क्लोज्ड फॉर्म एक्सप्रेशन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 125: | Line 125: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 24/11/2022]] | [[Category:Created On 24/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:12, 1 December 2022
This article needs additional citations for verification. (June 2014) (Learn how and when to remove this template message) |
गणित में, बंद-रूप एक्सप्रेशंस एक गणितीय एक्सप्रेशंस (गणित) है जो मानक संक्रियाओं की सीमित संख्या का उपयोग करती है। इसमें स्थिरांक, चर (गणित), कुछ प्रसिद्ध ऑपरेशन (गणित) (जैसे, + - × ÷), और फलन (जैसे, n वें मूल, प्रतिपादक, लघुगणक, त्रिकोणमितीय कार्य और व्युत्क्रम अतिपरवलयिक कार्य) शामिल हो सकते हैं, लेकिन आमतौर पर अनुक्रम, व्युत्पन्न या अभिन्न की कोई सीमा नहीं होती है। संचालन और फलन का सेट लेखक और संदर्भ के साथ भिन्न हो सकता है।
उदाहरण: बहुपदीय मूल
सम्मिश्र संख्या गुणांक वाले किसी भी द्विघात समीकरण के समाधान को जोड़, घटाव, गुणा, भाग और वर्गमूल निष्कर्षण के बंद रूप में व्यक्त किया जा सकता है, जिनमें से प्रत्येक एक प्रारंभिक कार्य है। उदाहरण के लिए, द्विघात समीकरण
सुगम है क्योंकि इसके समाधान को बंद-रूप एक्सप्रेशंस के रूप में व्यक्त किया जा सकता है, अर्थात प्राथमिक फलन के संदर्भ में:
इसी तरह, क्यूबिक और क्वार्टिक (तीसरे और चौथे डिग्री) समीकरणों के समाधान अंकगणित, वर्गमूल और n वें रूट का उपयोग करके व्यक्त किए जा सकते हैं। हालांकि, ऐसे बंद-रूप समाधान के बिना क्विंटिक समीकरण हैं, उदाहरण के लिए x5 − x + 1 = 0; यह एबेल-रफिनी प्रमेय है।
बहुपद मूल के लिए बंद रूपों के अस्तित्व का अध्ययन प्रारंभिक प्रेरणा है और गणित के गैल्वा सिद्धांत नामक क्षेत्र की मुख्य उपलब्धियों में से एक है।
वैकल्पिक परिभाषाएँ
अतिरिक्त फलन को सम्मिलित करने के लिए परिभाषा को बदलने से समीकरणों के सेट को बंद-रूप समाधान के साथ बदल सकते हैं। कई संचयी वितरण फलन को बंद रूप में व्यक्त नहीं किया जा सकता है, जब तक कि कोई विशेष कार्य जैसे कि त्रुटि फलन या गामा फलन को अच्छी तरह से ज्ञात न हो। यदि सामान्य अतिज्यामितीय फलन को सम्मिलित किया जाता है, तो क्विंटिक समीकरण को हल करना संभव है, हालांकि समाधान उपयोगी होने के लिए बीजगणितीय रूप से बहुत जटिल है। कई व्यावहारिक कंप्यूटर अनुप्रयोगों के लिए, यह मान लेना पूरी तरह से उचित है कि गामा फलन और अन्य विशेष फलन अच्छी तरह से ज्ञात हैं क्योंकि संख्यात्मक कार्यान्वयन व्यापक रूप से उपलब्ध हैं।
विश्लेषणात्मक एक्सप्रेशंस
विश्लेषणात्मक एक्सप्रेशंस (विश्लेषणात्मक रूप या विश्लेषणात्मक सूत्र में एक्सप्रेशंस के रूप में भी जाना जाता है) गणितीय एक्सप्रेशंस है जो प्रसिद्ध संचालन का उपयोग करके बनाई गई है जो खुद को गणना के लिए आसानी से उधार देती है।[vague][citation needed] क्लोज-फॉर्म एक्सप्रेशन के समान, अनुमत प्रसिद्ध फलन का सेट संदर्भ के अनुसार भिन्न हो सकता है लेकिन इसमें हमेशा अंकगणितीय संचालन (जोड़, घटाव, गुणा और भाग) सम्मिलित होते हैं, वास्तविक प्रतिपादक के लिए घातांक (जिसमें n वें मूल का निष्कर्षण शामिल है), लघुगणक और त्रिकोणमितीय कार्य शामिल है।
हालांकि, विश्लेषणात्मक अभिव्यक्तियों के रूप में मानी जाने वाली अभिव्यक्तियों की श्रेणी बंद-रूप अभिव्यक्तियों की तुलना में व्यापक होती है। विशेष रूप से, बेसेल फलन और गामा फलन जैसे विशेष फलन की आमतौर पर अनुमति दी जाती है, और बहुधा ऐसा श्रृंखला (गणित) और निरंतर भिन्न होते हैं। दूसरी ओर, सामान्य रूप से अनुक्रम की सीमा और विशेष रूप से अभिन्न है जो आमतौर पर बाहर रखा गया है।[citation needed] यदि विश्लेषणात्मक एक्सप्रेशंस में केवल बीजगणितीय संचालन (इसके अलावा, घटाव, गुणा, विभाजन, और तर्कसंगत घातांक के लिए घातांक) और तर्कसंगत स्थिरांक सम्मिलित हैं तो इसे विशेष रूप से बीजगणितीय एक्सप्रेशंस के रूप में संदर्भित किया जाता है।
एक्सप्रेशंस के विभिन्न वर्गों की तुलना
बंद रूप एक्सप्रेशंस विश्लेषणात्मक अभिव्यक्तियों का महत्वपूर्ण उप-वर्ग है, जिसमें एक बाध्यता होती है[citation needed] या प्रसिद्ध फलन के अनुप्रयोगों की असीमित संख्या होती है। व्यापक विश्लेषणात्मक अभिव्यक्तियों के विपरीत, बंद-रूप एक्सप्रेशंस में अनंत श्रृंखला या निरंतर अंश सम्मिलित नहीं होते हैं; न तो समाकलन या अनुक्रम की सीमा सम्मिलित है। वास्तव में, स्टोन-वीयरस्ट्रास प्रमेय द्वारा, इकाई अंतराल पर किसी भी निरंतर कार्य को बहुपदों की सीमा के रूप में व्यक्त किया जा सकता है, इसलिए बहुपदों वाले फलन के किसी भी वर्ग और सीमा के तहत बंद होने पर सभी निरंतर फलन को अनिवार्य रूप से सम्मिलित किया जाएगा।
इसी तरह, समीकरण या समीकरणों की प्रणाली को बंद-रूप समाधान कहा जाता है, और केवल कम से कम एक समीकरण को बंद-रूप एक्सप्रेशंस के रूप में व्यक्त किया जा सकता है; और कहा जाता है कि इसका विश्लेषणात्मक समाधान है यदि और केवल यदि कम से कम एक समाधान को विश्लेषणात्मक एक्सप्रेशंस के रूप में व्यक्त किया जा सकता है। क्लोज-फॉर्म समाधान की चर्चा में क्लोज-फॉर्म फंक्शन और क्लोज्ड-फॉर्म नंबर के बीच एक सूक्ष्म अंतर है। (Chow 1999) एक बंद-रूप या विश्लेषणात्मक समाधान को कभी-कभी स्पष्ट समाधान के रूप में संदर्भित किया जाता है।
Arithmetic expressions | Polynomial expressions | Algebraic expressions | Closed-form expressions | Analytic expressions | Mathematical expressions | |
---|---|---|---|---|---|---|
Constant | Yes | Yes | Yes | Yes | Yes | Yes |
Elementary arithmetic operation | Yes | Addition, subtraction, and multiplication only | Yes | Yes | Yes | Yes |
Finite sum | Yes | Yes | Yes | Yes | Yes | Yes |
Finite product | Yes | Yes | Yes | Yes | Yes | Yes |
Finite continued fraction | Yes | No | Yes | Yes | Yes | Yes |
Variable | No | Yes | Yes | Yes | Yes | Yes |
Integer exponent | No | Yes | Yes | Yes | Yes | Yes |
Integer nth root | No | No | Yes | Yes | Yes | Yes |
Rational exponent | No | No | Yes | Yes | Yes | Yes |
Integer factorial | No | No | Yes | Yes | Yes | Yes |
Irrational exponent | No | No | No | Yes | Yes | Yes |
Logarithm | No | No | No | Yes | Yes | Yes |
Trigonometric function | No | No | No | Yes | Yes | Yes |
Inverse trigonometric function | No | No | No | Yes | Yes | Yes |
Hyperbolic function | No | No | No | Yes | Yes | Yes |
Inverse hyperbolic function | No | No | No | Yes | Yes | Yes |
Root of a polynomial that is not an algebraic solution | No | No | No | No | Yes | Yes |
Gamma function and factorial of a non-integer | No | No | No | No | Yes | Yes |
Bessel function | No | No | No | No | Yes | Yes |
Special function | No | No | No | No | Yes | Yes |
Infinite sum (series) (including power series) | No | No | No | No | Convergent only | Yes |
Infinite product | No | No | No | No | Convergent only | Yes |
Infinite continued fraction | No | No | No | No | Convergent only | Yes |
Limit | No | No | No | No | No | Yes |
Derivative | No | No | No | No | No | Yes |
Integral | No | No | No | No | No | Yes |
नॉन-क्लोज्ड-फॉर्म एक्सप्रेशंस से निपटना
बंद रूप के भावों में परिवर्तन
भावाभिव्यक्ति:
विभेदक गाल्वा सिद्धांत
बंद-रूप एक्सप्रेशंस का अभिन्न एक बंद-रूप एक्सप्रेशंस के रूप में अभिव्यक्त हो भी सकता है और नहीं भी। बीजगणितीय गैलोज सिद्धांत के अनुरूप इस अध्ययन को डिफरेंशियल गैलोज सिद्धांत के रूप में जाना जाता है।
डिफरेंशियल गैल्वा सिद्धांत का मूल प्रमेय 1830 और 1840 के दशक में जोसेफ लिउविल के कारण है और इसलिए लिउविल के प्रमेय (अंतर बीजगणित) के रूप में जाना जाता है।
एक प्राथमिक कार्य का एक मानक उदाहरण जिसका प्रतिपक्षी एक बंद-रूप एक्सप्रेशंस नहीं है:
गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन
बंद-रूप या विश्लेषणात्मक समाधानों के लिए बहुत जटिल समीकरणों या प्रणालियों का बहुधा गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन द्वारा विश्लेषण किया जा सकता है।
बंद-रूप संख्या
This section may be confusing or unclear to readers. In particular, as the section is written, it seems that Liouvillian numbers and elementary numbers are exactly the same. (October 2020) (Learn how and when to remove this template message) |
सम्मिश्र संख्या C के तीन उपक्षेत्रों को "बंद-रूप संख्या" की धारणा को कूटबद्ध करने के रूप में सुझाया गया है; व्यापकता के बढ़ते क्रम में, ये लिउविलियन संख्याएँ हैं (तर्कसंगत सन्निकटन के अर्थ में लिउविल संख्याओं के साथ भ्रमित नहीं होना चाहिए), EL संख्याएँ और प्राथमिक संख्याएँ। लिउविलियन नंबर, निरूपित L का सबसे छोटा बीजगणितीय रूप से बंद उपक्षेत्र बनाता है C घातांक और लघुगणक के तहत बंद (औपचारिक रूप से, ऐसे सभी उपक्षेत्रों का प्रतिच्छेदन)—अर्थात, ऐसी संख्याएँ जिनमें स्पष्ट घातांक और लघुगणक सम्मिलित हैं, लेकिन स्पष्ट और अंतर्निहित बहुपदों (बहुपदों की जड़ें) की अनुमति देते हैं; यह में परिभाषित किया गया है (Ritt 1948, p. 60). L मूल रूप से प्राथमिक संख्या के रूप में संदर्भित किया गया था, लेकिन इस शब्द का उपयोग अब अधिक व्यापक रूप से बीजगणितीय संचालन, घातांक और लघुगणक के संदर्भ में स्पष्ट रूप से या स्पष्ट रूप से परिभाषित संख्याओं को संदर्भित करने के लिए किया जाता है। में प्रस्तावित एक संकीर्ण परिभाषा (Chow 1999, pp. 441–442), निरूपित E, और EL संख्या के रूप में संदर्भित, का सबसे छोटा उपक्षेत्र है C घातांक और लघुगणक के तहत बंद - इसे बीजगणितीय रूप से बंद करने की आवश्यकता नहीं है, और स्पष्ट बीजगणितीय, घातीय और लघुगणक संचालन के अनुरूप है। ईएल घातीय-लघुगणक और प्राथमिक के लिए एक संक्षिप्त नाम के रूप में दोनों के लिए खड़ा है।
क्या कोई संख्या एक बंद-रूप संख्या है, इससे संबंधित है कि कोई संख्या पारलौकिक संख्या है या नहीं। औपचारिक रूप से, लिउविलियन संख्याओं और प्राथमिक संख्याओं में बीजगणितीय संख्याएँ होती हैं, और उनमें कुछ लेकिन सभी पारलौकिक संख्याएँ सम्मिलित नहीं होती हैं। इसके विपरीत, EL संख्याओं में सभी बीजगणितीय संख्याएँ नहीं होती हैं, लेकिन कुछ पारलौकिक संख्याएँ सम्मिलित होती हैं। पारलौकिक संख्या सिद्धांत के माध्यम से क्लोज-फॉर्म नंबरों का अध्ययन किया जा सकता है, जिसमें एक प्रमुख परिणाम गेलफॉन्ड-श्नाइडर प्रमेय है, और प्रमुख खुला प्रश्न शैनुअल का अनुमान है।
संख्यात्मक संगणना
संख्यात्मक संगणनाओं के प्रयोजनों के लिए, बंद रूप में होना सामान्य रूप से आवश्यक नहीं है, क्योंकि कई सीमाएँ और अभिन्न कुशलता से गणना की जा सकती हैं।
संख्यात्मक रूपों से रूपांतरण
ऐसा सॉफ़्टवेयर है जो RIES सहित संख्यात्मक मानों के लिए बंद-फ़ॉर्म व्यंजकों को खोजने का प्रयास करता है,[2] identify मेपल (सॉफ्टवेयर) में[3] और सिम्पी,[4] प्लॉफ़ी का इन्वर्टर,[5] और उलटा प्रतीकात्मक कैलक्यूलेटर में।[6]
यह भी देखें
- बीजगणितीय समाधान
- कंप्यूटर सिमुलेशन – Process of mathematical modelling, performed on a computer - कंप्यूटर पर प्रदर्शित गणितीय मॉडलिंग की प्रक्रिया
- प्राथमिक कार्य - गणितीय कार्य
- अंतिम संचालन
- संख्यात्मक समाधान
- लिउविलियन फ़ंक्शन- प्राथमिक फ़ंक्शन और उनके सूक्ष्म रूप से पुनरावृत्त इंटीग्रल
- प्रतीकात्मक प्रतिगमन - प्रतिगमन विश्लेषण का प्रकार
- टार्स्की हाई स्कूल बीजगणित समस्या - गणितीय समस्या
- अवधि (तर्क) - एक गणितीय या तार्किक सूत्र के घटक
- ट्यूपर का स्व-संदर्भ सूत्र - सूत्र जो रेखांकन करते समय नेत्रहीन रूप से स्वयं का प्रतिनिधित्व करता है
संदर्भ
- ↑ Holton, Glyn. "संख्यात्मक समाधान, बंद-रूप समाधान". Archived from the original on 4 February 2012. Retrieved 31 December 2012.
- ↑ Munafo, Robert. "RIES - उनके हल दिए हुए, बीजगणितीय समीकरण ज्ञात कीजिए". Retrieved 30 April 2012.
- ↑ "पहचानना". Maple Online Help. Maplesoft. Retrieved 30 April 2012.
- ↑ "संख्या पहचान". SymPy documentation. Archived from the original on 2018-07-06. Retrieved 2016-12-01.
- ↑ "प्लॉफ़ी का इन्वर्टर". Archived from the original on 19 April 2012. Retrieved 30 April 2012.
- ↑ "उलटा प्रतीकात्मक कैलक्यूलेटर". Archived from the original on 29 March 2012. Retrieved 30 April 2012.
अग्रिम पठन
- Ritt, J. F. (1948), Integration in finite terms
- Chow, Timothy Y. (May 1999), "What is a Closed-Form Number?", American Mathematical Monthly, 106 (5): 440–448, arXiv:math/9805045, doi:10.2307/2589148, JSTOR 2589148
- Jonathan M. Borwein and Richard E. Crandall (January 2013), "Closed Forms: What They Are and Why We Care", Notices of the American Mathematical Society, 60 (1): 50–65, doi:10.1090/noti936
इस पेज में लापता आंतरिक लिंक की सूची
- अनुक्रम की सीमा
- परिमित सेट
- निरंतर (गणित)
- त्रिकोणमितीय फलन
- अंक शास्त्र
- उलटा अतिशयोक्तिपूर्ण कार्य
- यौगिक
- लोगारित्म
- समारोह (गणित)
- योग
- प्राथमिक समारोह
- गुणांकों
- जटिल संख्या
- प्रभाग (गणित)
- पंचांग समीकरण
- गाल्वा सिद्धांत
- त्रुटि समारोह
- संचयी वितरण फलन
- हाइपरज्यामितीय समारोह
- निरंतर अंश
- बीजगणतीय अभिव्यक्ति
- समीकरण हल करना
- जियोमीट्रिक श्रंखला
- विभेदक गैलोज़ सिद्धांत
- गणित का मॉडल