एम-आव्यूह: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
{{math|1=''A''}} की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसा मामला होना चाहिए कि {{math|1=''s'' > ''ρ''(''B'')}}। इसके अलावा, एक गैर-एकवचन M-मैट्रिक्स के लिए, ''A'' के विकर्ण तत्व {{math|1=''a<sub>ii</sub>''}} सकारात्मक होना चाहिए। यहां हम केवल गैर-एकवचन एम-मैट्रिसेस के वर्ग का वर्णन करेंगे। | {{math|1=''A''}} की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसा मामला होना चाहिए कि {{math|1=''s'' > ''ρ''(''B'')}}। इसके अलावा, एक गैर-एकवचन M-मैट्रिक्स के लिए, ''A'' के विकर्ण तत्व {{math|1=''a<sub>ii</sub>''}} सकारात्मक होना चाहिए। यहां हम केवल गैर-एकवचन एम-मैट्रिसेस के वर्ग का वर्णन करेंगे। | ||
ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-मैट्रिसेस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-मैट्रिक्स की प्रारंभिक परिभाषा के रूप में काम कर सकता है।<ref name=":0">{{Citation |first=M |last=Fiedler |first2=V. |last2=Ptak |title=On matrices with non-positive off-diagonal elements and positive principal minors |journal=Czechoslovak Mathematical Journal |volume=12 |issue=3 |pages=382–400 |year=1962 | doi = 10.21136/CMJ.1962.100526|doi-access=free }}.</ref> उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।<ref name=":1">{{Citation |first=R.J. |last=Plemmons |title=M-Matrix Characterizations. I -- Nonsingular M-Matrices |journal=Linear Algebra and its Applications |volume=18 |issue=2 |pages=175–188 |year=1977 |doi=10.1016/0024-3795(77)90073-8|doi-access=free }}.</ref> इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की सकारात्मकता, (2) व्युत्क्रम-सकारात्मकता और विभाजन, (3) स्थिरता, और (4) अर्धसकारात्मकता और विकर्ण प्रभुत्व। गुणों को इस तरह से वर्गीकृत करना समझ में आता है क्योंकि किसी विशेष समूह के भीतर कथन एक-दूसरे से संबंधित होते हैं, भले ही मैट्रिक्स {{math|1=''A''}} एक एकपक्षीय मैट्रिक्स हो, और जरूरी नहीं कि Z-मैट्रिक्स हो। यहां हम प्रत्येक श्रेणी से कुछ | ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-मैट्रिसेस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-मैट्रिक्स की प्रारंभिक परिभाषा के रूप में काम कर सकता है।<ref name=":0">{{Citation |first=M |last=Fiedler |first2=V. |last2=Ptak |title=On matrices with non-positive off-diagonal elements and positive principal minors |journal=Czechoslovak Mathematical Journal |volume=12 |issue=3 |pages=382–400 |year=1962 | doi = 10.21136/CMJ.1962.100526|doi-access=free }}.</ref> उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।<ref name=":1">{{Citation |first=R.J. |last=Plemmons |title=M-Matrix Characterizations. I -- Nonsingular M-Matrices |journal=Linear Algebra and its Applications |volume=18 |issue=2 |pages=175–188 |year=1977 |doi=10.1016/0024-3795(77)90073-8|doi-access=free }}.</ref> इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की सकारात्मकता, (2) व्युत्क्रम-सकारात्मकता और विभाजन, (3) स्थिरता, और (4) अर्धसकारात्मकता और विकर्ण प्रभुत्व। गुणों को इस तरह से वर्गीकृत करना समझ में आता है क्योंकि किसी विशेष समूह के भीतर कथन एक-दूसरे से संबंधित होते हैं, भले ही मैट्रिक्स {{math|1=''A''}} एक एकपक्षीय मैट्रिक्स हो, और जरूरी नहीं कि Z-मैट्रिक्स हो। यहां हम प्रत्येक श्रेणी से कुछ लघु (रैखिक बीजगणित) का उल्लेख करते हैं। | ||
==समतुल्यताएं== | ==समतुल्यताएं== | ||
नीचे, {{math|1= ≥ }} तत्व-वार क्रम को दर्शाता है (मैट्रिसेस पर सामान्य [[सकारात्मक अर्धनिश्चित मैट्रिक्स]] क्रम नहीं)। अर्थात्, | नीचे, {{math|1= ≥ }} तत्व-वार क्रम को दर्शाता है (मैट्रिसेस पर सामान्य [[सकारात्मक अर्धनिश्चित मैट्रिक्स]] क्रम नहीं)। अर्थात्, {{math|1=''m'' × ''n''}} आकार के किसी भी वास्तविक आव्यूह A, B के लिए, हम {{math|1=''A'' ≥ ''B'' (or ''A'' > ''B'')}} लिखते हैं यदि {{math|1= ''a''<sub>''ij''</sub> ≥ ''b''<sub>''ij''</sub> (or ''a''<sub>''ij''</sub> > ''b''<sub>''ij''</sub>) }} सभी i, j के लिए। | ||
मान लीजिए A एक {{math|1=''n'' × ''n''}} वास्तविक Z-मैट्रिक्स है, तो निम्नलिखित कथन A के एक गैर-एकवचन मैट्रिक्स M-मैट्रिक्स होने के बराबर हैं: | |||
प्रमुख | प्रमुख लघु (रैखिक बीजगणित) की सकारात्मकता | ||
*ए के सभी [[लघु (रैखिक बीजगणित)]] सकारात्मक हैं। अर्थात्, A की संगत पंक्तियों और स्तंभों के एक सेट, संभवतः खाली, को हटाकर प्राप्त A के प्रत्येक सबमैट्रिक्स का निर्धारक सकारात्मक है। | *ए के सभी [[लघु (रैखिक बीजगणित)]] सकारात्मक हैं। अर्थात्, A की संगत पंक्तियों और स्तंभों के एक सेट, संभवतः खाली, को हटाकर प्राप्त A के प्रत्येक सबमैट्रिक्स का निर्धारक सकारात्मक है। | ||
* {{math|1=''A'' + ''D''}} प्रत्येक गैर-नकारात्मक विकर्ण मैट्रिक्स डी के लिए गैर-एकवचन है। | * {{math|1=''A'' + ''D''}} प्रत्येक गैर-नकारात्मक विकर्ण मैट्रिक्स डी के लिए गैर-एकवचन है। | ||
* A का प्रत्येक वास्तविक eigenvalue सकारात्मक है। | * A का प्रत्येक वास्तविक eigenvalue सकारात्मक है। | ||
* | *A के सभी प्रमुख प्रमुख लघु (रैखिक बीजगणित) सकारात्मक हैं। | ||
* सकारात्मक विकर्णों के साथ क्रमशः निचले और ऊपरी त्रिकोणीय आव्यूह L और U मौजूद हैं, जैसे कि {{math|1=''A'' = ''LU''}}. | * सकारात्मक विकर्णों के साथ क्रमशः निचले और ऊपरी त्रिकोणीय आव्यूह L और U मौजूद हैं, जैसे कि {{math|1=''A'' = ''LU''}}. | ||
Revision as of 14:12, 7 December 2023
गणित में, विशेष रूप से रैखिक बीजगणित में, एम-आव्यूह एक जेड-मैट्रिक्स एक जेड-मैट्रिक्स है जिसमें आइगेनवैल्यू होते हैं जिनके वास्तविक संख्या भाग गैर-नकारात्मक होते हैं। गैर-एकवचन एम-मैट्रिसेस का सेट पी-मैट्रिक्स के वर्ग का एक उपसमुच्चय है, और व्युत्क्रम-धनात्मक मैट्रिक्स के वर्ग का भी (अर्थात सकारात्मक मैट्रिक्स के वर्ग से संबंधित व्युत्क्रम वाले मैट्रिक्स)।[1] एम-मैट्रिक्स नाम मूल रूप से अलेक्जेंडर ओस्ट्रोवस्की द्वारा हरमन मिन्कोव्स्की के संदर्भ में चुना गया था, जिन्होंने साबित किया कि यदि जेड-मैट्रिक्स की सभी पंक्तियों का योग सकारात्मक है, तो उस मैट्रिक्स का निर्धारक सकारात्मक है।[2]
विशेषताएँ
एम-मैट्रिक्स को आमतौर पर इस प्रकार परिभाषित किया गया है:
परिभाषा: मान लीजिए A एक n × n वास्तविक Z-मैट्रिक्स (गणित) है। अर्थात्, A = (aij) जहां aij ≤ 0 सभी i ≠ j, 1 ≤ i,j ≤ n के लिए। फिर मैट्रिक्स A भी एक M-मैट्रिक्स है यदि इसे A = sI − B के रूप में व्यक्त किया जा सकता है, जहां B = (bij) bij ≥ 0 के साथ, सभी 1 ≤ i,j ≤ n के लिए, जहां s कम से कम B के eigenvalues के अधिकतम मापांक जितना बड़ा है, और I एक पहचान मैट्रिक्स है।
A की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसा मामला होना चाहिए कि s > ρ(B)। इसके अलावा, एक गैर-एकवचन M-मैट्रिक्स के लिए, A के विकर्ण तत्व aii सकारात्मक होना चाहिए। यहां हम केवल गैर-एकवचन एम-मैट्रिसेस के वर्ग का वर्णन करेंगे।
ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-मैट्रिसेस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-मैट्रिक्स की प्रारंभिक परिभाषा के रूप में काम कर सकता है।[3] उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।[4] इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की सकारात्मकता, (2) व्युत्क्रम-सकारात्मकता और विभाजन, (3) स्थिरता, और (4) अर्धसकारात्मकता और विकर्ण प्रभुत्व। गुणों को इस तरह से वर्गीकृत करना समझ में आता है क्योंकि किसी विशेष समूह के भीतर कथन एक-दूसरे से संबंधित होते हैं, भले ही मैट्रिक्स A एक एकपक्षीय मैट्रिक्स हो, और जरूरी नहीं कि Z-मैट्रिक्स हो। यहां हम प्रत्येक श्रेणी से कुछ लघु (रैखिक बीजगणित) का उल्लेख करते हैं।
समतुल्यताएं
नीचे, ≥ तत्व-वार क्रम को दर्शाता है (मैट्रिसेस पर सामान्य सकारात्मक अर्धनिश्चित मैट्रिक्स क्रम नहीं)। अर्थात्, m × n आकार के किसी भी वास्तविक आव्यूह A, B के लिए, हम A ≥ B (or A > B) लिखते हैं यदि aij ≥ bij (or aij > bij) सभी i, j के लिए।
मान लीजिए A एक n × n वास्तविक Z-मैट्रिक्स है, तो निम्नलिखित कथन A के एक गैर-एकवचन मैट्रिक्स M-मैट्रिक्स होने के बराबर हैं:
प्रमुख लघु (रैखिक बीजगणित) की सकारात्मकता
- ए के सभी लघु (रैखिक बीजगणित) सकारात्मक हैं। अर्थात्, A की संगत पंक्तियों और स्तंभों के एक सेट, संभवतः खाली, को हटाकर प्राप्त A के प्रत्येक सबमैट्रिक्स का निर्धारक सकारात्मक है।
- A + D प्रत्येक गैर-नकारात्मक विकर्ण मैट्रिक्स डी के लिए गैर-एकवचन है।
- A का प्रत्येक वास्तविक eigenvalue सकारात्मक है।
- A के सभी प्रमुख प्रमुख लघु (रैखिक बीजगणित) सकारात्मक हैं।
- सकारात्मक विकर्णों के साथ क्रमशः निचले और ऊपरी त्रिकोणीय आव्यूह L और U मौजूद हैं, जैसे कि A = LU.
व्युत्क्रम-सकारात्मकता और विभाजन
- ए व्युत्क्रम-धनात्मक है। वह है, A−1 मौजूद है और A−1 ≥ 0.
- ए मोनोटोन है. वह है, Ax ≥ 0 तात्पर्य x ≥ 0.
- ए में अभिसारी नियमित विभाजन है। अर्थात् A का प्रतिनिधित्व है A = M − N, कहाँ M−1 ≥ 0, N ≥ 0 साथ M−1Nअभिसारी. वह है, ρ(M−1N) < 1.
- व्युत्क्रम-धनात्मक मैट्रिक्स मौजूद हैं M1 और M2 साथ M1 ≤ A ≤ M2.
- ए का प्रत्येक नियमित विभाजन अभिसरण है।
स्थिरता
- एक सकारात्मक विकर्ण मैट्रिक्स डी मौजूद है जैसे कि AD + DAT सकारात्मक निश्चित है.
- ए सकारात्मक स्थिर है. अर्थात्, A के प्रत्येक eigenvalue का वास्तविक भाग धनात्मक है।
- एक सममित सकारात्मक निश्चित मैट्रिक्स W मौजूद है जैसे कि AW + WAT सकारात्मक निश्चित है.
- A + I गैर-एकवचन है, और G = (A + I)−1(A − I) अभिसारी है.
- A + I गैर-एकवचन है, और के लिए G = (A + I)−1(A − I), एक सकारात्मक निश्चित सममित मैट्रिक्स W मौजूद है जैसे कि W − GTWG सकारात्मक निश्चित है.
अर्धसकारात्मकता और विकर्ण प्रभुत्व
- ए अर्ध-धनात्मक है। यानी अस्तित्व में है x > 0 साथ Ax > 0.
- वहां मौजूद x ≥ 0 साथ Ax > 0.
- एक सकारात्मक विकर्ण मैट्रिक्स डी मौजूद है जैसे कि AD में सभी सकारात्मक पंक्ति योग हैं।
- ए में सभी सकारात्मक विकर्ण तत्व हैं, और एक सकारात्मक विकर्ण मैट्रिक्स डी मौजूद है AD सख्ती से विकर्ण रूप से प्रभावशाली है।
- ए में सभी सकारात्मक विकर्ण तत्व हैं, और एक सकारात्मक विकर्ण मैट्रिक्स डी मौजूद है D−1AD सख्ती से विकर्ण रूप से प्रभावशाली है।
अनुप्रयोग
एम-मैट्रिक्स सिद्धांत में प्राथमिक योगदान मुख्य रूप से गणितज्ञों और अर्थशास्त्रियों से आया है। एम-मैट्रिसेस का उपयोग गणित में आइगेनवैल्यू पर सीमाएं स्थापित करने और रैखिक समीकरणों की बड़ी विरल मैट्रिक्स प्रणालियों के समाधान के लिए पुनरावृत्त तरीकों के लिए अभिसरण मानदंड की स्थापना के लिए किया जाता है। एम-मैट्रिसेस स्वाभाविक रूप से अंतर ऑपरेटरों के कुछ विवेकाधिकारों में उत्पन्न होते हैं, जैसे कि लाप्लासियन, और इस तरह वैज्ञानिक कंप्यूटिंग में अच्छी तरह से अध्ययन किया जाता है। एम-मैट्रिसेस रैखिक संपूरकता समस्या के समाधान के अध्ययन में भी होते हैं। रैखिक संपूरकता समस्याएं रैखिक और द्विघात प्रोग्रामिंग, कम्प्यूटेशनल यांत्रिकी और बिमैट्रिक्स गेम के संतुलन बिंदु को खोजने की समस्या में उत्पन्न होती हैं। अंत में, एम-मैट्रिसेस संभाव्यता सिद्धांत और कतारबद्ध सिद्धांत जैसे संचालन अनुसंधान के क्षेत्र में परिमित मार्कोव श्रृंखलाओं के अध्ययन में होते हैं। इस बीच, अर्थशास्त्रियों ने सकल प्रतिस्थापनशीलता, सामान्य संतुलन सिद्धांत की स्थिरता और आर्थिक प्रणालियों में लियोन्टीफ़ के इनपुट-आउटपुट विश्लेषण के संबंध में एम-मैट्रिसेस का अध्ययन किया है। सभी प्रमुख विशेषण की सकारात्मकता की स्थिति को आर्थिक समूह में हॉकिन्स-साइमन स्थिति के रूप में भी जाना जाता है।[5] इंजीनियरिंग में, एम-मैट्रिसेस नियंत्रण सिद्धांत में ल्यपुनोव स्थिरता और फीडबैक नियंत्रण की समस्याओं में भी होते हैं और हर्विट्ज़ मैट्रिक्स से संबंधित हैं। कम्प्यूटेशनल बायोलॉजी विज्ञान में, जनसंख्या गतिशीलता के अध्ययन में एम-मैट्रिसेस होते हैं।
यह भी देखें
- A एक गैर एकवचन कमजोर रूप से विकर्ण रूप से प्रभावशाली एम-मैट्रिक्स है यदि और केवल यदि यह एक कमजोर रूप से श्रृंखलाबद्ध विकर्ण रूप से प्रभावशाली एल-मैट्रिक्स है।
- यदि A एक M-मैट्रिक्स है, तो −A एक मेट्ज़लर मैट्रिक्स है।
- एक गैर-एकवचन सममित M-मैट्रिक्स को कभी-कभी स्टिल्टजेस मैट्रिक्स कहा जाता है।
- हर्विट्ज़ मैट्रिक्स
- पी-मैट्रिक्स
- पेरोन-फ्रोबेनियस प्रमेय
- Z-मैट्रिक्स (गणित)
- एच-मैट्रिक्स (पुनरावृत्तीय विधियों में उपयोगी है)
संदर्भ
- ↑ Fujimoto, Takao & Ranade, Ravindra (2004), "Two Characterizations of Inverse-Positive Matrices: The Hawkins-Simon Condition and the Le Chatelier-Braun Principle" (PDF), Electronic Journal of Linear Algebra, 11: 59–65.
- ↑ Bermon, Abraham; Plemmons, Robert J. (1994), Nonnegative Matrices in the Mathematical Sciences, Philadelphia: Society for Industrial and Applied Mathematics, p. 134,161 (Thm. 2.3 and Note 6.1 of chapter 6), ISBN 0-89871-321-8.
- ↑ Fiedler, M; Ptak, V. (1962), "On matrices with non-positive off-diagonal elements and positive principal minors", Czechoslovak Mathematical Journal, 12 (3): 382–400, doi:10.21136/CMJ.1962.100526.
- ↑ Plemmons, R.J. (1977), "M-Matrix Characterizations. I -- Nonsingular M-Matrices", Linear Algebra and its Applications, 18 (2): 175–188, doi:10.1016/0024-3795(77)90073-8.
- ↑ Nikaido, H. (1970). आधुनिक अर्थशास्त्र में सेट और मैपिंग का परिचय. New York: Elsevier. pp. 13–19. ISBN 0-444-10038-5.