ट्रांसवर्स-फील्ड आइसिंग मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
==1डी ट्रांसवर्स-फील्ड आइसिंग मॉडल के चरण== | ==1डी ट्रांसवर्स-फील्ड आइसिंग मॉडल के चरण== | ||
नीचे चर्चा एक आयामी स्थिति तक सीमित होती है जहां प्रत्येक लैटिस साइट | नीचे चर्चा एक आयामी स्थिति तक सीमित होती है जहां प्रत्येक लैटिस साइट दो-आयामी काम्प्लेक्स हिल्बर्ट क्षेत्र के रूप में होते है, अर्थात यह एक स्पिन 1/2 कण का प्रतिनिधित्व करती है। यहाँ सिम्पलिसिटी के लिए <math>X</math> और <math>Z</math> प्रत्येक के लिए सामान्यीकृत निर्धारक -1 के रूप में होते है। इस प्रकार मिल्टनियन के पास <math>\mathbb{Z}_2</math> समरूपता का एक समूह होता है, जो Z दिशा में सभी स्पिन को फ्लिप करने की एकात्मक प्रक्रिया के अनुसार अपरिवर्तनीय होता है, यह सममिति रूपांतरण एकात्मक <math>\prod_j X_j</math> द्वारा दिया जाता है | ||
1डी मॉडल | 1डी मॉडल दो अवस्थाओ को स्वीकार करता है, जो इस बात पर निर्भर करता है कि क्या मूलभूत अवस्था विशिष्ट रूप से अध पतन के स्थिति में एक मूलभूत स्टेट" के रूप में वर्णित होती है जो मैक्रोस्कोपिक रूप से इनटैंगल स्थिति में नहीं होती है। इस प्रकार <math>\prod_j X_j</math> उपरोक्त को स्पिन-फ्लिप समरूपता प्रेसर्व या संरक्षित करती है। <math>J</math> का चिन्ह गतिशीलता को प्रभावित नहीं करता है। क्योंकि धनात्मक <math>J</math> के साथ प्रणाली का मानचित्रित ऋणात्मक <math>J</math> के साथ सिस्टम में हर दूसरी साइट <math>J</math> के लिए <math>x_j</math> के चारों ओर <math>\pi</math> का घूर्णन करते हुए किया जा सकता है। | ||
मॉडल को सभी युग्मन स्थिरांकों के लिए सटीक रूप से हल किया जा सकता है। चूँकि, ऑन-साइट स्पिन के संदर्भ में समाधान सामान्यता स्पिन चर के संदर्भ में स्पष्ट रूप से लिखने के लिए बहुत असुविधाजनक होती है। [[जॉर्डन-विग्नर परिवर्तन]] द्वारा परिभाषित फर्मिओनिक चर के संदर्भ में समाधान को स्पष्ट रूप से लिखना अधिक सुविधाजनक होता है, इस स्थिति में एक्साइटेड स्टेट में एक सरल क्वासिपार्टिकल या क्वासिहोल का विवरण होता है। | |||
मॉडल को सभी युग्मन स्थिरांकों के लिए सटीक रूप से हल किया जा सकता है। चूँकि, ऑन-साइट स्पिन के संदर्भ में समाधान सामान्यता स्पिन चर के संदर्भ में स्पष्ट रूप से लिखने के लिए बहुत असुविधाजनक है। [[जॉर्डन-विग्नर परिवर्तन]] द्वारा परिभाषित फर्मिओनिक चर के संदर्भ में समाधान को स्पष्ट रूप से लिखना अधिक सुविधाजनक है, इस स्थिति में | |||
===ऑर्डर्ड चरण=== | ===ऑर्डर्ड चरण=== | ||
Line 23: | Line 22: | ||
बिल्कुल, अगर <math>|\psi_1 \rangle</math> तो, हैमिल्टनियन का एक मूलभूत राज्य है <math>|\psi_2 \rangle \equiv \prod_j X_j |\psi_1 \rangle \neq |\psi_1 \rangle</math> एक मूलभूत राज्य भी है, और साथ में भी <math>|\psi_1\rangle</math> और <math>|\psi_2 \rangle</math> पतित भूमि राज्य स्थान का विस्तार करें। एक सरल उदाहरण के रूप में, जब <math>g = 0</math> और <math>J > 0</math>, मूलभूत अवस्थाएँ हैं <math>|\ldots \uparrow \uparrow \uparrow \ldots \rangle</math> और <math>|\ldots \downarrow \downarrow \downarrow \ldots \rangle </math>, यानी, सभी स्पिनों के साथ संरेखित <math>z</math> एक्सिस। | बिल्कुल, अगर <math>|\psi_1 \rangle</math> तो, हैमिल्टनियन का एक मूलभूत राज्य है <math>|\psi_2 \rangle \equiv \prod_j X_j |\psi_1 \rangle \neq |\psi_1 \rangle</math> एक मूलभूत राज्य भी है, और साथ में भी <math>|\psi_1\rangle</math> और <math>|\psi_2 \rangle</math> पतित भूमि राज्य स्थान का विस्तार करें। एक सरल उदाहरण के रूप में, जब <math>g = 0</math> और <math>J > 0</math>, मूलभूत अवस्थाएँ हैं <math>|\ldots \uparrow \uparrow \uparrow \ldots \rangle</math> और <math>|\ldots \downarrow \downarrow \downarrow \ldots \rangle </math>, यानी, सभी स्पिनों के साथ संरेखित <math>z</math> एक्सिस। | ||
यह एक गैप्ड चरण है, जिसका अर्थ है कि सबसे कम ऊर्जा | यह एक गैप्ड चरण है, जिसका अर्थ है कि सबसे कम ऊर्जा एक्साइटेड अवस्था(ओं) की ऊर्जा मूलभूत अवस्था की ऊर्जा से एक गैर-शून्य मात्रा (थर्मोडायनामिक सीमा में गैर-लुप्तप्राय) से अधिक है। विशेष रूप से, यह ऊर्जा अंतर है <math>2|J|(1-|g|)</math>.<ref>{{Cite web|url=http://t1.physik.tu-dortmund.de/files/uhrig/master/master_Benedikt_Fauseweh_2012.pdf|title=Home}}</ref> | ||
Revision as of 21:10, 3 December 2023
ट्रांसवर्स-फील्ड आइसिंग मॉडल क्लासिकल आइसिंग मॉडल का एक क्वांटम संस्करण है। इसमें z अक्ष के साथ स्पिन प्रक्षेपणों के एलाइनमेंट या एंटी एलाइनमेंट के साथ-साथ z अक्ष के लंबवत सामान्य हानि हुए बिना x अक्ष के साथ एक बाहरी चुंबकीय क्षेत्र का झुकाव होता है और इस प्रकार निकटतम नेबर इंटरैक्शन के साथ एक लैटिस के रूप में है जो दूसरे -अक्ष पर एक स्पिन दिशा का ऊर्जापूर्ण पूर्वाग्रह उत्पन्न करता है।
इस सेटअप की एक महत्वपूर्ण विशेषता यह है कि क्वांटम अर्थ में अक्ष के साथ स्पिन प्रक्षेपण और अक्ष के साथ स्पिन प्रक्षेपण अवलोकन योग्य बाह्य मात्राएं नहीं बदलता है। अर्थात इन दोनों को एक साथ अवलोकन नहीं किया जा सकता है, इसका अर्थ है कि क्लासिकल सांख्यिकीय यांत्रिकी इस मॉडल का वर्णन नहीं कर सकता है और एक क्वांटम ट्रीटमेंट की आवश्यकता होती है।
विशेष रूप से, मॉडल में निम्नलिखित क्वांटम यांत्रिकी मिल्टनियन होती है,
यहां, सबस्क्रिप्ट लैटिस साइटों को संदर्भित करते हैं इस प्रकार का योग निकटतम नेबर साइटों और के पेअर पर किया जाता है। और स्पिन बीजगणित पाउली मैट्रिसेस के तत्वों का प्रतिनिधित्व करते हैं इस प्रकार स्पिन 1/2 की स्थिति में संबंधित साइटों के स्पिन चर का प्रतिनिधित्व करते हैं। यदि वे एक ही साइट पर हैं तो वे एक-दूसरे के साथ आवागमन का विरोध करते हैं और यदि भिन्न -भिन्न साइटों पर होते है तो वे एक-दूसरे के साथ आवागमन करते हैं। ऊर्जा के आयामों वाला एक प्रीफ़ेक्टर है और एक अन्य युग्मन गुणांक है जो निकटतम नेबर इंटरैक्शन की तुलना में बाहरी क्षेत्र की सापेक्ष स्ट्रेंथ निर्धारित करता है।
1डी ट्रांसवर्स-फील्ड आइसिंग मॉडल के चरण
नीचे चर्चा एक आयामी स्थिति तक सीमित होती है जहां प्रत्येक लैटिस साइट दो-आयामी काम्प्लेक्स हिल्बर्ट क्षेत्र के रूप में होते है, अर्थात यह एक स्पिन 1/2 कण का प्रतिनिधित्व करती है। यहाँ सिम्पलिसिटी के लिए और प्रत्येक के लिए सामान्यीकृत निर्धारक -1 के रूप में होते है। इस प्रकार मिल्टनियन के पास समरूपता का एक समूह होता है, जो Z दिशा में सभी स्पिन को फ्लिप करने की एकात्मक प्रक्रिया के अनुसार अपरिवर्तनीय होता है, यह सममिति रूपांतरण एकात्मक द्वारा दिया जाता है
1डी मॉडल दो अवस्थाओ को स्वीकार करता है, जो इस बात पर निर्भर करता है कि क्या मूलभूत अवस्था विशिष्ट रूप से अध पतन के स्थिति में एक मूलभूत स्टेट" के रूप में वर्णित होती है जो मैक्रोस्कोपिक रूप से इनटैंगल स्थिति में नहीं होती है। इस प्रकार उपरोक्त को स्पिन-फ्लिप समरूपता प्रेसर्व या संरक्षित करती है। का चिन्ह गतिशीलता को प्रभावित नहीं करता है। क्योंकि धनात्मक के साथ प्रणाली का मानचित्रित ऋणात्मक के साथ सिस्टम में हर दूसरी साइट के लिए के चारों ओर का घूर्णन करते हुए किया जा सकता है।
मॉडल को सभी युग्मन स्थिरांकों के लिए सटीक रूप से हल किया जा सकता है। चूँकि, ऑन-साइट स्पिन के संदर्भ में समाधान सामान्यता स्पिन चर के संदर्भ में स्पष्ट रूप से लिखने के लिए बहुत असुविधाजनक होती है। जॉर्डन-विग्नर परिवर्तन द्वारा परिभाषित फर्मिओनिक चर के संदर्भ में समाधान को स्पष्ट रूप से लिखना अधिक सुविधाजनक होता है, इस स्थिति में एक्साइटेड स्टेट में एक सरल क्वासिपार्टिकल या क्वासिहोल का विवरण होता है।
ऑर्डर्ड चरण
कब , सिस्टम को आदेशित चरण में कहा जाता है। इस चरण में मूलभूत स्थिति स्पिन-फ्लिप समरूपता को तोड़ देती है। इस प्रकार, ज़मीनी स्थिति वास्तव में दो गुना ख़राब है। के लिए यह चरण लौहचुम्बकत्व क्रम को प्रदर्शित करता है, जबकि के लिए प्रतिलौहचुंबकत्व ऑर्डर मौजूद है।
बिल्कुल, अगर तो, हैमिल्टनियन का एक मूलभूत राज्य है एक मूलभूत राज्य भी है, और साथ में भी और पतित भूमि राज्य स्थान का विस्तार करें। एक सरल उदाहरण के रूप में, जब और , मूलभूत अवस्थाएँ हैं और , यानी, सभी स्पिनों के साथ संरेखित एक्सिस।
यह एक गैप्ड चरण है, जिसका अर्थ है कि सबसे कम ऊर्जा एक्साइटेड अवस्था(ओं) की ऊर्जा मूलभूत अवस्था की ऊर्जा से एक गैर-शून्य मात्रा (थर्मोडायनामिक सीमा में गैर-लुप्तप्राय) से अधिक है। विशेष रूप से, यह ऊर्जा अंतर है .[1]
डिसआर्डर चरण
इसके विपरीत, जब कहा जाता है कि सिस्टम डिसआर्डर चरण में है। मूलभूत अवस्था स्पिन-फ्लिप समरूपता को बरकरार रखती है, और गैर-विक्षिप्त है। एक सरल उदाहरण के रूप में, जब अनंत है, मूलभूत अवस्था है , जो कि स्पिन के साथ है प्रत्येक साइट पर दिशा.
यह भी एक गैप्ड चरण है। ऊर्जा का अंतर है
गैपलेस चरण
कब , सिस्टम एक क्वांटम चरण संक्रमण से गुजरता है। इस मूल्य पर , सिस्टम में अंतरहीन उत्तेजनाएं हैं और इसके कम-ऊर्जा व्यवहार को दो-आयामी आइसिंग अनुरूप क्षेत्र सिद्धांत द्वारा वर्णित किया गया है। इस अनुरूप सिद्धांत का केंद्रीय प्रभार है , और 1 से कम केंद्रीय चार्ज के साथ एकात्मक न्यूनतम मॉडल (भौतिकी) का सबसे सरल है। पहचान ऑपरेटर के अलावा, सिद्धांत में दो प्राथमिक क्षेत्र हैं, एक स्केलिंग आयामों के साथ और दूसरा स्केलिंग आयामों के साथ .[2]
जॉर्डन-विग्नर परिवर्तन
जॉर्डन-विग्नर ट्रांसफॉर्मेशन के रूप में ज्ञात अत्यधिक गैर-स्थानीय परिवर्तन का उपयोग करके, स्पिन चर को फर्मियोनिक चर के रूप में फिर से लिखना संभव है।[3] साइट पर एक फर्मियन निर्माण ऑपरेटर के रूप में परिभाषित किया जा सकता है . फिर ट्रांसवर्स-फील्ड इज़िंग हैमिल्टनियन (एक अनंत श्रृंखला मानते हुए और सीमा प्रभावों को अनदेखा करते हुए) को पूरी तरह से सृजन और विनाश ऑपरेटरों वाले स्थानीय द्विघात शब्दों के योग के रूप में व्यक्त किया जा सकता है। <ब्लॉककोट>यह हैमिल्टनियन कुल फर्मियन संख्या को संरक्षित करने में विफल रहता है और इससे संबंधित नहीं है वैश्विक सतत समरूपता, की उपस्थिति के कारण अवधि। चूँकि , यह फर्मियन समता को संरक्षित करता है। अर्थात्, हैमिल्टनियन क्वांटम ऑपरेटर के साथ आवागमन करता है जो इंगित करता है कि फ़र्मियन की कुल संख्या सम है या विषम, और यह समता प्रणाली के समय के विकास के अनुसार नहीं बदलती है। हैमिल्टनियन गणितीय रूप से माध्य क्षेत्र बोगोलीउबोव-डी गेनेस औपचारिकता में एक सुपरकंडक्टर के समान है और इसे उसी मानक तरीके से पूरी तरह से समझा जा सकता है। सटीक उत्तेजना स्पेक्ट्रम और आइगेनवैल्यू को फूरियर द्वारा गति स्थान में परिवर्तित करके और हैमिल्टनियन को विकर्ण करके निर्धारित किया जा सकता है।
मेजराना फर्मियन के संदर्भ में और , हैमिल्टनियन और भी सरल रूप लेता है (एक योगात्मक स्थिरांक तक): <ब्लॉककोट>.
क्रेमर्स-वानियर डुअलिटी
पाउली मैट्रिसेस का एक गैर-स्थानीय मानचित्रण जिसे क्रेमर्स-वानियर डुअलिटी परिवर्तन के रूप में जाना जाता है, निम्नानुसार किया जा सकता है:[4]
ध्यान दें कि आइसिंग श्रृंखला की सीमाओं पर कुछ सूक्ष्म विचार हैं; इनके फलस्वरूप पतन और क्रमबद्ध और डिसआर्डर चरणों के समरूपता गुण क्रेमर्स-वानियर डुअलिटी के अनुसार बदल जाते हैं।
सामान्यीकरण
क्यू-स्टेट क्वांटम पॉट्स मॉडल और क्वांटम घड़ी मॉडल लैटिस प्रणालियों के लिए ट्रांसवर्स-फील्ड आइसिंग मॉडल का सामान्यीकरण है प्रति साइट स्थितियाँ। ट्रांसवर्स-फील्ड आइसिंग मॉडल उस स्थिति का प्रतिनिधित्व करता है जहां .
क्लासिकल आइसिंग मॉडल
क्वांटम ट्रांसवर्स-फील्ड आइसिंग मॉडल में आयाम अनिसोट्रोपिक आइसिंग मॉडल के दोहरे हैं आयाम.[5]
संदर्भ
- ↑ "Home" (PDF).
- ↑ Ginsparg, Paul (1988). "अनुप्रयुक्त अनुरूप क्षेत्र सिद्धांत". arXiv:hep-th/9108028.
- ↑ Molignini, Paolo (11 March 2013). "अनुरूप क्षेत्र सिद्धांत में आइसिंग मॉडल" (PDF).
- ↑ Radicevic, Djordje (2018). "कम आयामों में स्पिन संरचनाएं और सटीक द्वंद्व". arXiv:1809.07757 [hep-th].
- ↑ McGreevy (20 April 2021). "Physics 239a: Where do quantum field theories come from?" (PDF).