टोपोलॉजी स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, एक सांस्थितिक समष्टि, अधिकाशतः बोले जाने वाली एक [[ज्यामितीय]] समष्टि है जिसमें निकटता को परिभाषित किया जाता है, लेकिन यह जरूरी नहीं कि इससे संख्यात्मक दूरी को मापा जा सके। सांस्थितिक समष्टि विशेष रूप से एक समुच्चय है, जिसके तत्वों को अंक कहा जाता है, इसके साथ एक अतिरिक्त संरचना जिसे सांस्थितिक कहा जाता है, और प्रत्येक बिंदु के लिए निकटतम समुच्चय के रूप में परिभाषित किया जाता है। जो निकटता की अवधारणा को औपचारिक रूप देने वाले कुछ सिद्धांतों को संतुष्ट करता है। एक सांस्थितिक की कई समतुल्य परिभाषाएँ हैं, जिनमें से सबसे अधिक उपयोग की जाने वाली परिभाषा संवृत समुच्चयो के माध्यम से होती है, जो कि परिवर्तन करने के लिए दूसरों की तुलना में आसान होती है।
गणित में, एक सांस्थितिक समष्टि, अधिकाशतः बोले जाने वाली एक [[ज्यामितीय]] समष्टि है जिसमें निकटता को परिभाषित किया जाता है, लेकिन यह जरूरी नहीं कि इससे संख्यात्मक दूरी को मापा जा सके। सांस्थितिक समष्टि विशेष रूप से एक समुच्चय है, जिसके तत्वों को अंक कहा जाता है, इसके साथ एक अतिरिक्त संरचना जिसे सांस्थितिक कहा जाता है, और प्रत्येक बिंदु के लिए निकटतम समुच्चय के रूप में परिभाषित किया जाता है। जो निकटता की अवधारणा को औपचारिक रूप देने वाले कुछ सिद्धांतों को संतुष्ट करता है। एक सांस्थितिक की कई समतुल्य परिभाषाएँ हैं, जिनमें से सबसे अधिक उपयोग की जाने वाली परिभाषा संवृत समुच्चयो के माध्यम से होती है, जो कि परिवर्तन करने के लिए दूसरों की तुलना में आसान होती है।


सांस्थितिक समष्टि गणितीय स्थान का सबसे सामान्य प्रकार है जो [[सीमाओं]] की परिभाषा, निरंतरता और [[जुड़ाव|संघबद्धता]]  की अनुमति देता है<ref>{{harvnb|Schubert|1968|loc=p. 13}}</ref><ref>{{Cite book|last=Sutherland|first=W. A.|url=https://www.worldcat.org/oclc/1679102|title=मीट्रिक और टोपोलॉजिकल स्पेस का परिचय|date=1975|publisher=Clarendon Press|isbn=0-19-853155-9|location=Oxford [England]|oclc=1679102}}</ref> सामान्य प्रकार के सांस्थितिक समष्टि में [[ यूक्लिडियन स्पेस |यूक्लिडियन समष्टि]] , [[ मीट्रिक स्थान |मीट्रिक समष्टि]] और [[ विविध |मैनिफोल्ड]] सम्मिलित हैं।
सांस्थितिक समष्टि गणितीय स्थान का सबसे सामान्य प्रकार है जो [[सीमाओं]] की परिभाषा, लगातारता और [[जुड़ाव|संघबद्धता]]  की अनुमति देता है<ref>{{harvnb|Schubert|1968|loc=p. 13}}</ref><ref>{{Cite book|last=Sutherland|first=W. A.|url=https://www.worldcat.org/oclc/1679102|title=मीट्रिक और टोपोलॉजिकल स्पेस का परिचय|date=1975|publisher=Clarendon Press|isbn=0-19-853155-9|location=Oxford [England]|oclc=1679102}}</ref> सामान्य प्रकार के सांस्थितिक समष्टि में [[ यूक्लिडियन स्पेस |यूक्लिडियन समष्टि]] , [[ मीट्रिक स्थान |मीट्रिक समष्टि]] और [[ विविध |मैनिफोल्ड]] सम्मिलित हैं।


यद्यपि सांस्थितिक समष्टि की अवधारणा मौलिक है और आधुनिक गणित की लगभग हर शाखा में इसका उपयोग किया जाता है। सांस्थितिक समष्टि का अध्ययन अपने आप में [[ बिंदु-सेट टोपोलॉजी |बिंदु-समुच्चय सांस्थितिक]] या [[ सामान्य टोपोलॉजी |सामान्य सांस्थितिक]] कहलाता है।
यद्यपि सांस्थितिक समष्टि की अवधारणा मौलिक है और आधुनिक गणित की लगभग हर शाखा में इसका उपयोग किया जाता है। सांस्थितिक समष्टि का अध्ययन अपने आप में [[ बिंदु-सेट टोपोलॉजी |बिंदु-समुच्चय सांस्थितिक]] या [[ सामान्य टोपोलॉजी |सामान्य सांस्थितिक]] कहलाता है।


== इतिहास ==
== इतिहास ==
[[1735]] के आसपास, लियोनहार्ड यूलर ने एक [[उत्तल पॉलीहेड्रॉन]] के शीर्षों, किनारों और फलकों की संख्या से संबंधित सूत्र <math>V - E + F = 2</math> की जाँच की, और इसलिए यह [[ तलीय ग्राफ |समतलीय ग्राफ]] से संबंधित है।  
1735 के आसपास, लियोनहार्ड यूलर ने सूत्र <math>V - E + F = 2</math> की खोज की जो एक [[उत्तल पॉलीहेड्रॉन]]  के शीर्षों, किनारों और फेसेस की संख्या एक [[ तलीय ग्राफ |समतलीय ग्राफ]] से संबंधित है।विशेष रूप से [[ ऑगस्टिन-लुई कॉची |ऑगस्टिन-लुई कॉची]] (1789-1857) और एल'हुइलियर (1750-1840) द्वारा इस सूत्र के अध्ययन और सामान्यीकरण ने [[ टोपोलॉजी |सांस्थितिक]] के अध्ययन को बढ़ावा दिया। [[1827]] मे, [[ कार्ल फ्रेडरिक गॉस |कार्ल फ्रेडरिक गॉस]] ने घुमावदार सतहों की सामान्य जांच प्रकाशित की, जो खंड 3 में घुमावदार सतह को आधुनिक सांस्थितिक ज्ञप्ति के समान तरीके से परिभाषित करती है, एक घुमावदार सतह को उसके एक बिंदु A पर लगातार वक्रता रखने के लिए कहा जाता है, यदि सभी सीधी रेखाओं की दिशा ए से बिंदुओं तक खींची जाती है। ए से प्रचुर रूप से छोटी दूरी पर सतह और एक ही तल से गुजरने वाले प्रचुर रूप से कम विक्षेपित होती है।{{sfn|Gauss|1827}}


इस सूत्र के अध्ययन और सामान्यीकरण, विशेष रूप से[[ ऑगस्टिन-लुई कॉची | ऑगस्टिन-लुई कॉची]] 1789-1857 और [[ल'हुइलियर]] 1750-1840 में [[ टोपोलॉजी |सांस्थितिक]] के अध्ययन को बढ़ावा दिया। [[1827]] मे, [[ कार्ल फ्रेडरिक गॉस |कार्ल फ्रेडरिक गॉस]] ने घुमावदार सतहों की सामान्य जांच प्रकाशित की, जो धारा 3 में घुमावदार सतह को आधुनिक सांस्थितिक समझ के समान तरीके से परिभाषित करती है, एक घुमावदार सतह को उसके एक बिंदु A पर निरंतर वक्रता रखने के लिए कहा जाता है, यदि A से अपार रूप से छोटी दूरी पर सतह के बिंदुओं के लिए A से खींची गई सभी सीधी रेखाओं की दिशा एक और एक ही तल से गुजरने वाली अपार रूप से कम विक्षेपित होती है।{{sfn|Gauss|1827}}
फिर भी 1850 के दशक की शुरुआत में [[बर्नहार्ड रिमेंन]] के काम को सदैव स्थानीय दृष्टिकोण से व्यवस्थित किया जाता है, चूँकि पैरामीट्रिक सतहों और सांस्थितिक निर्गम पर कभी विचार नहीं किया जाता था।{{sfn|Gallier|Xu|2013}} ऐसा लगता है कि मोबियस और [[केमिली जॉर्डन]] सबसे पहले पहले व्यक्ति थे जिन्होंने महसूस किया कि सघन सतहों की सांस्थितिक के बारे में मुख्य समस्या यह है कि सतहों की समानता तय करने के लिए अपरिवर्तनीय अधिमानतः संख्यात्मक को तलाश करना है, यानी यह तय करना है कि दो सतहें होमियोमॉर्फिक हैं या नहीं।{{sfn|Gallier|Xu|2013}}  


फिर भी जब तक 1850 के दशक की प्रारम्भ में [[बर्नहार्ड रिमेंन]] के काम को सदैव स्थानीय दृष्टिकोण से समझौता किया जाता है, चूँकि पैरामीट्रिक सतहों और सांस्थितिक निर्गम पर कभी विचार नहीं किया जाता था।{{sfn|Gallier|Xu|2013}} मोबियस और [[केमिली जॉर्डन]] यह संवेदना करने वाले पहले व्यक्ति थे जो कि सघन सतहों की सांस्थितिक के बारे में मुख्य समस्या यह है कि सतहों की समानता तय करने के लिए अपरिवर्तनीयों को अधिमानतः संख्यात्मक रूप से जाँचना है, और यह तय करना है कि दो सतह होमियोमॉर्फिक हैं या नहीं।{{sfn|Gallier|Xu|2013}}
विषय स्पष्ट रूप से [[ फेलिक्स क्लेन |फेलिक्स क्लेन]] द्वारा अपने [[ एर्लांगेन कार्यक्रम |एर्लांगेन फलन]] 1872 में स्पष्ट रूप से परिभाषित किया गया है स्वैच्छिक लगातार रूपांतरण ज्यामिति अपरिवर्तन एक प्रकार का ज्यामिति ही है। सांस्थितिक शब्द 1847 में [[ जोहान बेनेडिक्ट लिस्टिंग |जोहान बेनेडिक्ट लिस्टिंग]] द्वारा पेश किया गया था, चूँकि उन्होंने पहले उपयोग किए गए विश्लेषण साइटस के अतिरिक्त कुछ साल पहले संवाद में इस शब्द का उपयोग किया था।  हेनरी पोंकारे ने विज्ञान की नींव, किसी भी आयाम स्थान के लिए रखी थी। इस विषय पर उनका पहला लेख [[ 1894 |1894]] में छपा।<ref>J. Stillwell, Mathematics and its history</ref> 1930 के दशक में, [[ जेम्स वाडेल अलेक्जेंडर II |जेम्स वाडेल अलेक्जेंडर II]] और [[ हस्लर व्हिटनी |हस्लर व्हिटनी]] ने पहली बार यह विचार व्यक्त किया कि एक सतह एक सांस्थितिक समष्टि है जो सांस्थितिक मैनिफोल्ड है।


विषय स्पष्ट रूप से [[ फेलिक्स क्लेन |फेलिक्स क्लेन]] द्वारा अपने [[ एर्लांगेन कार्यक्रम |एर्लांगेन फलन]] 1872 में स्पष्ट रूप से परिभाषित किया गया है विवेकाधीन ढंग से निरंतर परिवर्तन के ज्यामिति अपरिवर्तनीय, एक प्रकार की ज्यामिति है। सांस्थितिक शब्द 1847 में [[ जोहान बेनेडिक्ट लिस्टिंग |जोहान बेनेडिक्ट लिस्टिंग]] द्वारा पेश किया गया था, चूँकि उन्होंने पहले उपयोग किए गए विश्लेषण साइटस के अतिरिक्त कुछ साल पहले पत्राचार में इस शब्द का उपयोग किया था। इस विज्ञान की नींव, किसी भी आयाम के स्थान के लिए, हेनरी पोंकारे द्वारा बनाई गई थी। इस विषय पर उनका पहला लेख [[ 1894 |1894]] में छपा।<ref>J. Stillwell, Mathematics and its history</ref> 1930 के दशक में, [[ जेम्स वाडेल अलेक्जेंडर II |जेम्स वाडेल अलेक्जेंडर II]] और [[ हस्लर व्हिटनी |हस्लर व्हिटनी]] ने पहली बार यह विचार व्यक्त किया कि एक सतह एक सांस्थितिक समष्टि है जो सांस्थितिक मैनिफोल्ड है।
सांस्थितिक समष्टि को पहली बार 1914 में [[ फ़ेलिक्स हॉसडॉर्फ़ |फ़ेलिक्स हॉसडॉर्फ़]] ने समुच्चय सिद्धांत को अपने मौलिक सिद्धांतों में परिभाषित किया था। मेट्रिक स्पेस को पहले 1906 में मौरिस फ़्रेचेट द्वारा परिभाषित किया गया था, चूँकि, हॉसडॉर्फ ने [[ मीट्रिक रिक्त स्थान |मीट्रिक रिक्त]] [[( जर्मन मेट्रिशर राउम )|(जर्मन मेट्रिशर राउम )]] शब्द को लोकप्रिय बनाया था। <ref>
 
सांस्थितिक समष्टि को पहली बार 1914 में [[ फ़ेलिक्स हॉसडॉर्फ़ |फ़ेलिक्स हॉसडॉर्फ़]] ने समुच्चय सिद्धांत के अपने मौलिक सिद्धांतों में परिभाषित किया था। मेट्रिक समष्टि स्थान को पहले 1906 में मौरिस फ़्रेचेट द्वारा परिभाषित किया गया था, चूँकि यह हॉसडॉर्फ था जिसने [[ मीट्रिक रिक्त स्थान |मीट्रिक रिक्त स्थान]] शब्द को लोकप्रिय बनाया [[( जर्मन मेट्रिशर राउम )|(जर्मन मेट्रिशर राउम )]]<ref>
{{oed | metric space}}
{{oed | metric space}}
</ref><ref>
</ref><ref>
Line 95: Line 93:


किसी दिए गए निश्चित समुच्चय पर सभी सांस्थितिक का संग्रह <math>X</math> एक पूर्ण जालक बनाता है, यदि <math>F = \left\{ \tau_{\alpha} : \alpha \in A \right\}</math> पर सांस्थितिक का एक संग्रह है <math>X,</math> तो <math>F</math> का मिलन प्रतिच्छेदन <math>F,</math> है और <math>F</math> से जुड़ता है <math>X</math> पर सभी सांस्थितिक के संग्रह का मिलन होता है जिसमें <math>F.</math> का हर सदस्य सम्मिलित होता है  
किसी दिए गए निश्चित समुच्चय पर सभी सांस्थितिक का संग्रह <math>X</math> एक पूर्ण जालक बनाता है, यदि <math>F = \left\{ \tau_{\alpha} : \alpha \in A \right\}</math> पर सांस्थितिक का एक संग्रह है <math>X,</math> तो <math>F</math> का मिलन प्रतिच्छेदन <math>F,</math> है और <math>F</math> से जुड़ता है <math>X</math> पर सभी सांस्थितिक के संग्रह का मिलन होता है जिसमें <math>F.</math> का हर सदस्य सम्मिलित होता है  
== निरंतर फलन ==
== लगातार फलन ==
{{main|निरंतर फलन }}
{{main|निरंतर फलन }}


एक फलन (गणित) <math>f : X \to Y</math> सांस्थितिक रिक्त स्थान के बीच प्रत्येक के लिए [[ निरंतरता (टोपोलॉजी) |निरंतरता सांस्थितिक]] कहा जाता है यदि प्रत्येक के लिए <math> x \in X</math> और हर निकटतम <math>N</math> का <math>f(x)</math> एक निकटतम है <math>M</math> का <math>x</math> ऐसा है कि <math>f(M) \subseteq N.</math> यह विश्लेषण में सामान्य परिभाषा से आसानी से संबंधित है। समान रूप से, <math>f</math> निरंतर है यदि प्रत्येक संवृत समुच्चय का प्रतिलोम प्रतिबिम्ब ओपन है।{{sfn|Armstrong|1983|loc=theorem 2.6}} यह अंतर्ज्ञान को पकड़ने का एक प्रयास है कि फलन में कोई छलांग या अलगाव नहीं है। एक[[ समरूपता | समरूपता]] एक ऐसा आक्षेप है जो निरंतर होता है और जिसका उलटा कार्य भी निरंतर होता है। दो रिक्त स्थान होमोमोर्फिज्म कहलाते हैं यदि उनके बीच एक होमोमोर्फिज्म मौजूद है। सांस्थितिक के दृष्टिकोण से, होमोमोर्फिक में रिक्त स्थान अनिवार्य रूप से समान होते हैं।<ref>{{Cite book|isbn = 978-93-325-4953-1|last = Munkres|first = James R|title = टोपोलॉजी|date = 2015|pages = 317–319}}</ref>
एक फलन (गणित) <math>f : X \to Y</math> सांस्थितिक रिक्त स्थान के बीच प्रत्येक के लिए [[ निरंतरता (टोपोलॉजी) |लगातारता सांस्थितिक]] कहा जाता है यदि प्रत्येक के लिए <math> x \in X</math> और हर निकटतम <math>N</math> का <math>f(x)</math> एक निकटतम है <math>M</math> का <math>x</math> ऐसा है कि <math>f(M) \subseteq N.</math> यह विश्लेषण में सामान्य परिभाषा से आसानी से संबंधित है। समान रूप से, <math>f</math> लगातार है यदि प्रत्येक संवृत समुच्चय का प्रतिलोम प्रतिबिम्ब ओपन है।{{sfn|Armstrong|1983|loc=theorem 2.6}} यह अंतर्ज्ञान को पकड़ने का एक प्रयास है कि फलन में कोई छलांग या अलगाव नहीं है। एक[[ समरूपता | समरूपता]] एक ऐसा आक्षेप है जो लगातार होता है और जिसका उलटा कार्य भी लगातार होता है। दो रिक्त स्थान होमोमोर्फिज्म कहलाते हैं यदि उनके बीच एक होमोमोर्फिज्म मौजूद है। सांस्थितिक के दृष्टिकोण से, होमोमोर्फिक में रिक्त स्थान अनिवार्य रूप से समान होते हैं।<ref>{{Cite book|isbn = 978-93-325-4953-1|last = Munkres|first = James R|title = टोपोलॉजी|date = 2015|pages = 317–319}}</ref>


[[ श्रेणी सिद्धांत | श्रेणी सिद्धांत]] में, मौलिक [[ श्रेणी (गणित) |श्रेणी (गणित)]] में से एक शीर्ष है, जो सांस्थितिक रिक्त स्थान की श्रेणी को दर्शाता है जिसका ऑब्जेक्ट श्रेणी सिद्धांत सांस्थितिक रिक्त स्थान हैं और जिनके आकृति विज्ञान में निरंतर कार्य होते हैं। इस श्रेणी की वस्तुओं को [[अपरिवर्तकों]] द्वारा होमोमोर्फिज्म तक वर्गीकृत करने के प्रयास ने [[होमोटोपी]] सिद्धांत, समरूपता सिद्धांत और के-सिद्धांत जैसे अनुसंधान के क्षेत्रों को प्रेरित किया है।
[[ श्रेणी सिद्धांत | श्रेणी सिद्धांत]] में, मौलिक [[ श्रेणी (गणित) |श्रेणी (गणित)]] में से एक शीर्ष है, जो सांस्थितिक रिक्त स्थान की श्रेणी को दर्शाता है जिसका ऑब्जेक्ट श्रेणी सिद्धांत सांस्थितिक रिक्त स्थान हैं और जिनके आकृति विज्ञान में लगातार कार्य होते हैं। इस श्रेणी की वस्तुओं को [[अपरिवर्तकों]] द्वारा होमोमोर्फिज्म तक वर्गीकृत करने के प्रयास ने [[होमोटोपी]] सिद्धांत, समरूपता सिद्धांत और के-सिद्धांत जैसे अनुसंधान के क्षेत्रों को प्रेरित किया है।


== सांस्थितिक समष्टि के उदाहरण ==
== सांस्थितिक समष्टि के उदाहरण ==
Line 187: Line 185:
सांस्थितिक समष्टि के हर सबसमुच्चय को [[ सबस्पेस टोपोलॉजी |सब समष्टि सांस्थितिक]] दी जा सकती है जिसमें संवृत समुच्चय सबसमुच्चय के साथ बड़े समष्टि के संवृत समुच्चय के प्रतिच्छेदन होते हैं। सांस्थितिक समष्टि के किसी भी [[ अनुक्रमित परिवार |अनुक्रमित परिवार]] के लिए, उत्पाद को [[ उत्पाद टोपोलॉजी |उत्पाद सांस्थितिक]] दी जा सकती है, जो प्रक्षेपण (गणित) ढूढ़ कर कारकों के संवृत समुच्चयो की व्युत्क्रम छवियों द्वारा उत्पन्न होती है। उदाहरण के लिए, परिमित उत्पादों में, उत्पाद सांस्थितिक के आधार में संवृत समुच्चय के सभी उत्पाद होते हैं। अनंत उत्पादों के लिए, अतिरिक्त आवश्यकता है कि एक बुनियादी संवृत समुच्चय में, इसके कई अनुमानों को छोड़कर संपूर्ण स्थान है।
सांस्थितिक समष्टि के हर सबसमुच्चय को [[ सबस्पेस टोपोलॉजी |सब समष्टि सांस्थितिक]] दी जा सकती है जिसमें संवृत समुच्चय सबसमुच्चय के साथ बड़े समष्टि के संवृत समुच्चय के प्रतिच्छेदन होते हैं। सांस्थितिक समष्टि के किसी भी [[ अनुक्रमित परिवार |अनुक्रमित परिवार]] के लिए, उत्पाद को [[ उत्पाद टोपोलॉजी |उत्पाद सांस्थितिक]] दी जा सकती है, जो प्रक्षेपण (गणित) ढूढ़ कर कारकों के संवृत समुच्चयो की व्युत्क्रम छवियों द्वारा उत्पन्न होती है। उदाहरण के लिए, परिमित उत्पादों में, उत्पाद सांस्थितिक के आधार में संवृत समुच्चय के सभी उत्पाद होते हैं। अनंत उत्पादों के लिए, अतिरिक्त आवश्यकता है कि एक बुनियादी संवृत समुच्चय में, इसके कई अनुमानों को छोड़कर संपूर्ण स्थान है।


एक [[ भागफल स्थान (टोपोलॉजी) |भागफल स्थान (सांस्थितिक)]] को इस प्रकार परिभाषित किया गया है: if <math>X</math> एक सांस्थितिक समष्टि है और <math>Y</math> एक समुच्चय है, और अगर <math>f : X \to Y</math> एक [[ प्रक्षेपण |प्रक्षेपण]] फलन (गणित) है, फिर भागफल सांस्थितिक पर <math>Y</math> के सबसमुच्चय का संग्रह है <math>Y</math> जिसके नीचे खुली व्युत्क्रम छवियां हैं <math>f.</math> दूसरे शब्दों में, [[ भागफल टोपोलॉजी |भागफल सांस्थितिक]] सबसे बेहतरीन सांस्थितिक है <math>Y</math> जिसके लिए <math>f</math> निरंतर है। भागफल सांस्थितिक का एक सामान्य उदाहरण है जब सांस्थितिक समष्टि पर एक [[ तुल्यता संबंध |तुल्यता संबंध]] परिभाषित किया जाता है <math>X.</math> नक्शा <math>f</math> तो [[ तुल्यता वर्ग |तुल्यता वर्गों]] के समुच्चय पर प्राकृतिक प्रक्षेपण है।
एक [[ भागफल स्थान (टोपोलॉजी) |भागफल स्थान (सांस्थितिक)]] को इस प्रकार परिभाषित किया गया है: if <math>X</math> एक सांस्थितिक समष्टि है और <math>Y</math> एक समुच्चय है, और अगर <math>f : X \to Y</math> एक [[ प्रक्षेपण |प्रक्षेपण]] फलन (गणित) है, फिर भागफल सांस्थितिक पर <math>Y</math> के सबसमुच्चय का संग्रह है <math>Y</math> जिसके नीचे खुली व्युत्क्रम छवियां हैं <math>f.</math> दूसरे शब्दों में, [[ भागफल टोपोलॉजी |भागफल सांस्थितिक]] सबसे बेहतरीन सांस्थितिक है <math>Y</math> जिसके लिए <math>f</math> लगातार है। भागफल सांस्थितिक का एक सामान्य उदाहरण है जब सांस्थितिक समष्टि पर एक [[ तुल्यता संबंध |तुल्यता संबंध]] परिभाषित किया जाता है <math>X.</math> नक्शा <math>f</math> तो [[ तुल्यता वर्ग |तुल्यता वर्गों]] के समुच्चय पर प्राकृतिक प्रक्षेपण है।


एक सांस्थितिक समष्टि के सभी गैर-रिक्त उपसमुच्चय के समुच्चय पर विएटोरि ससांस्थितिक <math>X,</math> [[ लियोपोल्ड विएटोरिस |लियोपोल्ड विएटोरिस]] के लिए नामित, निम्नलिखित आधार से उत्पन्न होता है: प्रत्येक के लिए <math>n</math>-टुपल <math>U_1, \ldots, U_n</math> संवृत समुच्चयो में <math>X,</math> हम एक आधार समुच्चय का निर्माण करते हैं जिसमें संघ के सभी उपसमुच्चय होते हैं <math>U_i</math> जिनमें प्रत्येक के साथ गैर-रिक्त चौराहे हैं <math>U_i.</math> [[ स्थानीय रूप से कॉम्पैक्ट |स्थानीय रूप से कॉम्पैक्ट]] [[ पोलिश स्थान |पोलिश स्थान]] के सभी गैर-खाली बंद सबसमुच्चय के समुच्चय पर फेल सांस्थितिक <math>X</math> विएटोरि ससांस्थितिक का एक प्रकार है, और इसका नाम गणितज्ञ जेम्स फेल के नाम पर रखा गया है। यह निम्नलिखित आधार से उत्पन्न होता है, प्रत्येक के लिए <math>n</math>-टुपल <math>U_1, \ldots, U_n</math> संवृत समुच्चयो में <math>X</math> और हर कॉम्पैक्ट समुच्चय के लिए <math>K,</math> के सभी उपसमुच्चय का समुच्चय <math>X</math> जो से जुदा हैं <math>K</math> और प्रत्येक के साथ गैर-रिक्त चौराहे हैं <math>U_i</math> आधार का सदस्य है।
एक सांस्थितिक समष्टि के सभी गैर-रिक्त उपसमुच्चय के समुच्चय पर विएटोरि ससांस्थितिक <math>X,</math> [[ लियोपोल्ड विएटोरिस |लियोपोल्ड विएटोरिस]] के लिए नामित, निम्नलिखित आधार से उत्पन्न होता है: प्रत्येक के लिए <math>n</math>-टुपल <math>U_1, \ldots, U_n</math> संवृत समुच्चयो में <math>X,</math> हम एक आधार समुच्चय का निर्माण करते हैं जिसमें संघ के सभी उपसमुच्चय होते हैं <math>U_i</math> जिनमें प्रत्येक के साथ गैर-रिक्त चौराहे हैं <math>U_i.</math> [[ स्थानीय रूप से कॉम्पैक्ट |स्थानीय रूप से कॉम्पैक्ट]] [[ पोलिश स्थान |पोलिश स्थान]] के सभी गैर-खाली बंद सबसमुच्चय के समुच्चय पर फेल सांस्थितिक <math>X</math> विएटोरि ससांस्थितिक का एक प्रकार है, और इसका नाम गणितज्ञ जेम्स फेल के नाम पर रखा गया है। यह निम्नलिखित आधार से उत्पन्न होता है, प्रत्येक के लिए <math>n</math>-टुपल <math>U_1, \ldots, U_n</math> संवृत समुच्चयो में <math>X</math> और हर कॉम्पैक्ट समुच्चय के लिए <math>K,</math> के सभी उपसमुच्चय का समुच्चय <math>X</math> जो से जुदा हैं <math>K</math> और प्रत्येक के साथ गैर-रिक्त चौराहे हैं <math>U_i</math> आधार का सदस्य है।
Line 197: Line 195:


== [[ बीजीय संरचना | बीजीय संरचना]] के साथ सांस्थितिक रिक्त स्थान ==
== [[ बीजीय संरचना | बीजीय संरचना]] के साथ सांस्थितिक रिक्त स्थान ==
किसी भी बीजीय संरचना के लिए हम असतत सांस्थितिक का परिचय दे सकते हैं, जिसके तहत बीजीय संचालन निरंतर कार्य होते हैं। ऐसी किसी भी संरचना के लिए जो परिमित नहीं है, हमारे पास अधिकाशतः बीजीय संक्रियाओं के साथ संगत एक प्राकृतिक सांस्थितिक होती है, इस अर्थ में कि बीजीय संचालन अभी भी निरंतर हैं। इससे [[ टोपोलॉजिकल ग्रुप |सांस्थितिक समूह]] , [[ टोपोलॉजिकल वेक्टर स्पेस |सांस्थितिक सदिश समष्टि]] , [[ टोपोलॉजिकल रिंग |सांस्थितिक रिंग]] और लोकल फील्ड जैसी अवधारणाएं सामने आती हैं।
किसी भी बीजीय संरचना के लिए हम असतत सांस्थितिक का परिचय दे सकते हैं, जिसके तहत बीजीय संचालन लगातार कार्य होते हैं। ऐसी किसी भी संरचना के लिए जो परिमित नहीं है, हमारे पास अधिकाशतः बीजीय संक्रियाओं के साथ संगत एक प्राकृतिक सांस्थितिक होती है, इस अर्थ में कि बीजीय संचालन अभी भी लगातार हैं। इससे [[ टोपोलॉजिकल ग्रुप |सांस्थितिक समूह]] , [[ टोपोलॉजिकल वेक्टर स्पेस |सांस्थितिक सदिश समष्टि]] , [[ टोपोलॉजिकल रिंग |सांस्थितिक रिंग]] और लोकल फील्ड जैसी अवधारणाएं सामने आती हैं।


== आदेश संरचना के साथ सांस्थितिक रिक्त स्थान ==
== आदेश संरचना के साथ सांस्थितिक रिक्त स्थान ==

Revision as of 00:27, 18 November 2022

गणित में, एक सांस्थितिक समष्टि, अधिकाशतः बोले जाने वाली एक ज्यामितीय समष्टि है जिसमें निकटता को परिभाषित किया जाता है, लेकिन यह जरूरी नहीं कि इससे संख्यात्मक दूरी को मापा जा सके। सांस्थितिक समष्टि विशेष रूप से एक समुच्चय है, जिसके तत्वों को अंक कहा जाता है, इसके साथ एक अतिरिक्त संरचना जिसे सांस्थितिक कहा जाता है, और प्रत्येक बिंदु के लिए निकटतम समुच्चय के रूप में परिभाषित किया जाता है। जो निकटता की अवधारणा को औपचारिक रूप देने वाले कुछ सिद्धांतों को संतुष्ट करता है। एक सांस्थितिक की कई समतुल्य परिभाषाएँ हैं, जिनमें से सबसे अधिक उपयोग की जाने वाली परिभाषा संवृत समुच्चयो के माध्यम से होती है, जो कि परिवर्तन करने के लिए दूसरों की तुलना में आसान होती है।

सांस्थितिक समष्टि गणितीय स्थान का सबसे सामान्य प्रकार है जो सीमाओं की परिभाषा, लगातारता और संघबद्धता की अनुमति देता है[1][2] सामान्य प्रकार के सांस्थितिक समष्टि में यूक्लिडियन समष्टि , मीट्रिक समष्टि और मैनिफोल्ड सम्मिलित हैं।

यद्यपि सांस्थितिक समष्टि की अवधारणा मौलिक है और आधुनिक गणित की लगभग हर शाखा में इसका उपयोग किया जाता है। सांस्थितिक समष्टि का अध्ययन अपने आप में बिंदु-समुच्चय सांस्थितिक या सामान्य सांस्थितिक कहलाता है।

इतिहास

1735 के आसपास, लियोनहार्ड यूलर ने सूत्र की खोज की जो एक उत्तल पॉलीहेड्रॉन के शीर्षों, किनारों और फेसेस की संख्या एक समतलीय ग्राफ से संबंधित है।विशेष रूप से ऑगस्टिन-लुई कॉची (1789-1857) और एल'हुइलियर (1750-1840) द्वारा इस सूत्र के अध्ययन और सामान्यीकरण ने सांस्थितिक के अध्ययन को बढ़ावा दिया। 1827 मे, कार्ल फ्रेडरिक गॉस ने घुमावदार सतहों की सामान्य जांच प्रकाशित की, जो खंड 3 में घुमावदार सतह को आधुनिक सांस्थितिक ज्ञप्ति के समान तरीके से परिभाषित करती है, एक घुमावदार सतह को उसके एक बिंदु A पर लगातार वक्रता रखने के लिए कहा जाता है, यदि सभी सीधी रेखाओं की दिशा ए से बिंदुओं तक खींची जाती है। ए से प्रचुर रूप से छोटी दूरी पर सतह और एक ही तल से गुजरने वाले प्रचुर रूप से कम विक्षेपित होती है।[3]

फिर भी 1850 के दशक की शुरुआत में बर्नहार्ड रिमेंन के काम को सदैव स्थानीय दृष्टिकोण से व्यवस्थित किया जाता है, चूँकि पैरामीट्रिक सतहों और सांस्थितिक निर्गम पर कभी विचार नहीं किया जाता था।[4] ऐसा लगता है कि मोबियस और केमिली जॉर्डन सबसे पहले पहले व्यक्ति थे जिन्होंने महसूस किया कि सघन सतहों की सांस्थितिक के बारे में मुख्य समस्या यह है कि सतहों की समानता तय करने के लिए अपरिवर्तनीय अधिमानतः संख्यात्मक को तलाश करना है, यानी यह तय करना है कि दो सतहें होमियोमॉर्फिक हैं या नहीं।[4]

विषय स्पष्ट रूप से फेलिक्स क्लेन द्वारा अपने एर्लांगेन फलन 1872 में स्पष्ट रूप से परिभाषित किया गया है स्वैच्छिक लगातार रूपांतरण ज्यामिति अपरिवर्तन एक प्रकार का ज्यामिति ही है। सांस्थितिक शब्द 1847 में जोहान बेनेडिक्ट लिस्टिंग द्वारा पेश किया गया था, चूँकि उन्होंने पहले उपयोग किए गए विश्लेषण साइटस के अतिरिक्त कुछ साल पहले संवाद में इस शब्द का उपयोग किया था। हेनरी पोंकारे ने विज्ञान की नींव, किसी भी आयाम स्थान के लिए रखी थी। इस विषय पर उनका पहला लेख 1894 में छपा।[5] 1930 के दशक में, जेम्स वाडेल अलेक्जेंडर II और हस्लर व्हिटनी ने पहली बार यह विचार व्यक्त किया कि एक सतह एक सांस्थितिक समष्टि है जो सांस्थितिक मैनिफोल्ड है।

सांस्थितिक समष्टि को पहली बार 1914 में फ़ेलिक्स हॉसडॉर्फ़ ने समुच्चय सिद्धांत को अपने मौलिक सिद्धांतों में परिभाषित किया था। मेट्रिक स्पेस को पहले 1906 में मौरिस फ़्रेचेट द्वारा परिभाषित किया गया था, चूँकि, हॉसडॉर्फ ने मीट्रिक रिक्त (जर्मन मेट्रिशर राउम ) शब्द को लोकप्रिय बनाया था। [6][7]

परिभाषाएं

सांस्थितिक की अवधारणा की उपयोगिता इस तथ्य से प्रदर्शित होती है कि इस संरचना की कई समान परिभाषाएँ हैं। इस प्रकार कोई व्यक्ति अनुप्रयोग के लिए अनुकूल सिद्धांतों को चुनता है। और सबसे अधिक उपयोग किया जाने वाला संवृत समुच्चय के संदर्भ में है, लेकिन संभवतया अधिक सहज ज्ञान की बात यह है कि निकटतम मामले में यह पहले दिया गया है।

निकटतम माध्यम से परिभाषा

यह सिद्धांतों फेलिक्स हॉसडॉर्फ के कारण है। होने देना एक समुच्चय हो, के तत्व समान्तया पर कहा जाता है points, चूँकि वे कोई भी गणितीय वस्तु हो सकती हैं। हमने इजाजत दी खाली होना। होने देना प्रत्येक को असाइन करने वाला एक फलन (गणित) बनें (उसी समय एक गैर-रिक्त संग्रह के उपसमुच्चय के के तत्व बुलाया जाएगा। निकटतम का इसके संबंध में या केवल, निकटतम एक्स फलन सामीप्य सांस्थितिक कहा जाता है यदि नीचे के स्वयंसिद्ध हैं[8] संतुष्ट हैं; और फिर साथ सांस्थितिक समष्टि कहलाता है।

  1. यदि का निकटतम है (अर्थात, ), फिर दूसरे शब्दों में, प्रत्येक बिंदु उसके प्रत्येक निकटतम का है।
  2. यदि का एक उपसमुच्चय है और इसमें एक निकटतम सम्मिलित है फिर का निकटतम है अर्थात एक बिंदु के निकटतम का प्रत्येक सुपरसमुच्चय फिर से का निकटतम है
  3. के दो निकटतम का प्रतिच्छेदन का निकटतम है
  4. के किसी भी निकटतम में का निकटतम सम्मिलित होता है जैसे कि . के प्रत्येक बिंदु का निकटतम होता है


निकटतम लिए पहले तीन एक्सिओम्स का स्पष्ट अर्थ है। कि सिद्धांत संरचना में चौथे स्वयंसिद्ध का बहुत महत्वपूर्ण उपयोग है,यह के विभिन्न बिंदुओं के निकटतम को एक साथ जोड़ने का काम करता है

निकटतम की मानक प्रणाली का उदाहरण वास्तविक रेखा के लिए है जहां के उपसमुच्चय को वास्तविक संख्या के निकटतम रूप में परिभाषित किया जाता है, यदि इसमें एक संवृत अंतराल में सम्मिलित किया जाता है

ऐसी संरचना को देखते हुए, एक उपसमुच्चय का संवृत होने के लिए परिभाषित किया गया है अगर में सभी बिंदुओं का एक निकटतम है संवृत समुच्चय तब नीचे दिए गए अभिगृहीतों को संतुष्ट करते हैं। इसके विपरीत, जब एक सांस्थितिक समष्टि के संवृत समुच्चय दिए जाते हैं, तो उपरोक्त एक्सिओम्स को संतुष्ट करने वाले निकटतम को परिभाषित करके पुनर्प्राप्त किया जा सकता है का निकटतम होना यदि, में एक ओपन समुच्चय सम्मिलित है जैसे कि [9]

संवृत समुच्चय के माध्यम से परिभाषा

एक समुच्चय X पर एक सांस्थितिकी को X के सब समुच्चय के संग्रह रूप में परिभाषित किया जा सकता है जिसे संवृत समुच्चय कहा जाता है और निम्नलिखित सिद्धांतों को संतुष्ट करता है[10]

  1. खाली समुच्चय और खुद से संबंधित हैं
  2. के सदस्यों का कोई भी विवेकाधीन परिमित या अनंत संघ से संबंधित है
  3. के सदस्यों की किसी भी परिमित संख्या का प्रतिच्छेदन से संबंधित है

चूंकि सांस्थितिक की यह परिभाषा सबसे अधिक उपयोग की जाती है, समुच्चय संवृत समुच्चय को समान्तया सांस्थितिक कहा जाता है उपसमुच्चय संकुचित में बताया गया यदि इसका पूरक समुच्चय सिद्धांत एक संवृत समुच्चय है।

सांस्थितिक के उदाहरण

होने देना यहां मंडलियों के साथ निरूपित किया जा सकता है यहां चार उदाहरण हैं और तीन-बिंदु समुच्चय पर सांस्थितिक के दो गैर-उदाहरण हैं नीचे-बाएं उदाहरण सांस्थितिक नहीं है क्योंकि का संघ तथा शि.ई. ] लापता है; निचला-दायां उदाहरण सांस्थितिक नहीं है चूँकि प्रतिच्छेदन तथा अर्थात. ], लापता है।

दिया गया तुच्छ सांस्थितिक ऑन समुच्चय का परिवार है के केवल दो सबसमुच्चय से मिलकर बनता है एक्सिओम्स द्वारा आवश्यक एक सांस्थितिक बनाता है

  1. दिया गया परिवार
    के छह उपसमुच्चय की एक और सांस्थितिक बनाता है
  2. दिया गया असतत सांस्थितिक पर का सत्ता स्थापित है जो परिवार है के सभी संभावित सबसमुच्चय से मिलकर बनता है इस मामले में सांस्थितिक समष्टि एक असतत क्षेत्र कहा जाता है
  3. दिया गया पूर्णांकों का समूह, परिवार पूर्णांकों के सभी परिमित उपसमुच्चयों का योग खुद है एक सांस्थितिक नहीं, क्योंकि उदाहरण के लिए सभी परिमित समुच्चयो का संघ जिसमें शून्य नहीं है, परिमित नहीं है, बल्कि सभी का भी नहीं है और इसलिए यह अंदर नहीं हो सकता है


बंद समुच्चयो के माध्यम से परिभाषा

मॉर्गन के नियमों का उपयोग करते हुए, संवृत समुच्चय को परिभाषित करने वाले उपरोक्त स्वयंसिद्ध बंद समुच्चय को परिभाषित करने वाले स्वयंसिद्ध बन जाते हैं

  1. खाली समुच्चय और बंद हैं।
  2. बंद समुच्चय के किसी भी संग्रह का प्रतिच्छेदन भी बंद है
  3. बंद समुच्चय की किसी भी सीमित संख्या का संघ भी बंद है।

इन एक्सिओम्स का उपयोग एक सांस्थितिक समष्टि को परिभाषित करने का एक और तरीका है, के बंद उपसमुच्चय के संग्रह के साथ एक समुच्चय एक्स के रूप में हैं इस प्रकार सांस्थितिक में समुच्चय बंद समुच्चय हैं, और एक्स में उनके पूरक संवृत समुच्चय हैं।

अन्य परिभाषाएं

सांस्थितिक समष्टि को परिभाषित करने के कई अन्य समान तरीके हैं, दूसरे शब्दों में, निकटतम की अवधारणा संवृत या बंद समुच्चयो को अन्य प्रारम्भी बिंदुओं से पुनर्निर्मित किया जा सकता है और सही सिद्धांतों को संतुष्ट किया जा सकता है।

सांस्थितिक समष्टि को परिभाषित करने का एक अन्य तरीका कुराटोवस्की क्लोजर एक्सिओम्स का उपयोग करना है, जो के पावर समुच्चय पर एक ऑपरेटर (गणित) के निश्चित बिंदुओं के रूप में बंद समुच्चय को परिभाषित करता है।

एक नेट (गणित) अनुक्रम की अवधारणा का एक सामान्यीकरण है। सांस्थितिक पूरी तरह से निर्धारित होती है यदि एक्स में प्रत्येक नेट के लिए इसके संचय बिंदुओं का समुच्चय निर्दिष्ट किया जाता है।

सांस्थितिक की तुलना

सांस्थितिक समष्टि बनाने के लिए विभिन्न प्रकार की सांस्थितिक को एक समुच्चय पर रखा जा सकता है। जब एक सांस्थितिक में प्रत्येक समुच्चय सांस्थितिक में भी होता है और , का एक उपसमुच्चय होता है तो हम कहते हैं कि , से अच्छा है और , से समीप है। ये एक प्रमाण जो केवल कुछ संवृत समुच्चय के अस्तित्व पर निर्भर करता है, वह किसी भी बेहतर सांस्थितिक के लिए भी मान्य होगा, और इसी तरह एक प्रमाण जो केवल कुछ समुच्चयो पर निर्भर करता है, जो ओपन नहीं है पर किसी मोटे सांस्थितिक पर लागू होता है। साहित्य में मजबूत और कमजोर शब्दों का भी उपयोग किया जाता है, लेकिन अर्थ पर थोड़ी सहमति के साथ, इसलिए पढ़ते समय हमेशा लेखक की वर्तनी का मूल रूप सुनिश्चित होना चाहिए।

किसी दिए गए निश्चित समुच्चय पर सभी सांस्थितिक का संग्रह एक पूर्ण जालक बनाता है, यदि पर सांस्थितिक का एक संग्रह है तो का मिलन प्रतिच्छेदन है और से जुड़ता है पर सभी सांस्थितिक के संग्रह का मिलन होता है जिसमें का हर सदस्य सम्मिलित होता है

लगातार फलन

एक फलन (गणित) सांस्थितिक रिक्त स्थान के बीच प्रत्येक के लिए लगातारता सांस्थितिक कहा जाता है यदि प्रत्येक के लिए और हर निकटतम का एक निकटतम है का ऐसा है कि यह विश्लेषण में सामान्य परिभाषा से आसानी से संबंधित है। समान रूप से, लगातार है यदि प्रत्येक संवृत समुच्चय का प्रतिलोम प्रतिबिम्ब ओपन है।[11] यह अंतर्ज्ञान को पकड़ने का एक प्रयास है कि फलन में कोई छलांग या अलगाव नहीं है। एक समरूपता एक ऐसा आक्षेप है जो लगातार होता है और जिसका उलटा कार्य भी लगातार होता है। दो रिक्त स्थान होमोमोर्फिज्म कहलाते हैं यदि उनके बीच एक होमोमोर्फिज्म मौजूद है। सांस्थितिक के दृष्टिकोण से, होमोमोर्फिक में रिक्त स्थान अनिवार्य रूप से समान होते हैं।[12]

श्रेणी सिद्धांत में, मौलिक श्रेणी (गणित) में से एक शीर्ष है, जो सांस्थितिक रिक्त स्थान की श्रेणी को दर्शाता है जिसका ऑब्जेक्ट श्रेणी सिद्धांत सांस्थितिक रिक्त स्थान हैं और जिनके आकृति विज्ञान में लगातार कार्य होते हैं। इस श्रेणी की वस्तुओं को अपरिवर्तकों द्वारा होमोमोर्फिज्म तक वर्गीकृत करने के प्रयास ने होमोटोपी सिद्धांत, समरूपता सिद्धांत और के-सिद्धांत जैसे अनुसंधान के क्षेत्रों को प्रेरित किया है।

सांस्थितिक समष्टि के उदाहरण

किसी दिए गए समुच्चय में कई अलग-अलग सांस्थितिक हो सकते हैं। यदि एक समुच्चय को एक अलग सांस्थितिक दी जाती है, तो इसे एक अलग सांस्थितिक समष्टि के रूप में देखा जाता है। किसी भी समुच्चय को असतत स्थान दिया जा सकता है जिसमें प्रत्येक उपसमुच्चय ओपन हो। इस सांस्थितिक में एकमात्र अभिसरण अनुक्रम या जाल में हैं जो अंततः स्थिर होते हैं। साथ ही, किसी भी समुच्चय को ट्रिविअल सांस्थितिक को दिया जा सकता है जिसे अविवेकी सांस्थितिक भी कहा जाता है, जिसमें केवल खाली समुच्चय और पूरा समष्टि ओपन होता है। इस सांस्थितिक में हर क्रम और जाल अंतरिक्ष के हर बिंदु पर अभिसरण करता है। यह उदाहरण दिखाता है कि सामान्य सांस्थितिक रिक्त स्थान में, अनुक्रमों की सीमाएं अद्वितीय नहीं होनी चाहिए। चूँकि, सामान्यतः सांस्थितिक हॉसडॉर्फ में रिक्त स्थान होना चाहिए जहां सीमा बिंदु अद्वितीय हैं।

मीट्रिक स्थान

मीट्रिक रिक्त स्थान में एक मीट्रिक (गणित) सम्मिलित होता है, जो बिंदुओं के बीच की दूरी की एक सटीक धारणा है।

प्रत्येक मीट्रिक स्थान को एक मीट्रिक सांस्थितिक दी जा सकती है, जिसमें मूल संवृत समुच्चय मीट्रिक द्वारा परिभाषित खुली गेंदें हैं। यह किसी भी मानक सदिश स्थान पर मानक सांस्थितिक है। एक परिमित-आयामी सदिश स्थल पर यह सांस्थितिक सभी मानदंडों के लिए समान है।

सांस्थितिक को परिभाषित करने के कई तरीके हैं वास्तविक संख्या ओं का समुच्चय। मानक सांस्थितिक पर अंतराल (गणित) शब्दावली द्वारा उत्पन्न होता है। सभी संवृत अंतरालों का समुच्चय सांस्थितिक के लिए एक आधार (सांस्थितिक) बनाता है, जिसका अर्थ है कि प्रत्येक संवृत समुच्चय आधार से समुच्चय के कुछ संग्रह का एक संघ है। विशेष रूप से, इसका अर्थ है कि एक समुच्चय ओपन है यदि समुच्चय में प्रत्येक बिंदु के बारे में शून्य शून्य त्रिज्या का एक ओपन अंतराल मौजूद है। अधिक सामान्यतः, यूक्लिडियन रिक्त स्थान सांस्थितिक दी जा सकती है। सामान्य सांस्थितिक में मूल संवृत समुच्चय ओपन बॉल (गणित) हैं। इसी तरह, सम्मिश्र संख्याओं का समुच्चय, और एक मानक सांस्थितिक है जिसमें मूल संवृत समुच्चय खुली गेंदें हैं।

निकटता स्थान

निकटता स्थान दो समुच्चयो की निकटता की धारणा प्रदान करते हैं।


समान समष्टि स्थान

यूनिफ़ॉर्म रिक्त स्थान अलग-अलग बिंदुओं के बीच की दूरी के क्रम को स्वयंसिद्ध करते हैं।


फलन समष्‍टि विधि

एक सांस्थितिक समष्टि जिसमें अंक फलन को फलन समष्‍टि  कहा जाता है।


कॉची समष्टि स्थान

कॉची रिक्त स्थान परीक्षण करने की क्षमता को स्वयंसिद्ध करते हैं कि क्या नेट कॉची नेट है। कॉची रिक्त स्थान पूर्ण रिक्त स्थान का अध्ययन करने के लिए एक सामान्य समुच्चय समायोजन प्रदान करते हैं।


अभिसरण समष्टि स्थान

अभिसरण स्थान फिल्टर समुच्चय सिद्धांत के अभिसरण की कुछ विशेषताओं को अधिकृत करते हैं।


ग्रोथेंडिक साइटें

ग्रोथेंडिक साइटें अतिरिक्त डेटा वाली श्रेणियां हैं जो स्वयंसिद्ध करती हैं कि क्या तीरों का एक परिवार किसी वस्तु को कवर करता है। ढेरों को परिभाषित करने के लिए साइटें एक सामान्य समुच्चय समायोजन हैं।


अन्य रिक्त स्थान

यदि एक समुच्चय पर एक फ़िल्टर समुच्चय सिद्धांत है फिर सांस्थितिक है

कार्यात्मक विश्लेषण में रैखिक ऑपरेटरों के कई समुच्चय सांस्थितिक से संपन्न होते हैं जिन्हें निर्दिष्ट करके परिभाषित किया जाता है जब कार्यों का एक विशेष अनुक्रम शून्य फलन में परिवर्तित हो जाता है।

किसी भी स्थानीय क्षेत्र में एक सांस्थितिक मूल निवासी होती है, और इसे उस क्षेत्र में सदिश रिक्त स्थान तक बढ़ाया जा सकता है।

प्रत्येक मैनिफोल्ड में एक प्राकृतिक सांस्थितिक होती है क्योंकि यह स्थानीय रूप से यूक्लिडियन है। इसी तरह, हर सिंप्लेक्स और हर सरल परिसर को एक प्राकृतिक सांस्थितिक विरासत में मिलती है।

ज़ारिस्की सांस्थितिक को बीजगणितीय रूप से एक अंगूठी या बीजगणितीय विविधता के स्पेक्ट्रम पर परिभाषित किया जाता है। पर या ज़ारिस्की सांस्थितिक के बंद समुच्चय बहुपद समीकरणों प्रणाली के समाधान समुच्चय हैं।

एक रैखिक ग्राफ में एक प्राकृतिक सांस्थितिक होती है जो ग्राफ सिद्धांतों के कई ज्यामितीय पहलुओं को वर्टेक्स (ग्राफ सिद्धांत) और ग्राफ असतत गणित ग्राफ के साथ सामान्यीकृत करती है।

सिएरपिंस्की समष्टि सबसे सरल गैर-असतत स्थलीय स्थान है। इसका संगणना और शब्दार्थ के सिद्धांत से महत्वपूर्ण संबंध हैं।

किसी भी परिमित समुच्चय पर कई सांस्थितिक मौजूद हैं। ऐसे रिक्त स्थान को परिमित सांस्थितिक रिक्त स्थान कहा जाता है। सामान्य रूप से स्थलीय रिक्त स्थान के बारे में अनुमानों के लिए उदाहरण प्रदान करने के लिए परिमित रिक्त स्थान का उपयोग कभी-कभी किया जाता है।

किसी भी समुच्चय को सह परिमित सांस्थितिक दी जा सकती है जिसमें संवृत समुच्चय रिक्त समुच्चय होते हैं और समुच्चय जिसका पूरक परिमित होता है। यह किसी अनंत समुच्चय पर सबसे छोटी T1 सांस्थितिक है।[citation needed]

किसी भी समुच्चय को सहगणनीय सांस्थितिक दी जा सकती है, जिसमें एक समुच्चय को संवृत के रूप में परिभाषित किया जाता है यदि वह या तो खाली है या उसका पूरक गणनीय है। जब समुच्चय असंख्य होता है, तो यह सांस्थितिक कई स्थितियों में एक प्रतिरूप के रूप में कार्य करती है।

वास्तविक रेखा को निचली सीमा की सांस्थितिक भी दी जा सकती है। यहाँ, मूल संवृत समुच्चय आधे संवृत अंतराल के हैं यह सांस्थितिक ऊपर परिभाषित यूक्लिडियन सांस्थितिक की तुलना में सख्ती से बेहतर है; इस अनुक्रम सांस्थितिक में एक बिंदु में परिवर्तित होता है यदि और केवल अगर यह यूक्लिडियन सांस्थितिक में ऊपर से अभिसरण करता है। इस उदाहरण से पता चलता है कि एक समुच्चय में कई अलग-अलग सांस्थितिक परिभाषित हो सकती हैं।

यदि एक क्रमसूचक संख्या है, तो समुच्चय अंतराल द्वारा उत्पन्न आदेश सांस्थितिक के साथ संपन्न हो सकता है तथा जहां पे तथा के तत्व हैं एक मुक्त समूह का बाहरी स्थान (गणित) वॉल्यूम 1 के तथाकथित चिह्नित मीट्रिक ग्राफ संरचनाओं से मिलकर बनता है [13]


सांस्थितिक निर्माण

सांस्थितिक समष्टि के हर सबसमुच्चय को सब समष्टि सांस्थितिक दी जा सकती है जिसमें संवृत समुच्चय सबसमुच्चय के साथ बड़े समष्टि के संवृत समुच्चय के प्रतिच्छेदन होते हैं। सांस्थितिक समष्टि के किसी भी अनुक्रमित परिवार के लिए, उत्पाद को उत्पाद सांस्थितिक दी जा सकती है, जो प्रक्षेपण (गणित) ढूढ़ कर कारकों के संवृत समुच्चयो की व्युत्क्रम छवियों द्वारा उत्पन्न होती है। उदाहरण के लिए, परिमित उत्पादों में, उत्पाद सांस्थितिक के आधार में संवृत समुच्चय के सभी उत्पाद होते हैं। अनंत उत्पादों के लिए, अतिरिक्त आवश्यकता है कि एक बुनियादी संवृत समुच्चय में, इसके कई अनुमानों को छोड़कर संपूर्ण स्थान है।

एक भागफल स्थान (सांस्थितिक) को इस प्रकार परिभाषित किया गया है: if एक सांस्थितिक समष्टि है और एक समुच्चय है, और अगर एक प्रक्षेपण फलन (गणित) है, फिर भागफल सांस्थितिक पर के सबसमुच्चय का संग्रह है जिसके नीचे खुली व्युत्क्रम छवियां हैं दूसरे शब्दों में, भागफल सांस्थितिक सबसे बेहतरीन सांस्थितिक है जिसके लिए लगातार है। भागफल सांस्थितिक का एक सामान्य उदाहरण है जब सांस्थितिक समष्टि पर एक तुल्यता संबंध परिभाषित किया जाता है नक्शा तो तुल्यता वर्गों के समुच्चय पर प्राकृतिक प्रक्षेपण है।

एक सांस्थितिक समष्टि के सभी गैर-रिक्त उपसमुच्चय के समुच्चय पर विएटोरि ससांस्थितिक लियोपोल्ड विएटोरिस के लिए नामित, निम्नलिखित आधार से उत्पन्न होता है: प्रत्येक के लिए -टुपल संवृत समुच्चयो में हम एक आधार समुच्चय का निर्माण करते हैं जिसमें संघ के सभी उपसमुच्चय होते हैं जिनमें प्रत्येक के साथ गैर-रिक्त चौराहे हैं स्थानीय रूप से कॉम्पैक्ट पोलिश स्थान के सभी गैर-खाली बंद सबसमुच्चय के समुच्चय पर फेल सांस्थितिक विएटोरि ससांस्थितिक का एक प्रकार है, और इसका नाम गणितज्ञ जेम्स फेल के नाम पर रखा गया है। यह निम्नलिखित आधार से उत्पन्न होता है, प्रत्येक के लिए -टुपल संवृत समुच्चयो में और हर कॉम्पैक्ट समुच्चय के लिए के सभी उपसमुच्चय का समुच्चय जो से जुदा हैं और प्रत्येक के साथ गैर-रिक्त चौराहे हैं आधार का सदस्य है।

सांस्थितिक समष्टि का वर्गीकरण

सांस्थितिक समष्टि को सामान्यतः होमियोमॉर्फिज्म तक, उनके सांस्थितिक गुणो द्वारा वर्गीकृत किया जा सकता है। एक सांस्थितिक प्रॉपर्टी रिक्त स्थान की एक संपत्ति है जो होमोमोर्फिज्म के तहत अपरिवर्तनीय है। यह साबित करने के लिए कि दो स्थान होमियोमॉर्फिक नहीं हैं, यह उनके द्वारा साझा नहीं किए गए एक सांस्थितिक गुण को जाँचने के लिए पर्याप्त है। ऐसे गुणों के उदाहरणों में जुड़ाव (सांस्थितिक) , कॉम्पैक्टनेस (सांस्थितिक) , और विभिन्न पृथक्करण स्वयंसिद्ध सम्मिलित हैं। बीजीय अपरिवर्तनीयों के लिए बीजीय सांस्थितिक देखें।

बीजीय संरचना के साथ सांस्थितिक रिक्त स्थान

किसी भी बीजीय संरचना के लिए हम असतत सांस्थितिक का परिचय दे सकते हैं, जिसके तहत बीजीय संचालन लगातार कार्य होते हैं। ऐसी किसी भी संरचना के लिए जो परिमित नहीं है, हमारे पास अधिकाशतः बीजीय संक्रियाओं के साथ संगत एक प्राकृतिक सांस्थितिक होती है, इस अर्थ में कि बीजीय संचालन अभी भी लगातार हैं। इससे सांस्थितिक समूह , सांस्थितिक सदिश समष्टि , सांस्थितिक रिंग और लोकल फील्ड जैसी अवधारणाएं सामने आती हैं।

आदेश संरचना के साथ सांस्थितिक रिक्त स्थान

  • वर्णक्रमीय, समष्टि वर्णक्रमीय स्थान है अगर और केवल अगर यह रिंग होचस्टर प्रमेय का प्रमुख स्पेक्ट्रम है
  • विशेषज्ञता पूर्वक्रमी समष्टि में विशेषज्ञता प्रीऑर्डर या कैनोनिकल पूर्वक्रमी द्वारा परिभाषित किया गया है अगर और केवल अगर कहाँ पे कुराटोस्की क्लोजर एक्सिओम्स को संतुष्ट करने वाले एक ऑपरेटर को दर्शाता है।

यह भी देखें


उद्धरण

  1. Schubert 1968, p. 13
  2. Sutherland, W. A. (1975). मीट्रिक और टोपोलॉजिकल स्पेस का परिचय. Oxford [England]: Clarendon Press. ISBN 0-19-853155-9. OCLC 1679102.
  3. Gauss 1827.
  4. 4.0 4.1 Gallier & Xu 2013.
  5. J. Stillwell, Mathematics and its history
  6. "metric space". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  7. Hausdorff, Felix (2011) [1914]. "Punktmengen in allgemeinen Räumen". Grundzüge der Mengenlehre. Göschens Lehrbücherei/Gruppe I: Reine und Angewandte Mathematik Serie (in Deutsch). Leipzig: Von Veit. p. 211. ISBN 9783110989854. Retrieved 20 August 2022. Unter einem m e t r i s c h e n   R a u m e verstehen wir eine Menge E, [...].
  8. Brown 2006, section 2.1.
  9. Brown 2006, section 2.2.
  10. Armstrong 1983, definition 2.1.
  11. Armstrong 1983, theorem 2.6.
  12. Munkres, James R (2015). टोपोलॉजी. pp. 317–319. ISBN 978-93-325-4953-1.
  13. Culler, Marc; Vogtmann, Karen (1986). "मुक्त समूहों के ग्राफ और ऑटोमोर्फिज्म के मोडुली" (PDF). Inventiones Mathematicae. 84 (1): 91–119. Bibcode:1986InMat..84...91C. doi:10.1007/BF01388734. S2CID 122869546.


ग्रन्थसूची


बाहरी संबंध