एम-आव्यूह: Difference between revisions
Line 1: | Line 1: | ||
गणित में, विशेष रूप से रैखिक बीजगणित में, '''एम-आव्यूह''' एक जेड-आव्यूह है जिसमें [[eigenvalue|अभिलाक्षणिक मान]] होते हैं जिनके [[वास्तविक संख्या]] भाग गैर- | गणित में, विशेष रूप से रैखिक बीजगणित में, '''एम-आव्यूह''' एक जेड-आव्यूह है जिसमें [[eigenvalue|अभिलाक्षणिक मान]] होते हैं जिनके [[वास्तविक संख्या]] भाग गैर-ऋणात्मक होते हैं। गैर-एकवचन एम-आव्यूह समुच्चय पी-आव्यूह के वर्ग का एक उपसमुच्चय है, और व्युत्क्रम-धनात्मक आव्यूह के वर्ग का भी (अर्थात [[गैर-नकारात्मक मैट्रिक्स|धनात्मक आव्यूह]] के वर्ग से संबंधित व्युत्क्रम वाले आव्यूह)।<ref>{{Citation |first=Takao |last=Fujimoto |name-list-style=amp |first2=Ravindra |last2=Ranade |title=Two Characterizations of Inverse-Positive Matrices: The Hawkins-Simon Condition and the Le Chatelier-Braun Principle |journal=Electronic Journal of Linear Algebra |volume=11 |pages=59–65 |year=2004 |url=http://www.emis.de/journals/ELA/ela-articles/articles/vol11_pp59-65.pdf }}.</ref> एम-आव्यूह नाम मूल रूप से [[अलेक्जेंडर ओस्ट्रोवस्की]] द्वारा [[हरमन मिन्कोव्स्की]] के संदर्भ में चुना गया था, जिन्होंने सिद्ध किया कि यदि जेड-आव्यूह की सभी पंक्तियों का योग धनात्मक है, तो उस आव्यूह का निर्धारक धनात्मक होता है।<ref name="Berman">{{Citation |first=Abraham |last=Bermon |authorlink2=Robert J. Plemmons |first2=Robert J. |last2=Plemmons |title=Nonnegative Matrices in the Mathematical Sciences |location=Philadelphia |publisher=Society for Industrial and Applied Mathematics |year=1994 |page=134,161 (Thm. 2.3 and Note 6.1 of chapter 6) |isbn=0-89871-321-8 }}.</ref> | ||
== विशेषताएँ == | == विशेषताएँ == | ||
एम-आव्यूह को सामान्यतः इस प्रकार परिभाषित किया गया है: | एम-आव्यूह को सामान्यतः इस प्रकार परिभाषित किया गया है: | ||
Line 5: | Line 5: | ||
परिभाषा: मान लीजिए {{math|1=''A''}} एक n × n वास्तविक [[Z-मैट्रिक्स (गणित)|Z-आव्यूह (गणित)]] है। अर्थात्, {{math|1=''A'' = (''a<sub>ij</sub>'')}} जहां {{math|1=''a<sub>ij</sub>'' ≤ 0}} सभी {{math|1=''i'' ≠ ''j'', 1 ≤ ''i,j'' ≤ ''n''}} के लिए। फिर आव्यूह ''A'' भी एक ''M''-आव्यूह है यदि इसे ''A'' = ''sI'' − ''B'' के रूप में व्यक्त किया जा सकता है, जहां B = (bij) bij ≥ 0 के साथ, सभी 1 ≤ i,j ≤ n के लिए, जहां s कम से कम {{math|1=''B''}} के अभिलाक्षणिक मान के अधिकतम मापांक जितना बड़ा है, और {{math|1=''I''}} एक पहचान आव्यूह है। | परिभाषा: मान लीजिए {{math|1=''A''}} एक n × n वास्तविक [[Z-मैट्रिक्स (गणित)|Z-आव्यूह (गणित)]] है। अर्थात्, {{math|1=''A'' = (''a<sub>ij</sub>'')}} जहां {{math|1=''a<sub>ij</sub>'' ≤ 0}} सभी {{math|1=''i'' ≠ ''j'', 1 ≤ ''i,j'' ≤ ''n''}} के लिए। फिर आव्यूह ''A'' भी एक ''M''-आव्यूह है यदि इसे ''A'' = ''sI'' − ''B'' के रूप में व्यक्त किया जा सकता है, जहां B = (bij) bij ≥ 0 के साथ, सभी 1 ≤ i,j ≤ n के लिए, जहां s कम से कम {{math|1=''B''}} के अभिलाक्षणिक मान के अधिकतम मापांक जितना बड़ा है, और {{math|1=''I''}} एक पहचान आव्यूह है। | ||
{{math|1=''A''}} की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसी स्थिति होना चाहिए कि {{math|1=''s'' > ''ρ''(''B'')}}। इसके अतिरिक्त, एक गैर-एकवचन M-आव्यूह के लिए, ''A'' के विकर्ण तत्व {{math|1=''a<sub>ii</sub>''}} | {{math|1=''A''}} की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसी स्थिति होना चाहिए कि {{math|1=''s'' > ''ρ''(''B'')}}। इसके अतिरिक्त, एक गैर-एकवचन M-आव्यूह के लिए, ''A'' के विकर्ण तत्व {{math|1=''a<sub>ii</sub>''}} धनात्मक होना चाहिए। यहां हम केवल गैर-एकवचन एम-आव्यूहस के वर्ग का वर्णन करेंगे। | ||
ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-आव्यूहस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-आव्यूह की प्रारंभिक परिभाषा के रूप में काम कर सकता है।<ref name=":0">{{Citation |first=M |last=Fiedler |first2=V. |last2=Ptak |title=On matrices with non-positive off-diagonal elements and positive principal minors |journal=Czechoslovak Mathematical Journal |volume=12 |issue=3 |pages=382–400 |year=1962 | doi = 10.21136/CMJ.1962.100526|doi-access=free }}.</ref> उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।<ref name=":1">{{Citation |first=R.J. |last=Plemmons |title=M-Matrix Characterizations. I -- Nonsingular M-Matrices |journal=Linear Algebra and its Applications |volume=18 |issue=2 |pages=175–188 |year=1977 |doi=10.1016/0024-3795(77)90073-8|doi-access=free }}.</ref> इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की | ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-आव्यूहस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-आव्यूह की प्रारंभिक परिभाषा के रूप में काम कर सकता है।<ref name=":0">{{Citation |first=M |last=Fiedler |first2=V. |last2=Ptak |title=On matrices with non-positive off-diagonal elements and positive principal minors |journal=Czechoslovak Mathematical Journal |volume=12 |issue=3 |pages=382–400 |year=1962 | doi = 10.21136/CMJ.1962.100526|doi-access=free }}.</ref> उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।<ref name=":1">{{Citation |first=R.J. |last=Plemmons |title=M-Matrix Characterizations. I -- Nonsingular M-Matrices |journal=Linear Algebra and its Applications |volume=18 |issue=2 |pages=175–188 |year=1977 |doi=10.1016/0024-3795(77)90073-8|doi-access=free }}.</ref> इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की धनात्मकता, (2) व्युत्क्रम-धनात्मकता और विभाजन, (3) स्थिरता, और (4) अर्धधनात्मकता और विकर्ण प्रभुत्व। गुणों को इस तरह से वर्गीकृत करना समझ में आता है क्योंकि किसी विशेष समूह के भीतर कथन एक-दूसरे से संबंधित होते हैं, भले ही आव्यूह {{math|1=''A''}} एक एकपक्षीय आव्यूह हो, और जरूरी नहीं कि Z-आव्यूह हो। यहां हम प्रत्येक श्रेणी से कुछ लघु (रैखिक बीजगणित) का उल्लेख करते हैं। | ||
==समतुल्यताएं== | ==समतुल्यताएं== | ||
नीचे, {{math|1= ≥ }} तत्व-वार क्रम को दर्शाता है (आव्यूहस पर सामान्य [[सकारात्मक अर्धनिश्चित मैट्रिक्स| | नीचे, {{math|1= ≥ }} तत्व-वार क्रम को दर्शाता है (आव्यूहस पर सामान्य [[सकारात्मक अर्धनिश्चित मैट्रिक्स|धनात्मक अर्धनिश्चित आव्यूह]] क्रम नहीं)। अर्थात्, {{math|1=''m'' × ''n''}} आकार के किसी भी वास्तविक आव्यूह A, B के लिए, हम {{math|1=''A'' ≥ ''B'' (or ''A'' > ''B'')}} लिखते हैं यदि {{math|1= ''a''<sub>''ij''</sub> ≥ ''b''<sub>''ij''</sub> (or ''a''<sub>''ij''</sub> > ''b''<sub>''ij''</sub>) }} सभी i, j के लिए। | ||
मान लीजिए A एक {{math|1=''n'' × ''n''}} वास्तविक Z-आव्यूह है, तो निम्नलिखित कथन A के एक गैर-एकवचन आव्यूह M-आव्यूह होने के बराबर हैं: | मान लीजिए A एक {{math|1=''n'' × ''n''}} वास्तविक Z-आव्यूह है, तो निम्नलिखित कथन A के एक गैर-एकवचन आव्यूह M-आव्यूह होने के बराबर हैं: | ||
प्रमुख लघु (रैखिक बीजगणित) की | प्रमुख लघु (रैखिक बीजगणित) की धनात्मकता | ||
*A के सभी [[लघु (रैखिक बीजगणित)]] | *A के सभी [[लघु (रैखिक बीजगणित)]] धनात्मक हैं। अर्थात्, A की संगत पंक्तियों और स्तंभों के एक समुच्चय, संभवतः रिक्त, को हटाकर प्राप्त A के प्रत्येक उपआव्यूह का निर्धारक धनात्मक है। | ||
* {{math|1=''A'' + ''D''}} प्रत्येक गैर- | * {{math|1=''A'' + ''D''}} प्रत्येक गैर-ऋणात्मक विकर्ण आव्यूह डी के लिए गैर-एकवचन है। | ||
* A का प्रत्येक वास्तविक अभिलाक्षणिक मान | * A का प्रत्येक वास्तविक अभिलाक्षणिक मान धनात्मक है। | ||
*A के सभी प्रमुख प्रमुख लघु (रैखिक बीजगणित) | *A के सभी प्रमुख प्रमुख लघु (रैखिक बीजगणित) धनात्मक हैं। | ||
* | * धनात्मक विकर्णों के साथ क्रमशः निचले और ऊपरी त्रिकोणीय आव्यूह L और U उपस्थित हैं, जैसे कि {{math|1=''A'' = ''LU''}}. | ||
व्युत्क्रम- | व्युत्क्रम-धनात्मकता और विभाजन | ||
*A व्युत्क्रम-धनात्मक है। वह है, {{math|1=''A''<sup>−1</sup>}} उपस्थित है और {{math|1=''A''<sup>−1</sup> ≥ 0}}. | *A व्युत्क्रम-धनात्मक है। वह है, {{math|1=''A''<sup>−1</sup>}} उपस्थित है और {{math|1=''A''<sup>−1</sup> ≥ 0}}. | ||
*A मोनोटोन है. वह है, {{math|1=''Ax'' ≥ 0}} तात्पर्य {{math|1=''x'' ≥ 0}}. | *A मोनोटोन है. वह है, {{math|1=''Ax'' ≥ 0}} तात्पर्य {{math|1=''x'' ≥ 0}}. | ||
Line 28: | Line 28: | ||
स्थिरता | स्थिरता | ||
* एक | * एक धनात्मक विकर्ण आव्यूह डी उपस्थित है जैसे कि {{math|1=''AD'' + ''DA<sup>T</sup>''}} धनात्मक निश्चित है. | ||
*A | *A धनात्मक स्थिर है। अर्थात्, A के प्रत्येक अभिलाक्षणिक मान का वास्तविक भाग धनात्मक है। | ||
* एक सममित | * एक सममित धनात्मक निश्चित आव्यूह W उपस्थित है जैसे कि {{math|1=''AW'' + ''WA<sup>T</sup>''}} धनात्मक निश्चित है. | ||
* {{math|1=''A'' + ''I''}} गैर-एकवचन है, और {{math|1=''G'' = (''A'' + ''I'')<sup>−1</sup>(''A'' − ''I'')}} अभिसारी है. | * {{math|1=''A'' + ''I''}} गैर-एकवचन है, और {{math|1=''G'' = (''A'' + ''I'')<sup>−1</sup>(''A'' − ''I'')}} अभिसारी है. | ||
* {{math|1=''A'' + ''I''}} गैर-एकवचन है, और के लिए {{math|1=''G'' = (''A'' + ''I'')<sup>−1</sup>(''A'' − ''I'')}}, एक | * {{math|1=''A'' + ''I''}} गैर-एकवचन है, और के लिए {{math|1=''G'' = (''A'' + ''I'')<sup>−1</sup>(''A'' − ''I'')}}, एक धनात्मक निश्चित सममित आव्यूह W उपस्थित है जैसे कि {{math|''W'' − ''G<sup>T</sup>WG''}} धनात्मक निश्चित है. | ||
अर्धधनात्मकता और विकर्ण प्रभुत्व | |||
*A अर्ध-धनात्मक है। अर्थात अस्तित्व में है {{math|''x'' > 0}} साथ {{math|''Ax'' > 0}}. | *A अर्ध-धनात्मक है। अर्थात अस्तित्व में है {{math|''x'' > 0}} साथ {{math|''Ax'' > 0}}. | ||
* वहां उपस्थित {{math|''x'' ≥ 0}} साथ {{math|''Ax'' > 0}}. | * वहां उपस्थित {{math|''x'' ≥ 0}} साथ {{math|''Ax'' > 0}}. | ||
* एक | * एक धनात्मक विकर्ण आव्यूह डी उपस्थित है जैसे कि {{mvar|AD}} में सभी धनात्मक पंक्ति योग हैं। | ||
* A में सभी | * A में सभी धनात्मक विकर्ण तत्व हैं, और एक धनात्मक विकर्ण आव्यूह डी उपस्थित है {{mvar|AD}} सख्ती से [[विकर्ण रूप से प्रभावशाली]] है। | ||
* A में सभी | * A में सभी धनात्मक विकर्ण तत्व हैं, और एक धनात्मक विकर्ण आव्यूह डी उपस्थित है {{math|''D''<sup>−1</sup>''AD''}} पूरी तरह से विकर्ण रूप से प्रभावशाली है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
एम-आव्यूह सिद्धांत में प्राथमिक योगदान मुख्य रूप से गणितज्ञों और अर्थशास्त्रियों से आया है। एम-आव्यूह का उपयोग गणित में अभिलाक्षणिक मान पर सीमाएं स्थापित करने और रैखिक समीकरणों की बड़ी [[विरल मैट्रिक्स|विरल आव्यूह]] प्रणालियों के समाधान के लिए पुनरावृत्त उपायों के लिए अभिसरण मानदंड की स्थापना के लिए किया जाता है। एम-आव्यूहस स्वाभाविक रूप से अंतर ऑपरेटरों के कुछ विवेकाधिकारों में उत्पन्न होते हैं, जैसे कि [[लाप्लासियन]], और इस तरह वैज्ञानिक कंप्यूटिंग में अच्छी तरह से अध्ययन किया जाता है। एम-आव्यूह [[रैखिक संपूरकता समस्या]] के समाधान के अध्ययन में भी होते हैं। [[रैखिक प्रोग्रामिंग|रैखिक संपूरकता समस्याएं]] रैखिक और [[द्विघात प्रोग्रामिंग]], [[कम्प्यूटेशनल यांत्रिकी]] और [[बिमैट्रिक्स गेम|बिआव्यूह गेम]] के संतुलन बिंदु को जांचने की समस्या में उत्पन्न होती हैं। अंत में, एम-आव्यूहस संभाव्यता सिद्धांत और कतारबद्ध सिद्धांत जैसे संचालन अनुसंधान के क्षेत्र में परिमित मार्कोव श्रृंखलाओं के अध्ययन में होते हैं। इस बीच, अर्थशास्त्रियों ने सकल प्रतिस्थापनशीलता, [[सामान्य संतुलन सिद्धांत]] की स्थिरता और आर्थिक प्रणालियों में लियोन्टीफ़ के इनपुट-आउटपुट विश्लेषण के संबंध में एम-आव्यूह का अध्ययन किया है। सभी प्रमुख विशेषण की | एम-आव्यूह सिद्धांत में प्राथमिक योगदान मुख्य रूप से गणितज्ञों और अर्थशास्त्रियों से आया है। एम-आव्यूह का उपयोग गणित में अभिलाक्षणिक मान पर सीमाएं स्थापित करने और रैखिक समीकरणों की बड़ी [[विरल मैट्रिक्स|विरल आव्यूह]] प्रणालियों के समाधान के लिए पुनरावृत्त उपायों के लिए अभिसरण मानदंड की स्थापना के लिए किया जाता है। एम-आव्यूहस स्वाभाविक रूप से अंतर ऑपरेटरों के कुछ विवेकाधिकारों में उत्पन्न होते हैं, जैसे कि [[लाप्लासियन]], और इस तरह वैज्ञानिक कंप्यूटिंग में अच्छी तरह से अध्ययन किया जाता है। एम-आव्यूह [[रैखिक संपूरकता समस्या]] के समाधान के अध्ययन में भी होते हैं। [[रैखिक प्रोग्रामिंग|रैखिक संपूरकता समस्याएं]] रैखिक और [[द्विघात प्रोग्रामिंग]], [[कम्प्यूटेशनल यांत्रिकी]] और [[बिमैट्रिक्स गेम|बिआव्यूह गेम]] के संतुलन बिंदु को जांचने की समस्या में उत्पन्न होती हैं। अंत में, एम-आव्यूहस संभाव्यता सिद्धांत और कतारबद्ध सिद्धांत जैसे संचालन अनुसंधान के क्षेत्र में परिमित मार्कोव श्रृंखलाओं के अध्ययन में होते हैं। इस बीच, अर्थशास्त्रियों ने सकल प्रतिस्थापनशीलता, [[सामान्य संतुलन सिद्धांत]] की स्थिरता और आर्थिक प्रणालियों में लियोन्टीफ़ के इनपुट-आउटपुट विश्लेषण के संबंध में एम-आव्यूह का अध्ययन किया है। सभी प्रमुख विशेषण की धनात्मकता की स्थिति को आर्थिक समूह में हॉकिन्स-साइमन स्थिति के रूप में भी जाना जाता है।<ref>{{cite book |last=Nikaido |first=H. |title=आधुनिक अर्थशास्त्र में सेट और मैपिंग का परिचय|location=New York |publisher=Elsevier |year=1970 |isbn=0-444-10038-5 |pages=13–19 }}</ref> इंजीनियरिंग में, एम-आव्यूह [[नियंत्रण सिद्धांत]] में [[ल्यपुनोव स्थिरता]] और फीडबैक नियंत्रण की समस्याओं में भी होते हैं और [[हर्विट्ज़ मैट्रिक्स|हर्विट्ज़ आव्यूह]] से संबंधित हैं। [[कम्प्यूटेशनल बायोलॉजी]] विज्ञान में, जनसंख्या गतिशीलता के अध्ययन में एम-आव्यूह होते हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:35, 15 December 2023
गणित में, विशेष रूप से रैखिक बीजगणित में, एम-आव्यूह एक जेड-आव्यूह है जिसमें अभिलाक्षणिक मान होते हैं जिनके वास्तविक संख्या भाग गैर-ऋणात्मक होते हैं। गैर-एकवचन एम-आव्यूह समुच्चय पी-आव्यूह के वर्ग का एक उपसमुच्चय है, और व्युत्क्रम-धनात्मक आव्यूह के वर्ग का भी (अर्थात धनात्मक आव्यूह के वर्ग से संबंधित व्युत्क्रम वाले आव्यूह)।[1] एम-आव्यूह नाम मूल रूप से अलेक्जेंडर ओस्ट्रोवस्की द्वारा हरमन मिन्कोव्स्की के संदर्भ में चुना गया था, जिन्होंने सिद्ध किया कि यदि जेड-आव्यूह की सभी पंक्तियों का योग धनात्मक है, तो उस आव्यूह का निर्धारक धनात्मक होता है।[2]
विशेषताएँ
एम-आव्यूह को सामान्यतः इस प्रकार परिभाषित किया गया है:
परिभाषा: मान लीजिए A एक n × n वास्तविक Z-आव्यूह (गणित) है। अर्थात्, A = (aij) जहां aij ≤ 0 सभी i ≠ j, 1 ≤ i,j ≤ n के लिए। फिर आव्यूह A भी एक M-आव्यूह है यदि इसे A = sI − B के रूप में व्यक्त किया जा सकता है, जहां B = (bij) bij ≥ 0 के साथ, सभी 1 ≤ i,j ≤ n के लिए, जहां s कम से कम B के अभिलाक्षणिक मान के अधिकतम मापांक जितना बड़ा है, और I एक पहचान आव्यूह है।
A की गैर-विलक्षणता के लिए, पेरोन-फ्रोबेनियस प्रमेय के अनुसार, ऐसी स्थिति होना चाहिए कि s > ρ(B)। इसके अतिरिक्त, एक गैर-एकवचन M-आव्यूह के लिए, A के विकर्ण तत्व aii धनात्मक होना चाहिए। यहां हम केवल गैर-एकवचन एम-आव्यूहस के वर्ग का वर्णन करेंगे।
ऐसे कई कथन ज्ञात हैं जो गैर-एकवचन एम-आव्यूहस की इस परिभाषा के समतुल्य हैं, और इनमें से कोई भी कथन गैर-एकवचन एम-आव्यूह की प्रारंभिक परिभाषा के रूप में काम कर सकता है।[3] उदाहरण के लिए, प्लेम्मोंस ऐसी 40 समतुल्यताओं को सूचीबद्ध करता है।[4] इन विशेषताओं को प्लेम्मोंस द्वारा निम्नलिखित के गुणों के साथ उनके संबंधों के आधार पर वर्गीकृत किया गया है: (1) प्रमुख विशेषण की धनात्मकता, (2) व्युत्क्रम-धनात्मकता और विभाजन, (3) स्थिरता, और (4) अर्धधनात्मकता और विकर्ण प्रभुत्व। गुणों को इस तरह से वर्गीकृत करना समझ में आता है क्योंकि किसी विशेष समूह के भीतर कथन एक-दूसरे से संबंधित होते हैं, भले ही आव्यूह A एक एकपक्षीय आव्यूह हो, और जरूरी नहीं कि Z-आव्यूह हो। यहां हम प्रत्येक श्रेणी से कुछ लघु (रैखिक बीजगणित) का उल्लेख करते हैं।
समतुल्यताएं
नीचे, ≥ तत्व-वार क्रम को दर्शाता है (आव्यूहस पर सामान्य धनात्मक अर्धनिश्चित आव्यूह क्रम नहीं)। अर्थात्, m × n आकार के किसी भी वास्तविक आव्यूह A, B के लिए, हम A ≥ B (or A > B) लिखते हैं यदि aij ≥ bij (or aij > bij) सभी i, j के लिए।
मान लीजिए A एक n × n वास्तविक Z-आव्यूह है, तो निम्नलिखित कथन A के एक गैर-एकवचन आव्यूह M-आव्यूह होने के बराबर हैं:
प्रमुख लघु (रैखिक बीजगणित) की धनात्मकता
- A के सभी लघु (रैखिक बीजगणित) धनात्मक हैं। अर्थात्, A की संगत पंक्तियों और स्तंभों के एक समुच्चय, संभवतः रिक्त, को हटाकर प्राप्त A के प्रत्येक उपआव्यूह का निर्धारक धनात्मक है।
- A + D प्रत्येक गैर-ऋणात्मक विकर्ण आव्यूह डी के लिए गैर-एकवचन है।
- A का प्रत्येक वास्तविक अभिलाक्षणिक मान धनात्मक है।
- A के सभी प्रमुख प्रमुख लघु (रैखिक बीजगणित) धनात्मक हैं।
- धनात्मक विकर्णों के साथ क्रमशः निचले और ऊपरी त्रिकोणीय आव्यूह L और U उपस्थित हैं, जैसे कि A = LU.
व्युत्क्रम-धनात्मकता और विभाजन
- A व्युत्क्रम-धनात्मक है। वह है, A−1 उपस्थित है और A−1 ≥ 0.
- A मोनोटोन है. वह है, Ax ≥ 0 तात्पर्य x ≥ 0.
- A में अभिसारी नियमित विभाजन है। अर्थात् A का प्रतिनिधित्व है A = M − N, कहाँ M−1 ≥ 0, N ≥ 0 साथ M−1Nअभिसारी. वह है, ρ(M−1N) < 1.
- व्युत्क्रम-धनात्मक आव्यूह उपस्थित हैं M1 और M2 साथ M1 ≤ A ≤ M2.
- A का प्रत्येक नियमित विभाजन अभिसरण है।
स्थिरता
- एक धनात्मक विकर्ण आव्यूह डी उपस्थित है जैसे कि AD + DAT धनात्मक निश्चित है.
- A धनात्मक स्थिर है। अर्थात्, A के प्रत्येक अभिलाक्षणिक मान का वास्तविक भाग धनात्मक है।
- एक सममित धनात्मक निश्चित आव्यूह W उपस्थित है जैसे कि AW + WAT धनात्मक निश्चित है.
- A + I गैर-एकवचन है, और G = (A + I)−1(A − I) अभिसारी है.
- A + I गैर-एकवचन है, और के लिए G = (A + I)−1(A − I), एक धनात्मक निश्चित सममित आव्यूह W उपस्थित है जैसे कि W − GTWG धनात्मक निश्चित है.
अर्धधनात्मकता और विकर्ण प्रभुत्व
- A अर्ध-धनात्मक है। अर्थात अस्तित्व में है x > 0 साथ Ax > 0.
- वहां उपस्थित x ≥ 0 साथ Ax > 0.
- एक धनात्मक विकर्ण आव्यूह डी उपस्थित है जैसे कि AD में सभी धनात्मक पंक्ति योग हैं।
- A में सभी धनात्मक विकर्ण तत्व हैं, और एक धनात्मक विकर्ण आव्यूह डी उपस्थित है AD सख्ती से विकर्ण रूप से प्रभावशाली है।
- A में सभी धनात्मक विकर्ण तत्व हैं, और एक धनात्मक विकर्ण आव्यूह डी उपस्थित है D−1AD पूरी तरह से विकर्ण रूप से प्रभावशाली है।
अनुप्रयोग
एम-आव्यूह सिद्धांत में प्राथमिक योगदान मुख्य रूप से गणितज्ञों और अर्थशास्त्रियों से आया है। एम-आव्यूह का उपयोग गणित में अभिलाक्षणिक मान पर सीमाएं स्थापित करने और रैखिक समीकरणों की बड़ी विरल आव्यूह प्रणालियों के समाधान के लिए पुनरावृत्त उपायों के लिए अभिसरण मानदंड की स्थापना के लिए किया जाता है। एम-आव्यूहस स्वाभाविक रूप से अंतर ऑपरेटरों के कुछ विवेकाधिकारों में उत्पन्न होते हैं, जैसे कि लाप्लासियन, और इस तरह वैज्ञानिक कंप्यूटिंग में अच्छी तरह से अध्ययन किया जाता है। एम-आव्यूह रैखिक संपूरकता समस्या के समाधान के अध्ययन में भी होते हैं। रैखिक संपूरकता समस्याएं रैखिक और द्विघात प्रोग्रामिंग, कम्प्यूटेशनल यांत्रिकी और बिआव्यूह गेम के संतुलन बिंदु को जांचने की समस्या में उत्पन्न होती हैं। अंत में, एम-आव्यूहस संभाव्यता सिद्धांत और कतारबद्ध सिद्धांत जैसे संचालन अनुसंधान के क्षेत्र में परिमित मार्कोव श्रृंखलाओं के अध्ययन में होते हैं। इस बीच, अर्थशास्त्रियों ने सकल प्रतिस्थापनशीलता, सामान्य संतुलन सिद्धांत की स्थिरता और आर्थिक प्रणालियों में लियोन्टीफ़ के इनपुट-आउटपुट विश्लेषण के संबंध में एम-आव्यूह का अध्ययन किया है। सभी प्रमुख विशेषण की धनात्मकता की स्थिति को आर्थिक समूह में हॉकिन्स-साइमन स्थिति के रूप में भी जाना जाता है।[5] इंजीनियरिंग में, एम-आव्यूह नियंत्रण सिद्धांत में ल्यपुनोव स्थिरता और फीडबैक नियंत्रण की समस्याओं में भी होते हैं और हर्विट्ज़ आव्यूह से संबंधित हैं। कम्प्यूटेशनल बायोलॉजी विज्ञान में, जनसंख्या गतिशीलता के अध्ययन में एम-आव्यूह होते हैं।
यह भी देखें
- A एक गैर एकवचन कमजोर रूप से विकर्ण रूप से प्रभावशाली एम-आव्यूह है यदि और केवल यदि यह एक कमजोर रूप से श्रृंखलाबद्ध विकर्ण रूप से प्रभावशाली एल-आव्यूह है।
- यदि A एक M-आव्यूह है, तो −A एक मेट्ज़लर आव्यूह है।
- एक गैर-एकवचन सममित M-आव्यूह को कभी-कभी स्टिल्टजेस आव्यूह कहा जाता है।
- हर्विट्ज़ आव्यूह
- पी-आव्यूह
- पेरोन-फ्रोबेनियस प्रमेय
- Z-आव्यूह (गणित)
- एच-आव्यूह (पुनरावृत्तीय विधियों में उपयोगी है)
संदर्भ
- ↑ Fujimoto, Takao & Ranade, Ravindra (2004), "Two Characterizations of Inverse-Positive Matrices: The Hawkins-Simon Condition and the Le Chatelier-Braun Principle" (PDF), Electronic Journal of Linear Algebra, 11: 59–65.
- ↑ Bermon, Abraham; Plemmons, Robert J. (1994), Nonnegative Matrices in the Mathematical Sciences, Philadelphia: Society for Industrial and Applied Mathematics, p. 134,161 (Thm. 2.3 and Note 6.1 of chapter 6), ISBN 0-89871-321-8.
- ↑ Fiedler, M; Ptak, V. (1962), "On matrices with non-positive off-diagonal elements and positive principal minors", Czechoslovak Mathematical Journal, 12 (3): 382–400, doi:10.21136/CMJ.1962.100526.
- ↑ Plemmons, R.J. (1977), "M-Matrix Characterizations. I -- Nonsingular M-Matrices", Linear Algebra and its Applications, 18 (2): 175–188, doi:10.1016/0024-3795(77)90073-8.
- ↑ Nikaido, H. (1970). आधुनिक अर्थशास्त्र में सेट और मैपिंग का परिचय. New York: Elsevier. pp. 13–19. ISBN 0-444-10038-5.