टोपोलॉजी स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 48: Line 48:
#<math>x</math> के किसी भी निकटतम <math>N</math> में <math>x</math> का निकटतम <math>M</math> सम्मिलित होता है जैसे कि <math>N</math> <math>M.</math>. के प्रत्येक बिंदु का निकटतम होता है
#<math>x</math> के किसी भी निकटतम <math>N</math> में <math>x</math> का निकटतम <math>M</math> सम्मिलित होता है जैसे कि <math>N</math> <math>M.</math>. के प्रत्येक बिंदु का निकटतम होता है


यहाँ निकटतम एक्सिओम्स के लिए पहले तीन सिद्धांतों का स्पष्ट अर्थ है। चौथे स्वयंसिद्ध का सिद्धांत की संरचना में बहुत महत्वपूर्ण उपयोग है,<math>X.</math> के विभिन्न बिंदुओं के आस-पड़ोस को एक साथ जोड़ने का काम करता है
यहाँ निकटतम एक्सिओम्स के लिए पहले तीन सिद्धांतों का स्पष्ट अर्थ है। चौथे एक्सिओम्स का सिद्धांत की संरचना में बहुत महत्वपूर्ण उपयोग है,<math>X.</math> के विभिन्न बिंदुओं के निकटतम को एक साथ जोड़ने का काम करता है


यह निकटतम की ऐसी प्रणाली का एक मानक उदाहरण वास्तविक रेखा के लिए है <math>\R,</math> जहां <math>\R,</math> का एक उपसमुच्चय <math>N</math> एक वास्तविक संख्या <math>x</math> के पड़ोस के रूप में परिभाषित किया गया है, यदि इसमें एक खुला अंतराल शामिल है जिसमें <math>x</math> एक विवृत अंतराल में सम्मिलित किया जाता है
यह निकटतम की ऐसी प्रणाली का एक मानक उदाहरण वास्तविक रेखा के लिए है, जहां <math>\R,</math> का एक उपसमुच्चय <math>N</math> एक वास्तविक संख्या <math>x</math> के निकटतम के रूप में परिभाषित किया गया है, यदि इसमें एक खुला अंतराल शामिल है जिसमें <math>x</math> एक विवृत अंतराल में सम्मिलित किया जाता है


इस तरह की संरचना को देखते हुए, <math>X</math> के एक सबसेट <math>U</math> को खुला परिभाषित किया गया है यदि <math>U</math> में सभी बिंदुओं का निकटतम है। फिर खुले समुच्चय नीचे दिए गए अभिगृहीतों को संतुष्ट करते हैं। इसके विपरीत, जब एक टोपोलॉजिकल स्पेस के खुले सेट दिए जाते हैं, यदि <math>N</math> में एक खुला सेट <math>U</math> शामिल है, तो <math>N</math> को <math>x</math> का पड़ोस होने के लिए परिभाषित करके आस-पड़ोस को उपरोक्त सिद्धांतों को पूरा करने के लिए पुनर्प्राप्त किया जा सकता है <math>x \in U.</math>{{sfn|Brown|2006|loc=section 2.2}}
इस तरह की संरचना को देखते हुए, <math>X</math> के एक सबसेट <math>U</math> को खुला परिभाषित किया गया है यदि <math>U</math> में सभी बिंदुओं का निकटतम है। फिर खुले समुच्चय नीचे दिए गए अभिगृहीतों को संतुष्ट करते हैं। इसके विपरीत, जब एक टोपोलॉजिकल समष्टि के खुले सेट दिए जाते हैं, यदि <math>N</math> में एक खुला समुच्चय <math>U</math> सम्मिलित है, तो <math>N</math> को <math>x</math> का निकटतम होने के लिए परिभाषित करके निकटतम को उपरोक्त सिद्धांतों को पूरा करने के लिए पुनर्प्राप्त किया जा सकता है <math>x \in U.</math>{{sfn|Brown|2006|loc=section 2.2}}
 
 
 
यहाँ निकटतम लिए पहले तीन एक्सिओम्स का स्पष्ट अर्थ है। कि सिद्धांत संरचना में चौथे ऐक्सिओम्स का बहुत महत्वपूर्ण उपयोग है,यह  के विभिन्न बिंदुओं के निकटतम को एक साथ जोड़ने का काम करता है
 
यह निकटतम की मानक प्रणाली का उदाहरण वास्तविक रेखा  के लिए है जहां <math>\R</math> के उपसमुच्चय  को वास्तविक संख्या <math>x</math> के निकटतम रूप में परिभाषित किया जाता है, यदि इसमें <math>x</math> एक विवृत अंतराल में सम्मिलित किया जाता है
 
ऐसी संरचना को देखते हुए, एक उपसमुच्चय  का  विवृत होने के लिए परिभाषित किया गया है अगर <math>U</math> में सभी बिंदुओं का एक निकटतम <math>U.</math> है, विवृत समुच्चय तब नीचे दिए गए अभिगृहीतों को संतुष्ट करते हैं। इसके विपरीत, जब एक टोपोलॉजी समष्टि के विवृत समुच्चय दिए जाते हैं, तो उपरोक्त एक्सिओम्स को संतुष्ट करने वाले निकटतम को परिभाषित करके पुनर्प्राप्त किया जा सकता है  का निकटतम होना यदि, <math>N</math> में एक विवृत समुच्चय  सम्मिलित है जैसे कि
=== विवृत समुच्चय के माध्यम से परिभाषा {{anchor|topology}} ===
=== विवृत समुच्चय के माध्यम से परिभाषा {{anchor|topology}} ===
{{anchor|topological space}}
{{anchor|topological space}}

Revision as of 18:46, 23 November 2022

गणित में, टोपोलॉजी समष्टि अधिकाशतः बोली जाने वाली ज्यामितीय समष्टि है जिसमें निकटता को परिभाषित किया जाता है, लेकिन जरूरी नहीं कि इससे संख्यात्मक दूरी को मापा जा सके। टोपोलॉजी समष्टि विशेष रूप से एक समुच्चय है, जिसके तत्वों को अंक कहा जाता है, इसके साथ एक अतिरिक्त संरचना जिसे टोपोलॉजी कहा जाता है, और प्रत्येक बिंदु के लिए निकटतम समुच्चय के रूप में परिभाषित किया जाता है। जो निकटता की अवधारणा को औपचारिक रूप देने वाले कुछ सिद्धांतों को संतुष्ट करता है। एक टोपोलॉजी की कई समतुल्य परिभाषाएँ हैं, जिनमें से सबसे अधिक उपयोग की जाने वाली परिभाषा विवृत समुच्चयो के माध्यम से होती है, जो कि परिवर्तन करने के लिए दूसरों की तुलना में आसान होती है।

टोपोलॉजी समष्टि गणितीय क्षेत्र का सबसे सामान्य प्रकार है जो सीमाओं की परिभाषा को निरंतरता और संघबद्धता की अनुमति देता है[1][2] सामान्य प्रकार के टोपोलॉजी समष्टि में यूक्लिडियन समष्टि , मीट्रिक समष्टि और मैनिफोल्ड सम्मिलित हैं।

यद्यपि टोपोलॉजी समष्टि की अवधारणा मौलिक है और आधुनिक गणित की लगभग हर शाखा में इसका उपयोग किया जाता है। टोपोलॉजी समष्टि का अध्ययन अपने आप में बिंदु-समुच्चय टोपोलॉजी या सामान्य टोपोलॉजी कहलाता है।

इतिहास

1735 के आसपास, लियोनहार्ड यूलर ने सूत्र की खोज की जो एक उत्तल पॉलीहेड्रॉन के शीर्षों, किनारों और फेसेस की संख्या एक समतलीय ग्राफ से संबंधित होती है। विशेष रूप से ऑगस्टिन-लुई कॉची (1789-1857) और एल'हुइलियर (1750-1840) द्वारा इस सूत्र के अध्ययन और सामान्यीकरण ने टोपोलॉजी के अध्ययन को बढ़ावा दिया। 1827 मे, कार्ल फ्रेडरिक गॉस ने वक्र पृष्‍ठ का सामान्य प्रशिक्षण किया, जो खंड 3 में वक्र पृष्‍ठ को आधुनिक टोपोलॉजी के समान तरीके से परिभाषित करता है, एक वक्र पृष्‍ठ को उसके बिंदु A पर लगातार वक्रता स्थापित करने के लिए कहा जाता है, यदि सभी सीधी रेखाओं की दिशा बिंदु A तक खींची जाती है। यदि A से बहुत कम दूरी पर सतह के बिन्दुओं से ली गई सभी सीधी रेखाओं की दिशा एक से अपरिमित रूप से बहुत कम विक्षेपित होती है और उसी तल से गुजरती हुई सपाट होती है।

फिर भी 1850 के दशक की शुरुआत में बर्नहार्ड रिमेंन के काम को सदैव स्थानीय दृष्टिकोण से व्यवस्थित किया जाता है, चूँकि पैरामीट्रिक सतहों और टोपोलॉजी निर्गम पर कभी विचार नहीं किया जाता था।[3] ऐसा लगता है कि मोबियस और केमिली जॉर्डन सबसे पहले पहले व्यक्ति थे जिन्होंने महसूस किया कि सघन सतहों की टोपोलॉजी के बारे में मुख्य समस्या यह है कि अचरों को सतहों की तुल्यता समरूपी या नहीं तय करने के लिए अधिमानतः संख्यात्मक को ढूंढ़ना है, अर्थात दो सतहें समरूपी हैं या नहीं।[3]

विषय स्पष्ट रूप से फेलिक्स क्लेन द्वारा अपने एर्लांगेन फलन 1872 में स्पष्ट रूप से परिभाषित किया गया है स्वैच्छिक लगातार रूपांतरण ज्यामिति अपरिवर्तन एक प्रकार का ज्यामिति ही है। टोपोलॉजी शब्द 1847 में जोहान बेनेडिक्ट लिस्टिंग द्वारा पेश किया गया था, चूँकि उन्होंने पहले उपयोग किए गए। सिटस (situs) विश्लेषण के अतिरिक्त कुछ साल पहले संवाद में इस शब्द का उपयोग किया था। हेनरी पोंकारे ने विज्ञान की नींव, किसी भी आयाम स्थान के लिए रखी थी। इस विषय पर उनका यह पहला लेख 1894 में छपा।[4] 1930 के दशक में, जेम्स वाडेल अलेक्जेंडर II और हस्लर व्हिटनी ने पहली बार यह विचार व्यक्त किया कि एक सतह एक टोपोलॉजी समष्टि है जो टोपोलॉजी मैनिफोल्ड है।

टोपोलॉजी समष्टि को पहली बार 1914 में फ़ेलिक्स हॉसडॉर्फ़ ने समुच्चय सिद्धांत को अपने मौलिक सिद्धांतों में परिभाषित किया था। मेट्रिक स्पेस को पहले 1906 में मौरिस फ़्रेचेट द्वारा परिभाषित किया गया था, चूँकि, हॉसडॉर्फ ने मीट्रिक रिक्त (जर्मन मेट्रिशर राउम ) शब्द को लोकप्रिय बनाया था। [5][6]

परिभाषाएं

टोपोलॉजी की अवधारणा की उपयोगिता इस तथ्य से प्रदर्शित होती है कि इस संरचना की कई समान परिभाषाएँ हैं। इस प्रकार कोई व्यक्ति अनुप्रयोग के लिए अनुकूल सिद्धांतों को चुनता है। और सबसे अधिक उपयोग किया जाने वाला विवृत समुच्चय के संदर्भ में है, लेकिन संभवतया अधिक सहज ज्ञान की बात यह है कि निकटतम विषय में यह पहले दिया गया है।

निकटतम माध्यम से परिभाषा

यह ऐक्सिओम्स फेलिक्स हॉसडॉर्फ के कारण है। मान लीजिए कि एक समुच्चय है, के तत्वों को साधारणतयः बिंदु कहा जाता है, चूँकि वे कोई भी गणितीय वस्तु हो सकते हैं। हम को खाली रहने देते हैं। मान लें कि प्रत्येक (बिंदु) को में एक रिक्त समूह के सबसेट है।। के तत्व के आस-पास (या, बस, और के निकटतम फलन को निकटतम टोपोलॉजी कहा जाता है यदि नीचे दिए गए ऐक्सिओम्स[7] से ये संतुष्ट हैं और फिर और को टोपोलॉजिकल स्पेस कहा जाता है।

  1. यदि का निकटतम है (अर्थात, ), फिर दूसरे शब्दों में, प्रत्येक बिंदु उसके निकटतम है।
  2. यदि , का एक उपसमुच्चय है और इसमें निकटतम समूह है फिर का निकटतम होगा अर्थात एक बिंदु निकटतम का प्रत्येक सुपरसमुच्चय फिर से का निकटतम है
  3. के दो निकटतम का प्रतिच्छेदन है
  4. के किसी भी निकटतम में का निकटतम सम्मिलित होता है जैसे कि . के प्रत्येक बिंदु का निकटतम होता है

यहाँ निकटतम एक्सिओम्स के लिए पहले तीन सिद्धांतों का स्पष्ट अर्थ है। चौथे एक्सिओम्स का सिद्धांत की संरचना में बहुत महत्वपूर्ण उपयोग है, के विभिन्न बिंदुओं के निकटतम को एक साथ जोड़ने का काम करता है

यह निकटतम की ऐसी प्रणाली का एक मानक उदाहरण वास्तविक रेखा के लिए है, जहां का एक उपसमुच्चय एक वास्तविक संख्या के निकटतम के रूप में परिभाषित किया गया है, यदि इसमें एक खुला अंतराल शामिल है जिसमें एक विवृत अंतराल में सम्मिलित किया जाता है

इस तरह की संरचना को देखते हुए, के एक सबसेट को खुला परिभाषित किया गया है यदि में सभी बिंदुओं का निकटतम है। फिर खुले समुच्चय नीचे दिए गए अभिगृहीतों को संतुष्ट करते हैं। इसके विपरीत, जब एक टोपोलॉजिकल समष्टि के खुले सेट दिए जाते हैं, यदि में एक खुला समुच्चय सम्मिलित है, तो को का निकटतम होने के लिए परिभाषित करके निकटतम को उपरोक्त सिद्धांतों को पूरा करने के लिए पुनर्प्राप्त किया जा सकता है [8]

विवृत समुच्चय के माध्यम से परिभाषा

एक समुच्चय X पर एक टोपोलॉजीी को X के सब समुच्चय के संग्रह रूप में परिभाषित किया जा सकता है जिसे विवृत समुच्चय कहा जाता है और निम्नलिखित सिद्धांतों को संतुष्ट करता है[9]

  1. खाली समुच्चय और खुद से संबंधित हैं
  2. के सदस्यों का कोई भी विवेकाधीन परिमित या अनंत संघ से संबंधित है
  3. के सदस्यों की किसी भी परिमित संख्या का प्रतिच्छेदन से संबंधित है

चूंकि टोपोलॉजी की यह परिभाषा सबसे अधिक उपयोग की जाती है, समुच्चय विवृत समुच्चय को समान्तया टोपोलॉजी कहा जाता है उपसमुच्चय संकुचित में बताया गया यदि इसका पूरक समुच्चय सिद्धांत एक विवृत समुच्चय है।

टोपोलॉजी के उदाहरण

होने देना यहां मंडलियों के साथ निरूपित किया जा सकता है यहां चार उदाहरण हैं और तीन-बिंदु समुच्चय पर टोपोलॉजी के दो गैर-उदाहरण हैं नीचे-बाएं उदाहरण टोपोलॉजी नहीं है क्योंकि का संघ तथा शि.ई. ] लापता है; निचला-दायां उदाहरण टोपोलॉजी नहीं है चूँकि प्रतिच्छेदन तथा अर्थात. ], लापता है।

दिया गया तुच्छ टोपोलॉजी ऑन समुच्चय का परिवार है के केवल दो सबसमुच्चय से मिलकर बनता है एक्सिओम्स द्वारा आवश्यक एक टोपोलॉजी बनाता है

  1. दिया गया परिवार
    के छह उपसमुच्चय की एक और टोपोलॉजी बनाता है
  2. दिया गया असतत टोपोलॉजी पर का सत्ता स्थापित है जो परिवार है के सभी संभावित सबसमुच्चय से मिलकर बनता है इस विषय में टोपोलॉजी समष्टि एक असतत क्षेत्र कहा जाता है
  3. दिया गया पूर्णांकों का समूह, परिवार पूर्णांकों के सभी परिमित उपसमुच्चयों का योग खुद है एक टोपोलॉजी नहीं, क्योंकि उदाहरण के लिए सभी परिमित समुच्चयो का संघ जिसमें शून्य नहीं है, परिमित नहीं है, बल्कि सभी का भी नहीं है और इसलिए यह अंदर नहीं हो सकता है


संवृत समुच्चयो के माध्यम से परिभाषा

मॉर्गन के नियमों का उपयोग करते हुए, विवृत समुच्चय को परिभाषित करने वाले उपरोक्त ऐक्सिओम्स संवृत समुच्चय को परिभाषित करने वाले ऐक्सिओम्स बन जाते हैं

  1. खाली समुच्चय और संवृत हैं।
  2. संवृत समुच्चय के किसी भी संग्रह का प्रतिच्छेदन भी संवृत है
  3. संवृत समुच्चय की किसी भी सीमित संख्या का संघ भी संवृत है।

इन एक्सिओम्स का उपयोग एक टोपोलॉजी समष्टि को परिभाषित करने का एक और तरीका है, के संवृत उपसमुच्चय के संग्रह के साथ एक समुच्चय एक्स के रूप में हैं इस प्रकार टोपोलॉजी में समुच्चय संवृत समुच्चय हैं, और एक्स में उनके पूरक विवृत समुच्चय हैं।

अन्य परिभाषाएं

टोपोलॉजी समष्टि को परिभाषित करने के कई अन्य समान तरीके हैं, दूसरे शब्दों में, निकटतम की अवधारणा विवृत या संवृत समुच्चयो को अन्य प्रारम्भी बिंदुओं से पुनर्निर्मित किया जा सकता है और सही सिद्धांतों को संतुष्ट किया जा सकता है।

टोपोलॉजी समष्टि को परिभाषित करने का एक अन्य तरीका कुराटोवस्की क्लोजर एक्सिओम्स का उपयोग करना है, जो के पावर समुच्चय पर एक संचालक के निश्चित बिंदुओं के रूप में संवृत समुच्चय को परिभाषित करता है।

एक वास्तविक अनुक्रम की अवधारणा का एक सामान्यीकरण है। टोपोलॉजी पूरी तरह से निर्धारित होती है यदि एक्स में प्रत्येक नेट के लिए इसके संचय बिंदुओं का समुच्चय निर्दिष्ट किया जाता है।

टोपोलॉजी की तुलना

टोपोलॉजी समष्टि बनाने के लिए विभिन्न प्रकार की टोपोलॉजी को एक समुच्चय पर रखा जा सकता है। जब एक टोपोलॉजी में प्रत्येक समुच्चय टोपोलॉजी में भी होता है और , का एक उपसमुच्चय होता है तो हम कहते हैं कि , से अच्छा है और , से समीप है। ये एक प्रमाण जो केवल कुछ विवृत समुच्चय के अस्तित्व पर निर्भर करता है, वह किसी भी बेहतर टोपोलॉजी के लिए भी मान्य होगा, और इसी तरह एक प्रमाण जो केवल कुछ समुच्चयो पर निर्भर करता है, जो ओपन नहीं है पर किसी मोटे टोपोलॉजी पर लागू होता है। साहित्य में मजबूत और कमजोर शब्दों का भी उपयोग किया जाता है, लेकिन अर्थ पर थोड़ी सहमति के साथ, इसलिए पढ़ते समय हमेशा लेखक की वर्तनी का मूल रूप सुनिश्चित होना चाहिए।

किसी दिए गए निश्चित समुच्चय पर सभी टोपोलॉजी का संग्रह एक पूर्ण जालक बनाता है, यदि पर टोपोलॉजी का एक संग्रह है तो का मिलन प्रतिच्छेदन है और से जुड़ता है पर सभी टोपोलॉजी के संग्रह का मिलन होता है जिसमें का हर सदस्य सम्मिलित होता है

लगातार फलन

एक फलन (गणित) टोपोलॉजी रिक्त स्थान के बीच प्रत्येक के लिए लगातारता टोपोलॉजी कहा जाता है यदि प्रत्येक के लिए और हर निकटतम का एक निकटतम है, ऐसा है कि यह विश्लेषण में सामान्य परिभाषा में आसानी से संबंधित है। समान रूप से, लगातार है यदि प्रत्येक विवृत समुच्चय का प्रतिलोम प्रतिबिम्ब ओपन है।[10] यह अंतर्ज्ञान को पकड़ने का एक प्रयास है कि फलन में कोई छलांग या अलगाव नहीं है। एक समरूपता एक ऐसा आक्षेप है जो लगातार होता है और जिसका उलटा कार्य भी लगातार होता है। दो रिक्त स्थान होमोमोर्फिज्म कहलाते हैं यदि उनके बीच एक होमोमोर्फिज्म मौजूद है। टोपोलॉजी के दृष्टिकोण से, होमोमोर्फिक में रिक्त स्थान अनिवार्य रूप से समान होते हैं।[11]

श्रेणी सिद्धांत में, मौलिक श्रेणी (गणित) में से एक शीर्ष है, जो टोपोलॉजी रिक्त स्थान की श्रेणी को दर्शाता है जिसका ऑब्जेक्ट श्रेणी सिद्धांत टोपोलॉजी रिक्त स्थान हैं और जिनके आकृति विज्ञान में लगातार कार्य होते हैं। इस श्रेणी की वस्तुओं को अपरिवर्तकों द्वारा होमोमोर्फिज्म तक वर्गीकृत करने के प्रयास ने होमोटोपी सिद्धांत, समरूपता सिद्धांत और के-सिद्धांत जैसे अनुसंधान के क्षेत्रों को प्रेरित किया है।

टोपोलॉजी समष्टि के उदाहरण

किसी दिए गए समुच्चय में कई अलग-अलग टोपोलॉजी हो सकते हैं। यदि एक समुच्चय को एक अलग टोपोलॉजी दी जाती है, तो इसे एक अलग टोपोलॉजी समष्टि के रूप में देखा जाता है। किसी भी समुच्चय को असतत स्थान दिया जा सकता है जिसमें प्रत्येक उपसमुच्चय ओपन हो। इस टोपोलॉजी में एकमात्र अभिसरण अनुक्रम या जाल में हैं जो अंततः स्थिर होते हैं। साथ ही, किसी भी समुच्चय को ट्रिविअल टोपोलॉजी को दिया जा सकता है जिसे अविवेकी टोपोलॉजी भी कहा जाता है, जिसमें केवल खाली समुच्चय और पूरा समष्टि ओपन होता है। इस टोपोलॉजी में हर क्रम और जाल अंतरिक्ष के हर बिंदु पर अभिसरण करता है। यह उदाहरण दिखाता है कि सामान्य टोपोलॉजी रिक्त स्थान में, अनुक्रमों की सीमाएं अद्वितीय नहीं होनी चाहिए। चूँकि, सामान्यतः टोपोलॉजी हॉसडॉर्फ में रिक्त स्थान होना चाहिए जहां सीमा बिंदु अद्वितीय हैं।

मीट्रिक स्थान

मीट्रिक रिक्त स्थान में एक मीट्रिक (गणित) सम्मिलित होता है, जो बिंदुओं के बीच की दूरी की एक सटीक धारणा है।

प्रत्येक मीट्रिक स्थान को एक मीट्रिक टोपोलॉजी दी जा सकती है, जिसमें मूल विवृत समुच्चय मीट्रिक द्वारा परिभाषित खुली गेंदें हैं। यह किसी भी मानक सदिश स्थान पर मानक टोपोलॉजी है। एक परिमित-आयामी सदिश स्थल पर यह टोपोलॉजी सभी मानदंडों के लिए समान है।

टोपोलॉजी को परिभाषित करने के कई तरीके हैं वास्तविक संख्या ओं का समुच्चय। मानक टोपोलॉजी पर अंतराल (गणित) शब्दावली द्वारा उत्पन्न होता है। सभी विवृत अंतरालों का समुच्चय टोपोलॉजी के लिए एक आधार (टोपोलॉजी) बनाता है, जिसका अर्थ है कि प्रत्येक विवृत समुच्चय आधार से समुच्चय के कुछ संग्रह का एक संघ है। विशेष रूप से, इसका अर्थ है कि एक समुच्चय ओपन है यदि समुच्चय में प्रत्येक बिंदु के बारे में शून्य शून्य त्रिज्या का एक ओपन अंतराल मौजूद है। अधिक सामान्यतः, यूक्लिडियन रिक्त स्थान टोपोलॉजी दी जा सकती है। सामान्य टोपोलॉजी में मूल विवृत समुच्चय ओपन बॉल (गणित) हैं। इसी तरह, सम्मिश्र संख्याओं का समुच्चय, और एक मानक टोपोलॉजी है जिसमें मूल विवृत समुच्चय खुली गेंदें हैं।

निकटता स्थान

निकटता स्थान दो समुच्चयो की निकटता की धारणा प्रदान करते हैं।


एकसमान समष्टि

अलग-अलग बिंदुओं के बीच की दूरी को क्रमबद्ध करने के लिए एकसमान समष्टि हैं।


फलन समष्‍टि विधि

एक टोपोलॉजी समष्टि जिसमें अंक फलन को फलन समष्‍टि  कहा जाता है।


कॉची समष्टि स्थान

कॉची रिक्त स्थान परीक्षण करने की क्षमता को ऐक्सिओम्स करते हैं कि क्या नेट कॉची नेट है। कॉची रिक्त स्थान पूर्ण रिक्त स्थान का अध्ययन करने के लिए एक सामान्य समुच्चय समायोजन प्रदान करते हैं।


अभिसरण समष्टि स्थान

अभिसरण स्थान फिल्टर समुच्चय सिद्धांत के अभिसरण की कुछ विशेषताओं को अधिकृत करते हैं।


ग्रोथेंडिक साइटें

ग्रोथेंडिक साइटें अतिरिक्त डेटा वाली श्रेणियां हैं जो ऐक्सिओम्स करती हैं कि क्या तीरों का एक परिवार किसी वस्तु को कवर करता है। ढेरों को परिभाषित करने के लिए साइटें एक सामान्य समुच्चय समायोजन हैं।


अन्य समष्टि

यदि एक समुच्चय पर एक फ़िल्टर समुच्चय सिद्धांत है फिर टोपोलॉजी है

कार्यात्मक विश्लेषण में रैखिक ऑपरेटरों के कई समुच्चय टोपोलॉजी से संपन्न होते हैं जिन्हें निर्दिष्ट करके परिभाषित किया जाता है जब कार्यों का एक विशेष अनुक्रम शून्य फलन में परिवर्तित हो जाता है।

किसी भी स्थानीय क्षेत्र में एक टोपोलॉजी मूल निवासी होती है, और इसे उस क्षेत्र में सदिश रिक्त स्थान तक बढ़ाया जा सकता है।

प्रत्येक मैनिफोल्ड में एक प्राकृतिक टोपोलॉजी होती है क्योंकि यह स्थानीय रूप से यूक्लिडियन है। इसी तरह, हर सिंप्लेक्स और हर सरल परिसर को एक प्राकृतिक टोपोलॉजी विरासत में मिलती है।

ज़ारिस्की टोपोलॉजी को बीजगणितीय रूप से एक अंगूठी या बीजगणितीय विविधता के स्पेक्ट्रम पर परिभाषित किया जाता है। पर या ज़ारिस्की टोपोलॉजी के संवृत समुच्चय बहुपद समीकरणों प्रणाली के समाधान समुच्चय हैं।

एक रैखिक ग्राफ में एक प्राकृतिक टोपोलॉजी होती है जो ग्राफ सिद्धांतों के कई ज्यामितीय पहलुओं को वर्टेक्स (ग्राफ सिद्धांत) और ग्राफ असतत गणित ग्राफ के साथ सामान्यीकृत करती है।

सिएरपिंस्की समष्टि सबसे सरल गैर-असतत स्थलीय स्थान है। इसका संगणना और शब्दार्थ के सिद्धांत से महत्वपूर्ण संबंध हैं।

किसी भी परिमित समुच्चय पर कई टोपोलॉजी मौजूद हैं। ऐसे रिक्त स्थान को परिमित टोपोलॉजी रिक्त स्थान कहा जाता है। सामान्य रूप से स्थलीय रिक्त स्थान के बारे में अनुमानों के लिए उदाहरण प्रदान करने के लिए परिमित रिक्त स्थान का उपयोग कभी-कभी किया जाता है।

किसी भी समुच्चय को सह परिमित टोपोलॉजी दी जा सकती है जिसमें विवृत समुच्चय रिक्त समुच्चय होते हैं और समुच्चय जिसका पूरक परिमित होता है। यह किसी अनंत समुच्चय पर सबसे छोटी T1 टोपोलॉजी है।[citation needed]

किसी भी समुच्चय को सहगणनीय टोपोलॉजी दी जा सकती है, जिसमें एक समुच्चय को विवृत के रूप में परिभाषित किया जाता है यदि वह या तो खाली है या उसका पूरक गणनीय है। जब समुच्चय असंख्य होता है, तो यह टोपोलॉजी कई स्थितियों में एक प्रतिरूप के रूप में कार्य करती है।

वास्तविक रेखा को निचली सीमा की टोपोलॉजी भी दी जा सकती है। यहाँ, मूल विवृत समुच्चय आधे विवृत अंतराल के हैं यह टोपोलॉजी ऊपर परिभाषित यूक्लिडियन टोपोलॉजी की तुलना में सख्ती से बेहतर है; इस अनुक्रम टोपोलॉजी में एक बिंदु में परिवर्तित होता है यदि और केवल अगर यह यूक्लिडियन टोपोलॉजी में ऊपर से अभिसरण करता है। इस उदाहरण से पता चलता है कि एक समुच्चय में कई अलग-अलग टोपोलॉजी परिभाषित हो सकती हैं।

यदि एक क्रमसूचक संख्या है, तो समुच्चय अंतराल द्वारा उत्पन्न आदेश टोपोलॉजी के साथ संपन्न हो सकता है तथा जहां पे तथा के तत्व हैं एक मुक्त समूह का बाहरी स्थान (गणित) वॉल्यूम 1 के तथाकथित चिह्नित मीट्रिक ग्राफ संरचनाओं से मिलकर बनता है [12]


टोपोलॉजी निर्माण

टोपोलॉजी समष्टि के हर सबसमुच्चय को सब समष्टि टोपोलॉजी दी जा सकती है जिसमें विवृत समुच्चय सबसमुच्चय के साथ बड़े समष्टि के विवृत समुच्चय के प्रतिच्छेदन होते हैं। टोपोलॉजी समष्टि के किसी भी अनुक्रमित परिवार के लिए, उत्पाद को उत्पाद टोपोलॉजी दी जा सकती है, जो प्रक्षेपण (गणित) ढूढ़ कर कारकों के विवृत समुच्चयो की व्युत्क्रम छवियों द्वारा उत्पन्न होती है। उदाहरण के लिए, परिमित उत्पादों में, उत्पाद टोपोलॉजी के आधार में विवृत समुच्चय के सभी उत्पाद होते हैं। अनंत उत्पादों के लिए, अतिरिक्त आवश्यकता है कि एक बुनियादी विवृत समुच्चय में, इसके कई अनुमानों को छोड़कर संपूर्ण स्थान है।

एक भागफल स्थान (टोपोलॉजी) को इस प्रकार परिभाषित किया गया है: if एक टोपोलॉजी समष्टि है और एक समुच्चय है, और अगर एक प्रक्षेपण फलन (गणित) है, फिर भागफल टोपोलॉजी पर के सबसमुच्चय का संग्रह है जिसके नीचे खुली व्युत्क्रम छवियां हैं दूसरे शब्दों में, भागफल टोपोलॉजी सबसे बेहतरीन टोपोलॉजी है जिसके लिए लगातार है। भागफल टोपोलॉजी का एक सामान्य उदाहरण है जब टोपोलॉजी समष्टि पर एक तुल्यता संबंध परिभाषित किया जाता है नक्शा तो तुल्यता वर्गों के समुच्चय पर प्राकृतिक प्रक्षेपण है।

एक टोपोलॉजी समष्टि के सभी गैर-रिक्त उपसमुच्चय के समुच्चय पर विएटोरि सटोपोलॉजी लियोपोल्ड विएटोरिस के लिए नामित, निम्नलिखित आधार से उत्पन्न होता है: प्रत्येक के लिए -टुपल विवृत समुच्चयो में हम एक आधार समुच्चय का निर्माण करते हैं जिसमें संघ के सभी उपसमुच्चय होते हैं जिनमें प्रत्येक के साथ गैर-रिक्त प्रतिच्छेदन हैं स्थानीय रूप से कॉम्पैक्ट पोलिश स्थान के सभी गैर-खाली संवृत सबसमुच्चय के समुच्चय पर फेल टोपोलॉजी विएटोरि सटोपोलॉजी का एक प्रकार है, और इसका नाम गणितज्ञ जेम्स फेल के नाम पर रखा गया है। यह निम्नलिखित आधार से उत्पन्न होता है, प्रत्येक के लिए -टुपल विवृत समुच्चयो में और हर कॉम्पैक्ट समुच्चय के लिए के सभी उपसमुच्चय का समुच्चय जो से जुदा हैं और प्रत्येक के साथ गैर-रिक्त प्रतिच्छेदन हैं आधार का सदस्य है।

टोपोलॉजी समष्टि का वर्गीकरण

टोपोलॉजी समष्टि को सामान्यतः होमियोमॉर्फिज्म तक, उनके टोपोलॉजी गुणो द्वारा वर्गीकृत किया जा सकता है। एक टोपोलॉजी प्रॉपर्टी रिक्त स्थान की एक संपत्ति है जो होमोमोर्फिज्म के तहत अपरिवर्तनीय है। यह साबित करने के लिए कि दो स्थान होमियोमॉर्फिक नहीं हैं, यह उनके द्वारा साझा नहीं किए गए एक टोपोलॉजी गुण को जाँचने के लिए पर्याप्त है। ऐसे गुणों के उदाहरणों में जुड़ाव (टोपोलॉजी) , कॉम्पैक्टनेस (टोपोलॉजी) , और विभिन्न पृथक्करण ऐक्सिओम्स सम्मिलित हैं। बीजीय अपरिवर्तनीयों के लिए बीजीय टोपोलॉजी देखें।

बीजीय संरचना के साथ टोपोलॉजी रिक्त स्थान

किसी भी बीजीय संरचना के लिए हम असतत टोपोलॉजी का परिचय दे सकते हैं, जिसके तहत बीजीय संचालन लगातार कार्य होते हैं। ऐसी किसी भी संरचना के लिए जो परिमित नहीं है, हमारे पास अधिकाशतः बीजीय संक्रियाओं के साथ संगत एक प्राकृतिक टोपोलॉजी होती है, इस अर्थ में कि बीजीय संचालन अभी भी लगातार हैं। इससे टोपोलॉजी समूह , टोपोलॉजी सदिश समष्टि , टोपोलॉजी रिंग और लोकल फील्ड जैसी अवधारणाएं सामने आती हैं।

आदेश संरचना के साथ टोपोलॉजी रिक्त स्थान

  • वर्णक्रमीय, समष्टि वर्णक्रमीय स्थान है अगर और केवल अगर यह रिंग होचस्टर प्रमेय का प्रमुख स्पेक्ट्रम है
  • विशेषज्ञता पूर्वक्रमी समष्टि में विशेषज्ञता प्रीऑर्डर या कैनोनिकल पूर्वक्रमी द्वारा परिभाषित किया गया है अगर और केवल अगर कहाँ पे कुराटोस्की क्लोजर एक्सिओम्स को संतुष्ट करने वाले एक ऑपरेटर को दर्शाता है।

यह भी देखें


उद्धरण

  1. Schubert 1968, p. 13
  2. Sutherland, W. A. (1975). मीट्रिक और टोपोलॉजिकल स्पेस का परिचय. Oxford [England]: Clarendon Press. ISBN 0-19-853155-9. OCLC 1679102.
  3. 3.0 3.1 Gallier & Xu 2013.
  4. J. Stillwell, Mathematics and its history
  5. "metric space". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  6. Hausdorff, Felix (2011) [1914]. "Punktmengen in allgemeinen Räumen". Grundzüge der Mengenlehre. Göschens Lehrbücherei/Gruppe I: Reine und Angewandte Mathematik Serie (in Deutsch). Leipzig: Von Veit. p. 211. ISBN 9783110989854. Retrieved 20 August 2022. Unter einem m e t r i s c h e n   R a u m e verstehen wir eine Menge E, [...].
  7. Brown 2006, section 2.1.
  8. Brown 2006, section 2.2.
  9. Armstrong 1983, definition 2.1.
  10. Armstrong 1983, theorem 2.6.
  11. Munkres, James R (2015). टोपोलॉजी. pp. 317–319. ISBN 978-93-325-4953-1.
  12. Culler, Marc; Vogtmann, Karen (1986). "मुक्त समूहों के ग्राफ और ऑटोमोर्फिज्म के मोडुली" (PDF). Inventiones Mathematicae. 84 (1): 91–119. Bibcode:1986InMat..84...91C. doi:10.1007/BF01388734. S2CID 122869546.


ग्रन्थसूची


बाहरी संबंध