्रसारण की अनुमति नहीं देते हैं कि एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल पारंपरिक त्रुटि-सुधार के विपरीत पार्टियों के मध्य मौलिक संचार की अनुमति देते हैं। जो इस पर रोक लगाता है. | ||
===क्वांटम क्रिप्टोग्राफी=== | ===क्वांटम क्रिप्टोग्राफी=== | ||
Line 139: | Line 146: | ||
सहसंबद्ध माप परिणामों और उलझाव की अवधारणा क्वांटम कुंजी विनिमय के लिए केंद्रीय है, और इसलिए अधिकतम उलझी हुई अवस्थाओं को प्राप्त करने के लिए उलझाव आसवन को सफलतापूर्वक करने की क्षमता क्वांटम क्रिप्टोग्राफी के लिए आवश्यक है। | सहसंबद्ध माप परिणामों और उलझाव की अवधारणा क्वांटम कुंजी विनिमय के लिए केंद्रीय है, और इसलिए अधिकतम उलझी हुई अवस्थाओं को प्राप्त करने के लिए उलझाव आसवन को सफलतापूर्वक करने की क्षमता क्वांटम क्रिप्टोग्राफी के लिए आवश्यक है। | ||
यदि कणों की उलझी हुई जोड़ी को दो पक्षों के | यदि कणों की उलझी हुई जोड़ी को दो पक्षों के मध्य साझा किया जाता है, तो किसी भी कण को रोकने वाला कोई भी व्यक्ति समग्र प्रणाली को बदल देगा, जिससे उनकी उपस्थिति (और उनके द्वारा प्राप्त की गई जानकारी की मात्रा) तब तक निर्धारित की जा सकेगी जब तक कण अधिकतम उलझी हुई स्थिति में हैं। इसके अलावा, गुप्त कुंजी स्ट्रिंग को साझा करने के लिए, ऐलिस और बॉब को साझा गुप्त कुंजी स्ट्रिंग को डिस्टिल करने के लिए गोपनीयता प्रवर्धन और सूचना सामंजस्य की तकनीकों का प्रदर्शन करना होगा। सूचना समाधान सार्वजनिक चैनल पर त्रुटि-सुधार है जो ऐलिस और बॉब द्वारा साझा किए गए सहसंबद्ध यादृच्छिक मौलिक बिट स्ट्रिंग्स के मध्य त्रुटियों को समेटता है, जबकि संभावित गुप्तचर ईव के पास साझा कुंजी के बारे में ज्ञान सीमित हो सकता है। सूचना समाधान का उपयोग ऐलिस और बॉब के पास उपस्तिथ साझा कुंजियों के मध्य संभावित त्रुटियों को सुलझाने और ईव द्वारा प्राप्त की जा सकने वाली संभावित जानकारी को सीमित करने के लिए किया जाता है, गोपनीयता प्रवर्धन की तकनीक का उपयोग कुंजी के बारे में ईव की अनिश्चितता को अधिकतम करने वाले बिट्स के छोटे उपसमूह को डिस्टिल करने के लिए किया जाता है। | ||
===क्वांटम टेलीपोर्टेशन=== | ===क्वांटम टेलीपोर्टेशन=== | ||
{{main article|Quantum teleportation}} | {{main article|Quantum teleportation}} | ||
क्वांटम टेलीपोर्टेशन में, प्रेषक कण की | क्वांटम टेलीपोर्टेशन में, प्रेषक कण की इच्छानुसार क्वांटम स्थिति को संभवतः दूर के रिसीवर तक पहुंचाना चाहता है। क्वांटम टेलीपोर्टेशन प्रत्यक्ष क्वांटम चैनल के लिए मौलिक संचार और पूर्व उलझाव को प्रतिस्थापित करके क्वांटम जानकारी के विश्वसनीय प्रसारण को प्राप्त करने में सक्षम है। टेलीपोर्टेशन का उपयोग करते हुए, मनमाना अज्ञात क्वबिट को प्रेषक और रिसीवर के मध्य साझा किए गए अधिकतम-उलझे हुए क्वैबिट की जोड़ी और प्रेषक से रिसीवर तक 2-बिट मौलिक संदेश के माध्यम से ईमानदारी से प्रसारित किया जा सकता है। क्वांटम टेलीपोर्टेशन को पूरी तरह से उलझे हुए कणों को साझा करने के लिए नीरव क्वांटम चैनल की आवश्यकता होती है, और इसलिए उलझाव आसवन नीरव क्वांटम चैनल और अधिकतम उलझे हुए क्वैबिट प्रदान करके इस आवश्यकता को पूरा करता है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 150: | Line 157: | ||
*क्वांटम क्रिप्टोग्राफी | *क्वांटम क्रिप्टोग्राफी | ||
*बहुत नाजुक स्थिति | *बहुत नाजुक स्थिति | ||
*[[जितना राज्य]] | *[[जितना राज्य|जितना अवस्था]] | ||
*क्वांटम टेलीपोर्टेशन | *क्वांटम टेलीपोर्टेशन | ||
* | *एलओसीसी | ||
*[[शुद्धिकरण प्रमेय (भौतिकी)]] | *[[शुद्धिकरण प्रमेय (भौतिकी)]] | ||
Revision as of 18:33, 13 December 2023
उलझाव आसवन (जिसे उलझाव शुद्धि भी कहा जाता है) केवल स्थानीय संचालन और मौलिक संचार का उपयोग करके, एक इच्छानुसार उलझी हुई स्थिति की एन प्रतियों को लगभग शुद्ध बेल जोड़े की कुछ संख्या में परिवर्तित करना है।
क्वांटम उलझाव आसवन इस तरह ध्वनि वाले क्वांटम चैनलो के अपक्षयी प्रभाव को[1] पहले से साझा की गई कम उलझी हुई जोड़ियों को कम संख्या में अधिकतम उलझी हुई अवस्था वाली जोड़ियों में परिवर्तित करके दूर कर सकता है।
इतिहास
उलझाव तनुकरण और आसवन की सीमाएं सी. एच. बेनेट, एच. बर्नस्टीन, एस. पोपेस्कु और बी. शूमाकर के कारण हैं,[2] जिन्होंने 1996 में शुद्ध अवस्थाओं के लिए पहला आसवन प्रोटोकॉल प्रस्तुत किया; मिश्रित अवस्था (भौतिकी) के लिए उलझाव आसवन प्रोटोकॉल उसी वर्ष बेनेट, गाइल्स ब्रासार्ड, पोपेस्कु, शूमाकर, जॉन ए. स्मोलिन और विलियम वूटर्स द्वारा पेश किए गए थे।[3] बेनेट, डेविड पी. डिविन्सेन्ज़ो, स्मोलिन और वूटर्स[1] ने अगस्त 1996 में फिजिकल रिव्यू जर्नल में प्रकाशित अभूतपूर्व पेपर में क्वांटम त्रुटि-सुधार के संबंध को स्थापित किया गया, जिसने बाद के कई शोधों को प्रेरित किया है।
उलझाव का परिमाणीकरण
एक दो क्विबिट प्रणाली को संभावित कम्प्यूटेशनल आधार क्वबिट अवस्थाओ के सुपरपोजिशन के रूप में लिखा जा सकता है: , प्रत्येक संबद्ध जटिल गुणांक के साथ :
बेल अवस्था दो क्विबिट अवस्था का विशेष रूप से महत्वपूर्ण उदाहरण है:
बेल अवस्थाओ के पास यह गुण है कि दोनों क्वैबिट पर माप परिणाम सहसंबद्ध होते हैं। जैसा कि उपरोक्त अभिव्यक्ति से देखा जा सकता है, दो संभावित माप परिणाम शून्य और हैं, दोनों की संभावना 50% है। परिणामस्वरूप, दूसरे क्वबिट का माप सदैव पहले क्वबिट के माप के समान परिणाम देता है।
बेल अवस्था का उपयोग उलझाव को मापने के लिए किया जा सकता है। मान लीजिए m बेल अवस्था की उच्च-निष्ठा प्रतियों की संख्या है जिसे स्थानीय संचालन और मौलिक संचार (एलओसीसी) का उपयोग करके उत्पादित किया जा सकता है। बेल की बड़ी संख्या को देखते हुए शुद्ध अवस्था में उपस्तिथ उलझाव की मात्रा बताई गई है फिर के अनुपात के रूप में परिभाषित किया जा सकता है , किसी विशेष अवस्था का आसुत उलझाव कहा जाता है , जो किसी दिए गए सिस्टम में उपस्तिथ उलझाव की मात्रा का मात्रात्मक माप देता है। उलझाव आसवन की प्रक्रिया का उद्देश्य इस सीमित अनुपात को संतृप्त करना है। शुद्ध अवस्था की प्रतियों की संख्या जिसे अधिकतम उलझी हुई अवस्था में परिवर्तित किया जा सकता है, वॉन न्यूमैन एन्ट्रापी के बराबर है अवस्था का, जो क्वांटम प्रणालियों के लिए मौलिक एन्ट्रापी की अवधारणा का विस्तार है। गणितीय रूप से, किसी दिए गए घनत्व आव्यूह के लिए , वॉन न्यूमैन एन्ट्रापी , है. उलझाव को उलझाव की एन्ट्रापी के रूप में परिमाणित किया जा सकता है, जो कि या में से किसी एक की वॉन न्यूमैन एन्ट्रापी हैː
जो किसी उत्पाद स्थिति के लिए 0 से लेकर तक होता है अधिकतम उलझी हुई स्थिति के लिए (यदि द्वारा प्रतिस्थापित किया जाता है तब अधिकतम उलझे हुए का मान 1) होता है।
प्रेरणा
मान लीजिए कि दो पक्ष, ऐलिस और बॉब, ध्वनि वाले क्वांटम चैनल पर मौलिक जानकारी का संचार करना चाहते हैं। या तो मौलिक या क्वांटम जानकारी को क्वांटम अवस्था में जानकारी को एन्कोड करके क्वांटम चैनल पर प्रसारित किया जा सकता है। इस ज्ञान के साथ, ऐलिस उस मौलिक जानकारी को एन्कोड करती है जिसे वह बॉब को (क्वांटम) उत्पाद स्थिति में, कम घनत्व वाले आव्यूह के टेंसर उत्पाद के रूप में भेजना चाहती है। जहां प्रत्येक विकर्ण है और इसका उपयोग केवल किसी विशेष चैनल के लिए बार के इनपुट के रूप में किया जा सकता है .
ध्वनि वाले क्वांटम चैनल की निष्ठा इस तथ्य का माप है कि क्वांटम चैनल का आउटपुट इनपुट से कितना मिलता-जुलता है, और इसलिए यह माप है कि क्वांटम चैनल कितनी अच्छी तरह जानकारी को संरक्षित करता है। यदि शुद्ध अवस्था है क्वांटम चैनल में भेजा जाता है जो घनत्व आव्यूह द्वारा दर्शाई गई स्थिति के रूप में उभरता है , संचरण की निष्ठा को इस प्रकार परिभाषित किया गया है .
ऐलिस और बॉब के सामने अब जो समस्या है वह यह है कि बड़ी दूरी पर क्वांटम संचार अत्यधिक उलझे हुए क्वांटम अवस्थाओ के सफल वितरण पर निर्भर करता है, और क्वांटम संचार चैनलों में अपरिहार्य ध्वनि के कारण, उलझे हुए अवस्थाओ की गुणवत्ता सामान्यतः चैनल की लंबाई के साथ तेजी से घट जाती है। चैनल की निष्ठा. उलझाव आसवन इच्छानुसार रूप से उलझी हुई स्थिति की एन प्रतियों को परिवर्तित करके वितरित क्वांटम अवस्थाओ के मध्य उच्च स्तर के उलझाव को बनाए रखने की इस समस्या का समाधान करता है लगभग में बेल जोड़े, केवल स्थानीय संचालन और मौलिक संचार का उपयोग करते हुए। इसका उद्देश्य विश्वसनीय क्वांटम टेलीपोर्टेशन या क्वांटम क्रिप्टोग्राफी की अनुमति देने के लिए दूर के पक्षों (ऐलिस और बॉब) के मध्य दृढ़ता से सहसंबद्ध क्वैबिट साझा करना है।
उलझाव एकाग्रता
शुद्ध अवस्थाएँ
ऐलिस और बॉब के मध्य साझा एकल अवस्था में एन कणों को देखते हुए, स्थानीय क्रियाएं और मौलिक संचार इच्छानुसार रूप से अच्छी प्रतियां तैयार करने के लिए पर्याप्त होंगे उपज के साथ
मान लीजिए कि एक उलझी हुई अवस्था में श्मिट अपघटन है:
जहां गुणांक पी(एक्स) संभाव्यता वितरण बनाते हैं, और इस प्रकार धनात्मक मूल्य होते हैं और एकता (गणित) के योग होते हैं। इस अवस्था का टेंसर उत्पाद तब है,
मान लीजिए कि ऐलिस और बॉब के पास एम प्रतियां हैं . ऐलिस विशिष्ट समुच्चय पर माप कर सकती है का भाग , अवस्था को परिवर्तित करना उच्च निष्ठा के साथ. विशिष्ट अनुक्रमों का प्रमेय हमें यह दिखाता है संभावना है कि दिया गया अनुक्रम विशिष्ट समुच्चय का भाग है, और पर्याप्त रूप से बड़े एम के लिए इच्छानुसार रूप से 1 के करीब बनाया जा सकता है, और इसलिए पुनर्सामान्यीकृत बेल अवस्था के श्मिट गुणांक अधिक से अधिक कारक होगा बड़ा. ऐलिस और बॉब अब अवस्था पर एलओसीसी निष्पादित करके n बेल अवस्थाओ का छोटा समुच्चय प्राप्त कर सकते हैं जिसके साथ वे सफलतापूर्वक संचार करने के लिए क्वांटम चैनल के ध्वनि पर काबू पा सकते हैं।
मिश्रित अवस्थाएँ
मिश्रित अवस्थाओं के लिए उलझाव आसवन करने के लिए कई तकनीकों का विकास किया गया है, जिससे आसुत उलझाव के मूल्य पर कम सीमा मिलती है अवस्थाओ के विशिष्ट वर्गों के लिए .
एक सामान्य विधि में ऐलिस सीधे स्रोत अवस्थाओ को प्रसारित करने के लिए ध्वनि चैनल का उपयोग नहीं करती है, बल्कि बड़ी संख्या में बेल अवस्थाओ को तैयार करती है, प्रत्येक बेल जोड़ी का आधा भाग बॉब को भेजती है। ध्वनि चैनल के माध्यम से संचरण का परिणाम मिश्रित उलझन वाली स्थिति बनाना है , ताकि ऐलिस और बॉब साझा करना समाप्त कर दें की प्रतियाँ . ऐलिस और बॉब फिर उलझाव आसवन का उत्पादन करते हैं मिश्रित उलझी हुई अवस्थाओं से लगभग पूरी तरह उलझी हुई अवस्थाएँ साझा उलझी जोड़ियों पर स्थानीय एकात्मक संचालन और माप करके, मौलिक संदेशों के माध्यम से अपने कार्यों का समन्वय करके, और शेष उलझी जोड़ियों की शुद्धता बढ़ाने के लिए कुछ उलझी जोड़ियों का त्याग करना। ऐलिस अब तैयार कर सकती है क्वबिट स्टेट और इसका उपयोग करके बॉब को टेलीपोर्ट करें बेल जोड़े जिन्हें वे उच्च निष्ठा के साथ साझा करते हैं। ऐलिस और बॉब ने तब प्रभावी ढंग से जो हासिल किया है, वह स्थानीय क्रियाओं और मौलिक संचार की सहायता से ध्वनि रहित क्वांटम चैनल का अनुकरण करना है।
होने देना दो स्पिन-1/2 कणों की सामान्य मिश्रित अवस्था हो, जो प्रारंभिक शुद्ध एकल अवस्था के संचरण के परिणामस्वरूप हो सकती है
- प्रत्येक साझा जोड़ी पर यादृच्छिक द्विपक्षीय रोटेशन करना, प्रत्येक जोड़ी के लिए स्वतंत्र रूप से यादृच्छिक एसयू (2) रोटेशन का चयन करना और इसे जोड़ी के दोनों सदस्यों पर स्थानीय रूप से लागू करना प्रारंभिक सामान्य दो-स्पिन मिश्रित स्थिति एम को घूर्णी रूप से सममित मिश्रण में बदल देता है। एकल अवस्था और तीन त्रिक अवस्थाएँ और : वर्नर अवस्था इसकी प्रारंभिक मिश्रित अवस्था M के समान शुद्धता F है, जहाँ से इसे द्विपक्षीय घुमावों के तहत एकल के अपरिवर्तन के कारण प्राप्त किया गया था।
- दोनों जोड़ियों में से प्रत्येक पर एकतरफ़ा घुमाव द्वारा कार्रवाई की जाती है, जिसे हम कह सकते हैं , जो उन्हें मुख्य रूप से परिवर्तित करने का प्रभाव रखता है वर्नर मुख्य रूप से कहते हैं बड़े घटक वाले अवस्था का जबकि अन्य तीन बेल अवस्थाओं के घटक समान हैं।
- दो नापाक फिर अवस्थाओ पर द्विपक्षीय XOR द्वारा कार्य किया जाता है, और उसके बाद लक्ष्य जोड़ी को z अक्ष के साथ स्थानीय रूप से मापा जाता है। यदि दोनों इनपुट सत्य होने की स्थिति में लक्ष्य जोड़ी के स्पिन समानांतर आते हैं तो बिना मापी गई स्रोत जोड़ी रखी जाती है अवस्था; और अन्यथा इसे त्याग दिया जाता है।
- यदि स्रोत जोड़ी को हटाया नहीं गया है तो इसे वापस मुख्य रूप से परिवर्तित कर दिया जाता है एकतरफ़ा अवस्था घूर्णन, और यादृच्छिक द्विपक्षीय घूर्णन द्वारा घूर्णी रूप से सममित बनाया गया।
ऊपर उल्लिखित प्रोटोकॉल को दोहराने से वर्नर अवस्थाओ को डिस्टिल किया जाएगा जिनकी शुद्धता को इच्छानुसार रूप से उच्च चुना जा सकता है शुद्धता की इनपुट मिश्रित अवस्थाओं के संग्रह एम से लेकिन सीमा में उपज शून्य की ओर बढ़ रही है . अन्य द्विपक्षीय XOR ऑपरेशन निष्पादित करके, इस बार चर संख्या पर स्रोत जोड़े की, 1 के विपरीत, प्रत्येक लक्ष्य जोड़ी को मापने से पहले, उपज को धनात्मक सीमा तक पहुंचने के लिए बनाया जा सकता है . इससे भी अधिक उपज प्राप्त करने के लिए इस विधि को दूसरों के साथ जोड़ा जा सकता है।
प्रोक्रस्टियन विधि
उलझाव एकाग्रता की प्रोक्रस्टियन विधि का उपयोग केवल आंशिक रूप से उलझी हुई जोड़ी के लिए किया जा सकता है, जो 5 से कम जोड़ी को उलझाने के लिए श्मिट प्रक्षेपण विधि की तुलना में अधिक कुशल है।[2] और ऐलिस और बॉब को पूर्वाग्रह जानने की आवश्यकता है () n जोड़े पहले से। विधि का नाम प्रोक्रस्टेस से लिया गया है क्योंकि यह शुद्ध अवस्थाओं के आंशिक उलझाव में बड़े पद से जुड़ी अतिरिक्त संभावना को काटकर पूरी तरह से उलझी हुई स्थिति पैदा करती है:
स्टेबलाइजर प्रोटोकॉल
एक का उद्देश्य उलझाव आसवन प्रोटोकॉल आसवन करना है शुद्ध बेल अवस्थाओ से ध्वनि मचाने वाली बेल बताती है कि कहां . ऐसे प्रोटोकॉल की उपज है . फिर दो पक्ष क्वांटम संचार प्रोटोकॉल के लिए नीरव बेल अवस्थाओ का उपयोग कर सकते हैं।
दोनों पार्टियाँ निम्नलिखित तरीके से साझा ध्वनि वाले बेल अवस्थाओ का समुच्चय स्थापित करती हैं। प्रेषक ऐलिस पहले तैयारी करता है बेल बताती है स्थानीय स्तर पर. वह प्रत्येक जोड़ी की दूसरी क्वबिट को ध्वनि वाले क्वांटम चैनल पर रिसीवर बॉब को भेजती है। होने देना अवस्था हो पुनर्व्यवस्थित किया गया ताकि ऐलिस के सभी क्वबिट बाईं ओर हों और बॉब के सभी क्वबिट दाईं ओर हों। ध्वनि मचाने वाला क्वांटम चैनल त्रुटि समुच्चय में पाउली त्रुटि लागू करता है के समुच्चय पर चैनल पर क्वैबिट भेजे गए। फिर प्रेषक और प्राप्तकर्ता समुच्चय साझा करते हैं फॉर्म की ध्वनि भरी बेल अवस्थाएँ जहां पहचान ऐलिस की qubits पर कार्य करता है और में कुछ पॉल के संचालक है बॉब की qubits पर अभिनय।
एक तरफ़ा स्टेबलाइज़र उलझाव आसवन प्रोटोकॉल आसवन प्रक्रिया के लिए स्टेबलाइजर कोड का उपयोग करता है। मान लीजिए स्टेबलाइजर के लिए क्वांटम त्रुटि सुधार कोड में जनरेटर होते हैं . आसवन प्रक्रिया ऐलिस क्वांटम माप के साथ शुरू होती है जनरेटर में . होने देना का समुच्चय हो प्रक्षेपण (रैखिक बीजगणित) वह प्रक्षेपण है जेनरेटर के अनुरूप ऑर्थोगोनल उप-स्थान . क्वांटम माप परियोजनाएँ बेतरतीब ढंग से किसी पर उपस्थान प्रत्येक ध्वनि ऑपरेटर के साथ क्रमपरिवर्तनशीलता ज बॉब की तरफ ताकि
एंटैंगलमेंट-असिस्टेड स्टेबलाइजर कोड
लुओ और डेवेटक ने उपरोक्त प्रोटोकॉल का सीधा विस्तार प्रदान किया (लुओ और डेवेटक 2007)। उनकी विधि उलझाव-सहायता प्राप्त स्टेबलाइजर कोड को उलझाव-सहायता प्राप्त उलझाव आसवन प्रोटोकॉल में परिवर्तित करती है।
लुओ और डेवेटक उलझाव आसवन प्रोटोकॉल बनाते हैं जिसमें कुछ नीरव बेल अवस्थाओ से उलझाव सहायता होती है। उलझाव-सहायता प्राप्त उलझाव आसवन प्रोटोकॉल के लिए महत्वपूर्ण धारणा यह है कि ऐलिस और बॉब के पास है उनके अलावा नीरव बेल अवस्था भी शोरगुल वाली बेल बताती है। ध्वनि और नीरव बेल अवस्थाओ की कुल स्थिति है
प्रोटोकॉल बिल्कुल वैसे ही आगे बढ़ता है जैसा पिछले अनुभाग में बताया गया है। एकमात्र अंतर यह है कि ऐलिस और बॉब जनरेटर को उलझाव-सहायता वाले स्टेबलाइज़र कोड में मापते हैं। प्रत्येक जनरेटर फैला हुआ है qubits जहां आखिरी है क्वैबिट नीरव हैं।
हम इस उलझाव-सहायता वाले उलझाव आसवन प्रोटोकॉल की उपज पर टिप्पणी करते हैं। उलझाव-सहायता वाला कोड है प्रत्येक के पास जनरेटर हैं पाउली प्रविष्टियाँ. इन मापदंडों का अर्थ है कि उलझाव आसवन प्रोटोकॉल उत्पन्न करता है ईबिट्स लेकिन प्रोटोकॉल उपभोग करता है आरंभिक नीरव बेल आसवन के लिए उत्प्रेरक के रूप में कार्य करती है। इसलिए, इस प्रोटोकॉल की उपज है .
उलझाव कमजोर पड़ना
उलझाव आसवन की विपरीत प्रक्रिया उलझाव कमजोर पड़ने है, जहां बेल अवस्था की बड़ी प्रतियों को उच्च निष्ठा के साथ एलओसीसी का उपयोग करके कम उलझी हुई अवस्थाओं में परिवर्तित किया जाता है। उलझाव कमजोर पड़ने की प्रक्रिया का उद्देश्य, एन से एम के व्युत्क्रम अनुपात को संतृप्त करना है, जिसे आसुत उलझाव के रूप में परिभाषित किया गया है।
अनुप्रयोग
क्वांटम संचार में इसके महत्वपूर्ण अनुप्रयोग के अलावा, उलझाव शुद्धि भी क्वांटम गणना के लिए त्रुटि सुधार में महत्वपूर्ण भूमिका निभाती है, क्योंकि यह विभिन्न क्वैबिट के मध्य तर्क संचालन की गुणवत्ता में काफी वृद्धि कर सकती है। निम्नलिखित अनुप्रयोगों के लिए उलझाव आसवन की भूमिका पर संक्षेप में चर्चा की गई है।
क्वांटम त्रुटि सुधार
मिश्रित अवस्थाओं के लिए एंटैंगलमेंट डिस्टिलेशन प्रोटोकॉल का उपयोग दो पक्षों ऐलिस और बॉब के मध्य क्वांटम संचार चैनलों के लिए प्रकार के त्रुटि-सुधार के रूप में किया जा सकता है, जो ऐलिस को बॉब को जानकारी के एमडी (पी) क्यूबिट को विश्वसनीय रूप से भेजने में सक्षम बनाता है, जहां डी (पी) डिस्टिलेबल है। पी का उलझाव, वह स्थिति जो तब उत्पन्न होती है जब बेल जोड़ी का आधा भाग ध्वनि वाले चैनल के माध्यम से भेजा जाता है ऐलिस और बॉब को जोड़ना।
कुछ मामलों में, पारंपरिक क्वांटम त्रुटि-सुधार तकनीक विफल होने पर उलझाव आसवन काम कर सकता है। एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल ज्ञात हैं जो चैनलों के लिए ट्रांसमिशन डी (पी) की गैर-शून्य दर उत्पन्न कर सकते हैं जो संपत्ति के कारण क्वांटम जानकारी के प्रसारण की अनुमति नहीं देते हैं कि एन्टैंगलमेंट डिस्टिलेशन प्रोटोकॉल पारंपरिक त्रुटि-सुधार के विपरीत पार्टियों के मध्य मौलिक संचार की अनुमति देते हैं। जो इस पर रोक लगाता है.
क्वांटम क्रिप्टोग्राफी
सहसंबद्ध माप परिणामों और उलझाव की अवधारणा क्वांटम कुंजी विनिमय के लिए केंद्रीय है, और इसलिए अधिकतम उलझी हुई अवस्थाओं को प्राप्त करने के लिए उलझाव आसवन को सफलतापूर्वक करने की क्षमता क्वांटम क्रिप्टोग्राफी के लिए आवश्यक है।
यदि कणों की उलझी हुई जोड़ी को दो पक्षों के मध्य साझा किया जाता है, तो किसी भी कण को रोकने वाला कोई भी व्यक्ति समग्र प्रणाली को बदल देगा, जिससे उनकी उपस्थिति (और उनके द्वारा प्राप्त की गई जानकारी की मात्रा) तब तक निर्धारित की जा सकेगी जब तक कण अधिकतम उलझी हुई स्थिति में हैं। इसके अलावा, गुप्त कुंजी स्ट्रिंग को साझा करने के लिए, ऐलिस और बॉब को साझा गुप्त कुंजी स्ट्रिंग को डिस्टिल करने के लिए गोपनीयता प्रवर्धन और सूचना सामंजस्य की तकनीकों का प्रदर्शन करना होगा। सूचना समाधान सार्वजनिक चैनल पर त्रुटि-सुधार है जो ऐलिस और बॉब द्वारा साझा किए गए सहसंबद्ध यादृच्छिक मौलिक बिट स्ट्रिंग्स के मध्य त्रुटियों को समेटता है, जबकि संभावित गुप्तचर ईव के पास साझा कुंजी के बारे में ज्ञान सीमित हो सकता है। सूचना समाधान का उपयोग ऐलिस और बॉब के पास उपस्तिथ साझा कुंजियों के मध्य संभावित त्रुटियों को सुलझाने और ईव द्वारा प्राप्त की जा सकने वाली संभावित जानकारी को सीमित करने के लिए किया जाता है, गोपनीयता प्रवर्धन की तकनीक का उपयोग कुंजी के बारे में ईव की अनिश्चितता को अधिकतम करने वाले बिट्स के छोटे उपसमूह को डिस्टिल करने के लिए किया जाता है।
क्वांटम टेलीपोर्टेशन
क्वांटम टेलीपोर्टेशन में, प्रेषक कण की इच्छानुसार क्वांटम स्थिति को संभवतः दूर के रिसीवर तक पहुंचाना चाहता है। क्वांटम टेलीपोर्टेशन प्रत्यक्ष क्वांटम चैनल के लिए मौलिक संचार और पूर्व उलझाव को प्रतिस्थापित करके क्वांटम जानकारी के विश्वसनीय प्रसारण को प्राप्त करने में सक्षम है। टेलीपोर्टेशन का उपयोग करते हुए, मनमाना अज्ञात क्वबिट को प्रेषक और रिसीवर के मध्य साझा किए गए अधिकतम-उलझे हुए क्वैबिट की जोड़ी और प्रेषक से रिसीवर तक 2-बिट मौलिक संदेश के माध्यम से ईमानदारी से प्रसारित किया जा सकता है। क्वांटम टेलीपोर्टेशन को पूरी तरह से उलझे हुए कणों को साझा करने के लिए नीरव क्वांटम चैनल की आवश्यकता होती है, और इसलिए उलझाव आसवन नीरव क्वांटम चैनल और अधिकतम उलझे हुए क्वैबिट प्रदान करके इस आवश्यकता को पूरा करता है।
यह भी देखें
- क्वांटम चैनल
- क्वांटम क्रिप्टोग्राफी
- बहुत नाजुक स्थिति
- जितना अवस्था
- क्वांटम टेलीपोर्टेशन
- एलओसीसी
- शुद्धिकरण प्रमेय (भौतिकी)
नोट्स और संदर्भ
- ↑ 1.0 1.1 Bennett, Charles H.; DiVincenzo, David P.; Smolin, John A.; Wooters, William K. (1996). "मिश्रित अवस्था उलझाव और क्वांटम त्रुटि सुधार". Phys. Rev. A. 54 (5): 3824–3851. arXiv:quant-ph/9604024. Bibcode:1996PhRvA..54.3824B. doi:10.1103/physreva.54.3824. PMID 9913930. S2CID 3059636.
- ↑ 2.0 2.1 Bennett, Charles H.; Bernstein, Herbert J.; Popescu, Sandu; Schumacher, Benjamin (1996). "स्थानीय संचालन द्वारा आंशिक उलझाव पर ध्यान केंद्रित करना". Phys. Rev. A. 53 (4): 2046–2052. arXiv:quant-ph/9511030. Bibcode:1996PhRvA..53.2046B. doi:10.1103/physreva.53.2046. PMID 9913106. S2CID 8032709.
- ↑ 3.0 3.1 Bennett, Charles H.; Brassard, Gilles; Popescu, Sandu; Schumacher, Benjamin; Smolin, John A.; Wooters, William K. (1996). "शोर चैनलों के माध्यम से शोर उलझाव और वफादार टेलीपोर्टेशन की शुद्धि". Phys. Rev. Lett. 76 (5): 722–725. arXiv:quant-ph/9511027. Bibcode:1996PhRvL..76..722B. doi:10.1103/physrevlett.76.722. PMID 10061534. S2CID 8236531.
- Kwiat, Paul G.; Barraza-Lopez, Salvador; Stefanov, André; Gisin, Nicolas (2001), "Experimental entanglement distillation and 'hidden' non-locality", Nature, 409 (6823): 1014–1017, Bibcode:2001Natur.409.1014K, doi:10.1038/35059017, PMID 11234004, S2CID 4430054
- Yamamoto, Takashi; Koashi, Masato; Özdemir, Şahin Kaya; Imoto, Nobuyuki (2003), "Experimental extraction of an entangled photon pair from two identically decohered pairs", Nature, 421 (6921): 343–346, Bibcode:2003Natur.421..343Y, doi:10.1038/nature01358, PMID 12540894, S2CID 20824150.
- Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton (2003), "Experimental entanglement purification of arbitrary unknown states", Nature, 423 (6938): 417–422, Bibcode:2003Natur.423..417P, doi:10.1038/nature01623, PMID 12761543, S2CID 4393391.
- Pan, Jian-Wei; Simon, Christoph; Brunker, Časlav; Zeilinger, Anton (2001), "Entanglement purification for quantum communication", Nature, 410 (6832): 1067–1070, arXiv:quant-ph/0012026, Bibcode:2001Natur.410.1067P, doi:10.1038/35074041, PMID 11323664, S2CID 4424450.
- Nielsen, M.A.; Chuang, I.L. (2000), Quantum Computation and Quantum Information, Cambridge University Press, ISBN 0521635039
- Bouwmeester, Dirk; Ekert, Artur; Zeilinger, Anton (2000), The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer, ISBN 3540667784
- Newton, I. (1687), Principia Mathematica, vol. 1, Cambridge University Press
- Luo, Zhicheng; Devetak, Igor (2007), "Efficiently implementable codes for quantum key expansion", Physical Review A, 75 (1): 010303, arXiv:quant-ph/0608029, Bibcode:2007PhRvA..75a0303L, doi:10.1103/PhysRevA.75.010303, S2CID 119491901
- मार्क एम. वाइल्ड, क्लासिकल से क्वांटम शैनन थ्योरी तक, arXiv:1106.1445।
श्रेणी:क्वांटम सूचना विज्ञान श्रेणी:सांख्यिकीय यांत्रिकी