नेबरहुड (गणित): Difference between revisions

From Vigyanwiki
Line 97: Line 97:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/11/2022]]
[[Category:Created On 24/11/2022]]
[[Category:Vigyan Ready]]

Revision as of 16:17, 1 December 2022

एक समुच्चय समतल में (ज्यामिति) एक बिंदु का प्रतिवैस है अगर चारों ओर एक छोटी सी चक्रिका में निहित है

संस्थितिविज्ञान और गणित के संबंधित क्षेत्रों में, प्रतिवैस (या प्रतिवैस) एक सांस्थितिक समष्टि में बुनियादी अवधारणाओं में से एक है। यह विविक्त समुच्चय और भीतरी (सांस्थिति) की अवधारणाओं से निकटता से संबंधित है। सहजता से बोलते हुए, एक बिंदु का एक प्रतिवैस उस बिंदु से युक्त बिंदुओं का एक सम्मुच्य (गणित) है जहां कोई समुच्चय को छोड़े बिना उस बिंदु से किसी भी दिशा में कुछ राशि ले जा सकता है।

परिभाषाएँ

एक बिंदु का पड़ोस

यदि एक सांस्थितिक समष्टि है और में एक बिंदु है फिर एक प्रतिवैस का एक उपसमुच्चय है का जिसमें एक विविक्त समुच्चय शामिल है युक्त ,

यह भी बिंदु के बराबर है आंतरिक (सांस्थिति) से संबंधित आंतरिक बिंदु में पड़ोस जरुरत not एक खुला उपसमुच्चय बनें लेकिन जब में खुला है तो इसे एक कहा जाता हैopen neighbourhood.[1] कुछ लेखकों को प्रतिवैस के खुले रहने की आवश्यकता के लिए जाना जाता है, इसलिए सम्मेलनों में ध्यान देना महत्वपूर्ण है।

File:Neighborhood illust2.svg
एक बंद आयत का उसके किसी भी कोने या उसकी सीमा पर पड़ोस नहीं होता है।

एक समुच्चय जो इसके प्रत्येक बिंदु का एक प्रतिवैस है, खुला है क्योंकि इसे इसके प्रत्येक बिंदु वाले खुले के संघ के रूप में व्यक्त किया जा सकता है। एक आयत, जैसा कि चित्र में दिखाया गया है, अपने सभी बिंदुओं का प्रतिवैस नहीं है; आयत के किनारों या कोनों पर बिंदु आयत के भीतर निहित किसी भी खुले समुच्चय में अन्तर्वलित नहीं हैं।

किसी बिंदु के सभी प्रतिवैस के संग्रह को बिंदु पर प्रतिवैस प्रणाली कहा जाता है।

एक समुच्चय का प्रतिवैस

यदि एक सांस्थितिक समष्टि का उपवर्ग है , फिर प्रतिवैस का एक समुच्चय है जिसमें एक खुला समुच्चय है युक्त ,

यह इस प्रकार है कि एक समुच्चय का प्रतिवैस है यदि और केवल यदि यह सभी बिंदुओं का प्रतिवैस है आगे, का प्रतिवैस है अगर और केवल अगर के आंतरिक (सांस्थिति) का एक उपसमुच्चय है का एक प्रतिवैस यह भी एक खुला उपसमुच्चय है एक कहा जाता हैopen neighbourhoodका एक बिंदु का पड़ोस इस परिभाषा का एक विशेष मामला है।

एक मीट्रिक स्थान में

File:Neighborhood illust3.svg
एक सेट विमान में और एक समान पड़ोस का
File:Epsilon Umgebung.svg
किसी संख्या का एप्सिलॉन पड़ोस वास्तविक संख्या रेखा पर।

मात्रिक स्थान में एक समुच्चय एक बिंदु का प्रतिवैस है अगर केंद्र के साथ एक खुला गोला मौजूद है और त्रिज्या ऐसा कि

में निहित है

एक समुच्चय का एक समान प्रतिवैस कहा जाता है अगर वहाँ एक सकारात्मक संख्या मौजूद है ऐसा कि सभी तत्वों के लिए का

में निहित है के लिये -प्रतिवैस एक समुच्चय का में सभी बिंदुओं का समुच्चय है से कम दूरी पर हैं (या समकक्ष, त्रिज्या की सभी खुली गेंदों का मिलन है जो एक बिंदु पर केंद्रित होते हैं ):
यह सीधे इस प्रकार है कि -प्रतिवैस एक समान प्रतिवैस है, और यह कि एक सेट एक समान प्रतिवैस है यदि और केवल यदि इसमें -प्रतिवैस के कुछ मूल्य के लिए अन्तर्वलित है ।


उदाहरण

File:Set of real numbers with epsilon-neighbourhood.svg
समुच्चय M, संख्या a का एक पड़ोस है, क्योंकि a का ε-पड़ोस है जो M का उपसमुच्चय है।

वास्तविक संख्याओं के समुच्चय को देखते हुए सामान्य यूक्लिडीय मात्रिक और एक उपवर्ग के साथ के रूप में परिभाषित किया गया है

फिर प्राकृतिक संख्या समुच्चय के लिए एक प्रतिवैस है, लेकिन इस समुच्चय का एक समान प्रतिवैस नहीं है।

पड़ोस से टोपोलॉजी

उपरोक्त परिभाषा उपयोगी है यदि खुले समुच्चय की धारणा पहले से ही परिभाषित है। एक सांस्थिति को परिभाषित करने का एक वैकल्पिक तरीका है, पहले प्रतिवैस प्रणाली को परिभाषित करके, और फिर उन स्पष्ट सम्मुच्चयों को, जिनमें उनके प्रत्येक बिंदु का पड़ोस होता है।

प्रतिवैस प्रणाली निस्यंदन का समनुदेशन (सेट सिद्धांत) के सबसेट का प्रत्येक के लिए में इस प्रकार है कि

  1. बिंदु प्रत्येक में का एक तत्व है
  2. प्रत्येक में के कुछ में ऐसा अंतर्ग्रस्त हैं कि प्रत्येक में में है

कोई यह दिखा सकता है कि दोनों परिभाषाएँ संगत हैं, अर्थात्, खुले सेट का उपयोग करके परिभाषित पड़ोस प्रणाली से प्राप्त टोपोलॉजी मूल है, और इसके विपरीत जब पड़ोस प्रणाली से शुरू होती है।

समान प्रतिवैस

समान स्थान में को का एक समान प्रतिवैस कहा जाता है यदि कोई परिचर (सांस्थिति) ऐसे मौजूद है कि मे के सभी बिंदु शामिल हैं जो -बिंदु पर के संवृत है, जो सभी के लिए है।

हटाए गए प्रतिवैस

एक बिंदु का हटाया गया प्रतिवैस (कभी-कभी वेधन प्रतिवैस कहा जाता है) का प्रतिवैस है बिना उदाहरण के लिए, अंतराल (गणित) का प्रतिवैस है वास्तविक रेखा में, इसलिए समुच्चय का हटाया गया प्रतिवैस है। किसी दिए गए बिंदु का हटाया गया प्रतिवैस वास्तव में बिंदु का प्रतिवैस नहीं है। हटाए गए प्रतिवैस की अवधारणा एक प्रकार्य की सीमा सांस्थितिक रिक्त स्थान पर और सीमा बिंदुओं की परिभाषा (अन्य चीजों के बीच) में होती है।[2]

यह भी देखें

संदर्भ

  1. Dixmier, Jacques (1984). सामान्य टोपोलॉजी. Undergraduate Texts in Mathematics. Translated by Sterling K. Berberian. Springer. p. 6. ISBN 0-387-90972-9. इस परिभाषा के अनुसार, एक open neighborhood of is nothing more than an open subset of that contains
  2. Peters, Charles (2022). "प्रोफेसर चार्ल्स पीटर्स" (PDF). University of Houston Math. Retrieved 3 April 2022.{{cite web}}: CS1 maint: url-status (link)