कारण संकेतन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 27: Line 27:
====चिकित्सा उदाहरण: समान परिणाम के दो कारण====
====चिकित्सा उदाहरण: समान परिणाम के दो कारण====


धूम्रपान, <math>f(y)</math>, और एस्बेस्टस के संपर्क में आना, <math>g(y)</math>, दोनों ही कैंसर, <math>y</math> के ज्ञात कारण हैं। व्यक्ति कितनी सिगरेट पीता है, <math>f(y)</math>, और व्यक्ति कितने ग्राम एस्बेस्टस लेता है, <math>g(y)</math> के मध्य समतुल्य कैंसरजन्यता का वर्णन करने के लिए समीकरण <math>f(y) = g(y)</math> लिख सकता है। यहाँ, न ही <math>f(y)</math> कारण <math>g(y)</math> और न <math>g(y)</math> कारण <math>f(y)</math>, किन्तु उन दोनों का परिणाम समान है।
धूम्रपान, <math>f(y)</math>, और एस्बेस्टस <math>g(y)</math> के संपर्क में आना, दोनों ही कैंसर, <math>y</math> के ज्ञात कारण हैं। कोई व्यक्ति कितनी सिगरेट पीता है, <math>f(y)</math>, और कितने ग्राम एस्बेस्टस लेता है, <math>g(y)</math> के मध्य समतुल्य कैंसरजन्यता का वर्णन करने के लिए समीकरण <math>f(y) = g(y)</math> अंकित किया जा सकता है। यहां, न तो <math>f(y)</math>, <math>g(y)</math> का कारण बनता है और न ही <math>g(y)</math>, <math>f(y)</math> का कारण बनता है, किन्तु उन दोनों का परिणाम समान है।


====वस्तु विनिमय उदाहरण: द्विदिश कारण संबंध====
====वस्तु विनिमय उदाहरण: द्विदिश कारण संबंध====


वस्तु विनिमय आधारित अर्थव्यवस्था पर विचार करें जहां गायों की संख्या अधिक हो <math>C</math> किसी के पास मुर्गियों का मूल्य मानक मुद्रा में मापा जाता है, <math>y</math>. इसके अतिरिक्त, तेल के बैरल की संख्या <math>B</math> किसी का अपना मूल्य होता है जिसे मुर्गियों में मापा जा सकता है, <math>y</math>. यदि कोई बाज़ार मौजूद है जहाँ गायों का व्यापार मुर्गियों के लिए किया जा सकता है और बदले में तेल के बैरल के लिए व्यापार किया जा सकता है, तो कोई समीकरण लिख सकता है <math>C(y) = B(y)</math> गायों के मध्य मूल्य संबंध का वर्णन करने के लिए <math>C</math> और तेल के बैरल <math>B</math>. मान लीजिए कि इस अर्थव्यवस्था में व्यक्ति हमेशा अपने मूल्य का आधा हिस्सा गायों के रूप में और आधा हिस्सा तेल के बैरल के रूप में रखता है। फिर, उनकी गायों की संख्या में वृद्धि हुई <math>C(y)</math> उन्हें 4 गायों की पेशकश करने से अंततः उनके तेल बैरल की संख्या में वृद्धि होगी <math>B(y)</math>, या विपरीत। इस मामले में, गणितीय समानता <math>C(y) = B(y)</math> द्विदिश कारण संबंध का वर्णन करता है।
वस्तु-विनिमय-आधारित अर्थव्यवस्था पर विचार करें, जहां <math>C</math> के निकट जितनी गायें हैं, उनका मूल्य मुर्गियों की मानक मुद्रा, <math>y</math> में मापा जाता है। इसके अतिरिक्त, <math>B</math> के निकट तेल के बैरल की संख्या का मूल्य है जिसे मुर्गियों, <math>y</math> में मापा जा सकता है। यदि कोई मार्केट उपस्थित है जहाँ गायों का व्यापार मुर्गियों के लिए किया जा सकता है और जिनका व्यापार तेल के बैरल के लिए भी किया जा सकता है, तो कोई गाय <math>C</math> और तेल के बैरल <math>B</math> के मध्य मूल्य संबंध का वर्णन करने के लिए समीकरण <math>C(y) = B(y)</math> लिख सकता है। मान लीजिए कि इस अर्थव्यवस्था में व्यक्ति सदैव अपने मूल्य का अर्ध भाग गायों के रूप में और अर्ध भाग तेल के बैरल के रूप में रखता है। तत्पश्चात, उन्हें 4 गायें देकर उनकी गायों की संख्या <math>C(y)</math> में वृद्धि करने से अंततः उनके तेल बैरल <math>B(y)</math> की संख्या में वृद्धि होगी, अथवा इसके विपरीत भी हो सकता है। इस स्थिति में, गणितीय समानता <math>C(y) = B(y)</math> द्विदिश कारण संबंध का वर्णन करती है।


==नोटेशन==
==संकेतन==


====रासायनिक प्रतिक्रियाएँ====
====रासायनिक प्रतिक्रियाएँ====


रसायन विज्ञान में, कई रासायनिक प्रतिक्रियाएं प्रतिवर्ती होती हैं और समीकरणों का उपयोग करके वर्णित की जाती हैं जो गतिशील [[रासायनिक संतुलन]] की ओर प्रवृत्त होती हैं। इन प्रतिक्रियाओं में, [[अभिकर्मक]] या [[उत्पाद (रसायन विज्ञान)]] जोड़ने से प्रतिक्रिया क्रमशः अधिक उत्पाद, या अधिक अभिकारक उत्पन्न करती है। समान चिह्न के स्थान पर "हार्पून-प्रकार" तीर निकालना मानक है, {{eqm}}, प्रतिक्रिया की प्रतिवर्ती प्रकृति और अभिकारकों और उत्पादों के मध्य गतिशील कारण संबंध को दर्शाने के लिए।<ref name=":4" /><ref name=":5" />
रसायन विज्ञान में, कई रासायनिक प्रतिक्रियाएं प्रतिवर्ती होती हैं और समीकरणों का उपयोग करके वर्णित की जाती हैं जो गतिशील [[रासायनिक संतुलन]] की ओर प्रवृत्त होती हैं। इन प्रतिक्रियाओं में, [[अभिकर्मक]] अथवा [[उत्पाद (रसायन विज्ञान)]] जोड़ने से प्रतिक्रिया क्रमशः अधिक उत्पाद, अथवा अधिक अभिकारक उत्पन्न करती है। प्रतिक्रिया की प्रतिवर्ती प्रकृति और अभिकारकों तथा उत्पादों के मध्य गतिशील कारण संबंध को दर्शाने के लिए, समान चिह्न के स्थान पर "हार्पून-प्रकार" तीर {{eqm}} बनाना मानक है।<ref name=":4" /><ref name=":5" />


'''सांख्यिकी: अंकन करें'''
'''सांख्यिकी: अंकन करें'''


कारण मॉडल#हस्तक्षेप|डू-कैलकुलस, और विशेष रूप से डू ऑपरेटर, का उपयोग संभाव्यता की भाषा में कारण संबंधों का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, डू-कैलकुलस में प्रयुक्त नोटेशन है:
डू-कैलकुलस और विशेष रूप से डू ऑपरेटर का उपयोग प्रायिकता की भाषा में कारण संबंधों का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, डू-कैलकुलस में प्रयुक्त संकेतन है-


:<math>P(Y|do(X)) = P(Y)~</math>,
:<math>P(Y|do(X)) = P(Y)~</math>,


जिसे "की संभावना" के रूप में पढ़ा जा सकता है <math>Y</math> यह देखते हुए कि आप ऐसा करते हैं <math>X</math>”। उपरोक्त अभिव्यक्ति उस मामले का वर्णन करती है जहां <math>Y</math> किए गए किसी भी कार्य से स्वतंत्र है <math>X</math>.<ref name=":4" />यह निर्दिष्ट करता है कि जहां कोई यूनिडायरेक्शनल कारण संबंध नहीं है <math>X</math> कारण <math>Y</math>.
जिसे इस प्रकार पढ़ा जा सकता है: "<math>Y</math> की प्रायिकता दी गई है कि आप <math>X</math> करते हैं"। उपरोक्त अभिव्यक्ति उस स्थिति का वर्णन करती है जहां <math>Y</math>, <math>X</math> के साथ किए गए किसी भी कार्य से स्वतंत्र है।<ref name=":4" /> यह निर्दिष्ट करता है कि जहां <math>X</math>, <math>Y</math> का कारण बनता है वहां कोई यूनिडायरेक्शनल कारण संबंध नहीं होता है।


====कारण रेखाचित्र====
====कारण रेखाचित्र====


कारण आरेख में नोड्स का सेट होता है जो तीरों द्वारा आपस में जुड़ा हो भी सकता है और नहीं भी। नोड्स के मध्य के तीर कारण से प्रभाव की ओर इशारा करते हुए तीर के साथ कारण संबंधों को दर्शाते हैं। कारण आरेखों के कई रूप मौजूद हैं जिनमें [[इशिकावा]] आरेख, [[निर्देशित अचक्रीय ग्राफ]], [[कारण लूप आरेख]],<ref name=":10"/>और क्यों-क्योंकि विश्लेषण|क्यों-क्योंकि ग्राफ़ (डब्ल्यूबीजी)नीचे दी गई छवि आंशिक क्यों-क्योंकि ग्राफ़ दिखाती है जिसका उपयोग हेराल्ड ऑफ़ फ्री एंटरप्राइज़ के कैप्साइज़िंग का विश्लेषण करने के लिए किया जाता है. [[Image:Herald of Free Enterprise WBG.png|thumb|800px|center|आंशिक क्यों-क्योंकि मुक्त उद्यम के हेराल्ड के पलटने का ग्राफ]]
कारण आरेख में नोड्स का सेट होता है जो तीरों द्वारा संयोजित हो भी सकता है और नहीं भी हो सकता है। नोड्स के मध्य के तीर कारण से प्रभाव की ओर संकेत करते हुए तीर के साथ कारण संबंधों को दर्शाते हैं। कारण आरेखों के कई रूप उपस्थित हैं, जिनमें [[इशिकावा]] आरेख, [[निर्देशित अचक्रीय ग्राफ]], [[कारण लूप आरेख|कैज़ुअल लूप आरेख]],<ref name=":10"/> और व्हाई-बिकॉज़ ग्राफ़ (डब्ल्यूबीजी) सम्मिलित हैं। नीचे दी गई छवि आंशिक व्हाई-बिकॉज़ ग्राफ़ दिखाती है जिसका उपयोग हेराल्ड ऑफ़ फ्री एंटरप्राइज़ के कैप्साइज़िंग का विश्लेषण करने के लिए किया जाता है। [[Image:Herald of Free Enterprise WBG.png|thumb|800px|center|आंशिक व्हाई-बिकॉज़ मुक्त उद्यम के हेराल्ड के कैप्साइज़िंग का ग्राफ]]


==संदर्भ==
==संदर्भ==

Revision as of 20:58, 8 August 2023

प्रकृति और मानव समाज में, कई घटनाओं में कारण संबंध होते हैं जहां घटना ए (कारण) अन्य घटना बी (प्रभाव) को प्रभावित करती है। कारण संबंध स्थापित करना जीव विज्ञान और भौतिकी[1] से लेकर सामाजिक विज्ञान और अर्थशास्त्र[2] तक के विभिन्न क्षेत्रों में कई वैज्ञानिक अध्ययनों का उद्देश्य है।[3] यह दुर्घटना विश्लेषण का भी विषय है,[4] और इसे प्रभावी नीति निर्माण के लिए स्थिति माना जा सकता है।

घटनाओं के मध्य कारण संबंधों का वर्णन करने के लिए, गैर-मात्रात्मक दृश्य संकेतन जैसे तीर सामान्य हैं, उदाहरण के लिए नाइट्रोजन चक्र अथवा कई रसायन विज्ञान[5][6] और गणित[7] पाठ्यपुस्तकों में तीर जैसे संकेतनों का उपयोग किया जाता है। गणितीय सम्मेलनों का भी उपयोग किया जाता है, जैसे क्षैतिज अक्ष पर स्वतंत्र चर और ऊर्ध्वाधर अक्ष पर आश्रित चर की रचना करना,[8] अथवा संकेतन का उपयोग यह दर्शाने के लिए किया जाता है कि परिमाण आश्रित चर है जो स्वतंत्र चर का फलन है।[9] मात्रात्मक गणितीय अभिव्यक्तियों का उपयोग करके कारण संबंधों का भी वर्णन किया गया है।[10]

निम्नलिखित उदाहरण विभिन्न प्रकार के कारण संबंधों को दर्शाते हैं। इसके पश्चात कारण संबंधों को दर्शाने के लिए विभिन्न संकेतन का उपयोग किया जाता है।

उदाहरण

निम्नलिखित उदाहरण आवश्यक रूप से उस परंपरा को नहीं मानते हैं जिसके अंतर्गत स्वतंत्र चर को दर्शाता है और स्वतंत्र चर के फलन को दर्शाता है। इसके अतिरिक्त, और प्राथमिक अज्ञात कारण संबंध के साथ दो मात्राओं को दर्शाते हैं, जिन्हें गणितीय अभिव्यक्ति द्वारा संबंधित किया जा सकता है।

पारिस्थितिकी तंत्र उदाहरण: कार्य-कारण के बिना सहसंबंध

कल्पना कीजिए कि शून्य डिग्री सेल्सियस से नीचे के दिनों की संख्या , झील पर बर्फ का निर्माण करती है, और यह भालू को हाइबरनेशन में जाने का कारण बनती है। इस प्रकार , का कारण नहीं बनता है और इसके विपरीत, कोई और से संबंधित समीकरण लिख सकता है। बर्फ से कवर झील के सतह क्षेत्र को देखते हुए, इस समीकरण का उपयोग हाइबरनेटिंग भालुओं की संख्या की सफलतापूर्वक गणना करने के लिए किया जा सकता है। यद्यपि, झील के क्षेत्र में बर्फ पर नमक डालकर उसे पिघलाने से भालू शीतनिद्रा से बाहर नहीं आएँगे। भालुओं को शारीरिक रूप से विचलित करके जागृत करने पर भी बर्फ नहीं पिघलेगी। इस स्थिति में दो मात्राएँ और दोनों कन्फ़ाउंडिंग चर (बाहरी तापमान) के कारण होती हैं, किन्तु एक-दूसरे के कारण नहीं होती हैं। और बिना किसी कारण के सहसंबंध से संबंधित होते हैं।

भौतिकी उदाहरण: यूनिडायरेक्शनल कारण संबंध

मान लीजिए कि आदर्श सौर-संचालित प्रणाली इस प्रकार बनाई गई है कि यदि धूप है और सूर्य वाट की तीव्रता प्रदान करता है, जो m सौर पैनल पर सेकंड के लिए आपतित होती है, तो विद्युत मोटर किलो के पत्थर को मीटर तक उठा देती है। अधिक सामान्यतः, हम मानते हैं कि प्रणाली को निम्नलिखित अभिव्यक्ति द्वारा वर्णित किया गया है:

,

जहाँ सूर्य के प्रकाश की तीव्रता (Jsm) को दर्शाता है, सौर पैनल का सतह क्षेत्र (m) दर्शाता है, समय (s) को दर्शाता है, द्रव्यमान (kg) को दर्शाता है, पृथ्वी के गुरुत्वाकर्षण के कारण त्वरण ( ms) का प्रतिनिधित्व करता है, और उस ऊँचाई (m) को दर्शाता है जिस पर चट्टान उठाई गई है।

इस उदाहरण में, तथ्य यह है कि यह धूप है और प्रकाश की तीव्रता है जिसके कारण पत्थर तक ऊपर उठता है, न कि इसके विपरीत होता है; पत्थर उठाने ( में वृद्धि करने पर) से सौर पैनल ( में वृद्धि) को प्रकाशित करने के लिए सूर्य के प्रकाश का उपयोग नहीं करना होगा। और के मध्य कारणात्मक संबंध यूनिडायरेक्शनल है।

चिकित्सा उदाहरण: समान परिणाम के दो कारण

धूम्रपान, , और एस्बेस्टस के संपर्क में आना, दोनों ही कैंसर, के ज्ञात कारण हैं। कोई व्यक्ति कितनी सिगरेट पीता है, , और कितने ग्राम एस्बेस्टस लेता है, के मध्य समतुल्य कैंसरजन्यता का वर्णन करने के लिए समीकरण अंकित किया जा सकता है। यहां, न तो , का कारण बनता है और न ही , का कारण बनता है, किन्तु उन दोनों का परिणाम समान है।

वस्तु विनिमय उदाहरण: द्विदिश कारण संबंध

वस्तु-विनिमय-आधारित अर्थव्यवस्था पर विचार करें, जहां के निकट जितनी गायें हैं, उनका मूल्य मुर्गियों की मानक मुद्रा, में मापा जाता है। इसके अतिरिक्त, के निकट तेल के बैरल की संख्या का मूल्य है जिसे मुर्गियों, में मापा जा सकता है। यदि कोई मार्केट उपस्थित है जहाँ गायों का व्यापार मुर्गियों के लिए किया जा सकता है और जिनका व्यापार तेल के बैरल के लिए भी किया जा सकता है, तो कोई गाय और तेल के बैरल के मध्य मूल्य संबंध का वर्णन करने के लिए समीकरण लिख सकता है। मान लीजिए कि इस अर्थव्यवस्था में व्यक्ति सदैव अपने मूल्य का अर्ध भाग गायों के रूप में और अर्ध भाग तेल के बैरल के रूप में रखता है। तत्पश्चात, उन्हें 4 गायें देकर उनकी गायों की संख्या में वृद्धि करने से अंततः उनके तेल बैरल की संख्या में वृद्धि होगी, अथवा इसके विपरीत भी हो सकता है। इस स्थिति में, गणितीय समानता द्विदिश कारण संबंध का वर्णन करती है।

संकेतन

रासायनिक प्रतिक्रियाएँ

रसायन विज्ञान में, कई रासायनिक प्रतिक्रियाएं प्रतिवर्ती होती हैं और समीकरणों का उपयोग करके वर्णित की जाती हैं जो गतिशील रासायनिक संतुलन की ओर प्रवृत्त होती हैं। इन प्रतिक्रियाओं में, अभिकर्मक अथवा उत्पाद (रसायन विज्ञान) जोड़ने से प्रतिक्रिया क्रमशः अधिक उत्पाद, अथवा अधिक अभिकारक उत्पन्न करती है। प्रतिक्रिया की प्रतिवर्ती प्रकृति और अभिकारकों तथा उत्पादों के मध्य गतिशील कारण संबंध को दर्शाने के लिए, समान चिह्न के स्थान पर "हार्पून-प्रकार" तीर ⇌ बनाना मानक है।[5][6]

सांख्यिकी: अंकन करें

डू-कैलकुलस और विशेष रूप से डू ऑपरेटर का उपयोग प्रायिकता की भाषा में कारण संबंधों का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, डू-कैलकुलस में प्रयुक्त संकेतन है-

,

जिसे इस प्रकार पढ़ा जा सकता है: " की प्रायिकता दी गई है कि आप करते हैं"। उपरोक्त अभिव्यक्ति उस स्थिति का वर्णन करती है जहां , के साथ किए गए किसी भी कार्य से स्वतंत्र है।[5] यह निर्दिष्ट करता है कि जहां , का कारण बनता है वहां कोई यूनिडायरेक्शनल कारण संबंध नहीं होता है।

कारण रेखाचित्र

कारण आरेख में नोड्स का सेट होता है जो तीरों द्वारा संयोजित हो भी सकता है और नहीं भी हो सकता है। नोड्स के मध्य के तीर कारण से प्रभाव की ओर संकेत करते हुए तीर के साथ कारण संबंधों को दर्शाते हैं। कारण आरेखों के कई रूप उपस्थित हैं, जिनमें इशिकावा आरेख, निर्देशित अचक्रीय ग्राफ, कैज़ुअल लूप आरेख,[10] और व्हाई-बिकॉज़ ग्राफ़ (डब्ल्यूबीजी) सम्मिलित हैं। नीचे दी गई छवि आंशिक व्हाई-बिकॉज़ ग्राफ़ दिखाती है जिसका उपयोग हेराल्ड ऑफ़ फ्री एंटरप्राइज़ के कैप्साइज़िंग का विश्लेषण करने के लिए किया जाता है।

आंशिक व्हाई-बिकॉज़ मुक्त उद्यम के हेराल्ड के कैप्साइज़िंग का ग्राफ

संदर्भ

  1. Aspect, Alain; Grangier, Philippe; Roger, Gérard (12 July 1982). "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities". Physical Review Letters. 49 (2): 91–94. Bibcode:1982PhRvL..49...91A. doi:10.1103/PhysRevLett.49.91.
  2. Fischer, Stanley; Easterly, William (1990). "सरकारी बजट बाधा का अर्थशास्त्र". The World Bank Research Observer. 5 (2): 127–142. doi:10.1093/wbro/5.2.127.
  3. Marshall, BarryJ; Warren, J.Robin (June 1984). "गैस्ट्राइटिस और पेप्टिक अल्सरेशन वाले रोगियों के पेट में अज्ञात घुमावदार बेसिली". The Lancet. 323 (8390): 1311–1315. doi:10.1016/S0140-6736(84)91816-6. PMID 6145023. S2CID 10066001.
  4. Ladkin, Peter; Loer, Karsten (April 1998). डब्ल्यूबी-विश्लेषण का उपयोग करके विमानन दुर्घटनाओं का विश्लेषण - मल्टीमॉडल रीजनिंग का एक अनुप्रयोग (PDF). Spring Symposion. Association for the Advancement of Artificial Intelligence. Archived from the original (PDF) on 2022-12-21.
  5. 5.0 5.1 5.2 Bruice, Paula Yurkanis (2007). कार्बनिक रसायन विज्ञान (in English) (5th ed.). Pearson Prentice Hall Upper Saddle River, NJ. p. 44,45. ISBN 978-0-13-196316-0.
  6. 6.0 6.1 Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey; Madura, Jeffry D. (2007). सामान्य रसायन विज्ञान सिद्धांत और आधुनिक अनुप्रयोग (in English) (9th ed.). Pearson Prentice Hall Upper Saddle River, NJ. pp. 573–650. ISBN 978-0-13-149330-8.
  7. B. George, George (2007). थॉमस की गणना (in English) (11th ed.). Pearson. p. 20. ISBN 978-0-321-18558-7.
  8. Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey; Madura, Jeffry D. (2007). सामान्य रसायन विज्ञान सिद्धांत और आधुनिक अनुप्रयोग (in English) (9th ed.). Pearson Prentice Hall Upper Saddle River, NJ. p. 575. ISBN 978-0-13-149330-8.
  9. B. George, George (2007). थॉमस की गणना (in English) (11th ed.). Pearson. p. 19. ISBN 978-0-321-18558-7.
  10. 10.0 10.1 Pearl, Judea; Mackenzie, Dana (2018-05-15). The Book of Why: The New Science of Cause and Effect (in English). Basic Books. ISBN 9780465097616.