ऑर्थोगोनल मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 198: Line 198:


===लाभ ===
===लाभ ===
[[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक बीजगणित के लिए लंबकोणीय आव्यूह के कई गुणों का लाभ उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए  प्रसामान्य लंबकोणीय आधार, या आधारों के लंबकोणीय परिवर्तन की गणना करना अक्सर वांछनीय होता है; दोनोंलंबकोणीय आव्यूह का रूप लेते हैं। सारणीक±1 और परिमाण 1 के सभी eigenvalues ​​[[ संख्यात्मक स्थिरता ]] के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है (जो न्यूनतम है), इसलिए लंबकोणीय आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई कलन विधि इस कारण से होमहोल्डर प्रतिबिंब और गिवेंसक्रमावर्तन जैसे लंबकोणीय मैट्रिस का उपयोग करते हैं। यह भी मददगार है कि, न केवल एक लंबकोणीय आव्यूह उलटा है, बल्कि इसका उलटा सूचकांकों का आदान-प्रदान करके अनिवार्य रूप से मुक्त उपलब्ध है।
[[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक बीजगणित के लिए लंबकोणीय आव्यूह के कई गुणों का फायदा उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए  प्रसामान्य लंबकोणीय आधार, या आधारों के लंबकोणीय परिवर्तन की गणना करना अक्सर कठिन होता है, दोनों लंबकोणीय आव्यूह का रूप लेते हैं। सारणीक±1 और परिमाण 1 के सभी अभिलक्षणिक मान ​​[[ संख्यात्मक स्थिरता ]] के लिए बहुत फायदे का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है जो न्यूनतम है, इसलिए लंबकोणीय आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई कलन विधि लंबकोणीय आव्यूहों जैसे हाउसहोल्डर प्रतिबिंब का उपयोग करते हैं तथा इस कारण से दिए गए क्रमावर्तन का प्रयोग करते हैं। यह भी सहायक है कि न केवल लंबकोणीय आव्यूह वर्तनीय है बल्कि इसका प्रतिलोम सूचकांकों के विनिमय द्वारा अनिवार्य रूप से मुक्त भी है।
 
कई कलन विधि की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें वर्कहोर्स गौसी उन्मूलन के साथ आशिक धुरी भी सम्मिलित है (जहां क्रमपरिवर्तन धुरी का काम करते हैं)। चूँकि, वे शायद ही कभी स्पष्ट रूप से आव्यूह के रूप में प्रकट होते हैं, उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची {{mvar|n}} सूचकांक में है।
 


कई कलन विधि की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें पिवट तत्व # आंशिक और पूर्ण पिवोटिंग के साथ वर्कहॉर्स गॉसियन उन्मूलन सम्मिलित है (जहां क्रमपरिवर्तन धुरी करते हैं)।चूँकि , वे शायद ही कभी स्पष्ट रूप से आव्यूह के रूप में प्रकट होते हैं; उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची {{mvar|n}} सूचकांक।


इसी तरह,हाउसहोल्ड और गिवेंस आव्यूह का उपयोग करने वाले कलन विधि सामान्तया गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंसक्रमावर्तन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण [[ मैट्रिक्स गुणन | आव्यूह गुणन]] को बदलता है {{math|''n''<sup>3</sup>}} बहुत अधिक कुशल आदेश के लिए {{mvar|n}}. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित {{harvtxt|Stewart|1976}}, हम एकक्रमावर्तन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)
इसी तरह,हाउसहोल्ड और गिवेंस आव्यूह का उपयोग करने वाले कलन विधि सामान्तया गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंसक्रमावर्तन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण [[ मैट्रिक्स गुणन | आव्यूह गुणन]] को बदलता है {{math|''n''<sup>3</sup>}} बहुत अधिक कुशल आदेश के लिए {{mvar|n}}. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित {{harvtxt|Stewart|1976}}, हम एकक्रमावर्तन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)

Revision as of 13:11, 20 November 2022

रैखिक बीजगणित में, एक लंबकोणीय आव्यूह, या प्रसामान्य लंबकोणीय आव्यूह, एक वास्तविक वर्ग आव्यूह है, जिसके कॉलम और पंक्तियाँ प्रसामान्य लंबकोणीय सदिश होते है।

इसे व्यक्त करने का एक तरीका है

जहाँ पे QT का स्थानान्तरण है Q तथा I तत्समक आव्यूह है। यह समान लक्षण वर्णन की ओर जाता है, एक लंबकोणीय आव्यूह Q है यदि इसका परिवर्त इसके व्युत्क्रमणीय आव्यूह के बराबर है।
जहाँ पे Q−1 का व्युत्क्रम है Q.


एक लंबकोणीय आव्यूह Q अनिवार्य रूप से व्युत्क्रम के साथ व्युत्क्रमणीय है। (Q−1 = QT), एकल आव्यूह (Q−1 = Q), जहाँ पे Q का हर्मिटियन आसन्न संयुग्मी परिवर्त Q, है, और इसलिए (QQ = QQ) वास्तविक संख्याओं पर सामान्य है। किसी भी लंबकोणीय आव्यूह का सारणीकया तो +1 या -1 एक रैखिक परिवर्तन के रूप में, एक लंबकोणीय आव्यूह सदिश के आंतरिक उत्पाद को सुरक्षित करता है, और इसलिए क्रमावर्तन समष्टि एक समान दूरी के रूप में कार्य करता है, जैसे क्रमावर्तन , प्रतिबिंब या रोटर प्रतिबिम्ब के रूप में है। दूसरे शब्दों में, कह सकते है यह एक एकल परिवर्तन है।

समुच्चय n × n लंबकोणीय आव्यूह का एक समूह बनाता है, O(n), लंबकोणीय समूह के रूप में जाना जाता है। उपसमूह SO(n) सारणिक +1 के साथ मिलकर लंबकोणीय आव्यूह बनाता है और लंबकोणीय समूह कहलाता है, इसका प्रत्येक तत्व एक विशेष लंबकोणीय आव्यूह होता है। एक रैखिक परिवर्तन के रूप में, प्रत्येक विशेष लंबकोणीय आव्यूह क्रमावर्तन के रूप में कार्य करता है।

अवलोकन

एक लंबकोणीय आव्यूह एकल आव्यूह का वास्तविक विशेषज्ञता है, और इस प्रकार हमेशा एक सामान्य आव्यूह होता है। यद्यपि हम यहां केवल वास्तविक आव्यूहों पर बात करते हैं, परिभाषा का उपयोग किसी भी क्षेत्र (गणित) से प्रविष्टियों के साथ आव्यूहों के लिए किया जाता है। चूँकि, लंबकोणीय आव्यूह स्वाभाविक रूप से बिंदु गुणनफल से उत्पन्न होते हैं, और जटिल संख्याओं के आव्यूह के लिए जो एकल आवश्यकता के अतिरिक्त आगे बढ़ते हैं। लंबकोणीय आव्यूह बिंदु उत्पाद को संरक्षित करते हैं,[1] इसलिए, n-आयामी वास्तविक यूक्लिडियन समष्टि में सदिश के लिए u तथा v होते है

जहाँ पे Q एक लंबकोणीय आव्यूह है। आंतरिक गुणनफल संबंधन को देखने के लिए, एक n आयामी वास्तविक यूक्लिडियन समष्टि में एक सदिश v को देखें। प्रसामान्य लंबकोणीय विश्लेषण के संबंध में लिखा हुआ v वर्ग की लंबाई vTv है। यदि आव्यूह रूप में एक रैखिक परिवर्तन, Qv फिर सदिश लंबाई को संरक्षित करता है।


इस प्रकार परिमित आयामी रैखिक सममितिक्रमावर्तन प्रतिबिंब और उनके संयोजन से लंबकोणीय आव्यूहों का निर्माण होता है। इसका व्युत्क्रम भी सत्य है, लंबकोणीय आव्यूह का अर्थ लंबकोणीय रूपांतरण है। चूँकि, रैखिक बीजगणित में रिक्त स्थान के बीच लंबकोणीय परिवर्तन सम्मिलित हैं, जो न तो परिमित-आयामी हो सकते हैं और न ही समान आयाम के हो सकते हैं, और इनमें कोई लंबकोणीय आव्यूह समतुल्य नहीं होता है।

सैद्धांतिक और व्यावहारिक दोनों कारणों से लंबकोणीय आव्यूह महत्वपूर्ण हैं। n × n लंबकोणीय आव्यूह, आव्यूह गुणन के तहत एक समूह का निर्माण करते हैं, जो O(n), लंबकोणीय समूह द्वारा दर्शाया गया है । जिसका प्रयोग व्यापक रूप से गणित और भौतिक विज्ञान में किया जाता है। उदाहरण के लिए, एक अणु का बिंदु समूह O(3) का एक उपसमूह है। क्योंकि लंबकोणीय आव्यूह के चल बिंदु संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई कलन विधि के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर अपघटन । एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन एमपी3 संपीड़न में प्रयुक्त लंबकोणीय आव्यूह द्वारा दर्शाया गया है।

उदाहरण

नीचे छोटे लंबकोणीय आव्यूह और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं।

  • (तत्समक परिवर्तन)
  • (मूल के बारे में क्रमावर्तन)
  • (एक्स-अक्ष पर प्रतिबिंब)
  • (समन्वय अक्षों का क्रमचय)

प्राथमिक निर्माण

निचला आयाम

सबसे सरल लंबकोणीय आव्यूह हैं 1 × 1 आव्यूह [1] और [−1], जिसे हम तत्समक के रूप में व्याख्या कर सकते हैं और मूल के आर-पार वास्तविक रेखा के प्रतिबिंब के रूप में व्याख्या कर सकते हैं। 2 × 2 आव्यूह का रूप है

कौन सी लांबिक मांग तीन समीकरणों को संतुष्ट करती है
पहले समीकरण को ध्यान में रखते हुए, व्यापकता की हानि के बिना p = cos θ, q = sin θ; तो कोई t = −q, u = p या t = q, u = −p. हम पहली स्थिति को क्रमावर्तन के रूप में व्याख्या कर सकते हैं θ (जहाँ पे θ = 0 पहचान है), और दूसरा कोण पर एक रेखा में प्रतिबिंब के रूप में θ/2.

प्रतिबिंब आव्यूह का विशेष प्रकरण जिसमें θ = 90° से दी गई पंक्ति के बारे में y = x द्वारा दिए गए 45° कोण पर प्रतिबिंब बनता है, और इसलिए आदान-प्रदान x तथा y यह एक क्रमचय आव्यूह है, जिसमें प्रत्येक कॉलम और पंक्ति में एक 1 और अन्यथा 0 होता है।
पहचान भी एक क्रमचय आव्यूह है।

प्रतिबिंब का अपना प्रतिलोम होता है, जिसका अर्थ है कि प्रतिबिंब आव्यूह, इसके स्थानांतरण तथा लंबकोणीय के समान सममित होता है। दो क्रमावर्तन आव्यूह का उत्पाद एक क्रमावर्तन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एक क्रमावर्तन आव्यूह है।

उच्च आयाम

आयाम की परवाह किए बिना, लंबकोणीय आव्यूह को विशुद्ध रूप से घूर्णी या नहीं के रूप में वर्गीकृत करना हमेशा संभव होता है, लेकिन इसके लिए 3 × 3 आव्यूह और गैर-घूर्णी आव्यूह बड़े प्रतिबिंबों की तुलना में अधिक जटिल हो सकते हैं। उदाहरण के लिए,


मूल और रोटोइनवर्जन के माध्यम से एक बिंदु से एक व्युत्क्रम का प्रतिनिधित्व करते हैं क्रमश, Z- अक्ष के बारे में

उच्च आयामों में क्रमावर्तन अधिक जटिल हो जाते हैं क्योंकि उन्हें अब एक कोण से पूरी तरह से वर्गीकृत नहीं किया जा सकता, और एक से अधिक तल उपसमष्‍टि को प्रभावित कर सकते हैं। यह अक्ष और कोण के संदर्भ में 3 × 3 क्रमावर्तन आव्यूह का वर्णन करने के लिए सामान्य बात है, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येक क्रमावर्तन के समतल से जुड़ा होता है।

चूँकि, हमारे पास सामान्य रूप से लागू होने वाले क्रम परिवर्तन, प्रतिबिंब और क्रमावर्तन के लिए प्राथमिक रचक अणु हैं।

प्राचीन

सबसे प्राथमिक क्रमचय एक स्थानान्तरण है, जो दो पंक्तियों का आदान-प्रदान करके तत्समक आव्यूह से प्राप्त किया जाता है। कोई n × n क्रमचय आव्यूह को इससे अधिक के उत्पाद के रूप में बनाया जा सकता है n − 1 स्थानान्तरण।

हाउसहोल्ड प्रतिबिंब को गैर-शून्य सदिश v से बनाया गया है।


यहाँ अंश एक सममित आव्यूह है जबकि हर संख्या v का वर्ग परिमाण है, यह v के समानांतर किसी भी सदिश घटक को निष्फल के लिए अधिसमतल लंबवत में एक प्रतिबिंब है। यदि v एक इकाई सदिश है, तो Q = I − 2vvT पर्याप्त है। एक हाउसहोल्ड प्रतिबिंब का उपयोग सामान्तया एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार n × n के किसी भी लंबकोणीय आव्यूह को ज्यादातर n के ऐसे प्रतिबिंबों के उत्पाद के रूप में बनाया जा सकता है।

दिया गया क्रमावर्तन दो आयामी प्लानर पर कार्य करता है, जो कि चयनित कोण द्वारा घूमते हुए दो समन्वय अक्षों द्वारा फैला हुआ उपक्षेत्र है। यह सामान्तया एकल उपविकर्ण प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। n × n आकार के किसी भी क्रमावर्तन आव्यूह को ज्यादातर n(n − 1)/2 जैसे क्रमावर्तन के उत्पाद के रूप में बनाया जा सकता है। 3 × 3 आव्यूह की स्थिति में, ऐसे तीन क्रमावर्तन पर्याप्त हैं, और इस क्रम को ठीक करके हम सभी का वर्णन कर सकते हैं। 3 × 3 उपयोग किए गए तीन कोणों के संदर्भ में क्रमावर्तन आव्यूह का वर्णन इस प्रकार कर सकते हैं, जिन्हें सदैव यूलर कोण कहा जाता है।

एक जैकोबी क्रमावर्तन का रूप दिए गए क्रमावर्तन के समान है, लेकिन इसका उपयोग 2 × 2 सममित सबआव्यूह की अप विकर्ण की प्रविष्टियों को शून्य करने के लिए किया जाता है।

गुण

आव्यूह गुण

एक वास्तविक वर्ग आव्यूह लंबकोणीय होता है, और यदि इसके कॉलम सामान्य यूक्लिडियन समष्टि उत्पाद के साथ यूक्लिडियन समष्टि Rn के लंबकोणीय आधार के रूप में हों।, इस तरह की स्थिति सिर्फ़ इसकी पंक्तियाँ Rn. के एक लंबकोणीय आधार बनाते हैं, यह मान लेना आकर्षक हो सकता है कि लंबकोणीय ( प्रसामान्य लंबकोणीय नहीं) कॉलम वाले आव्यूह को लंबकोणीय आव्यूह के रूप में जाना जाता है, लेकिन ऐसे आव्यूह में कोई विशेष रुचि नहीं है और कोई विशेष नाम नहीं है, वे केवल संतुष्ट करते हैं MTM = D, साथ D एक विकर्ण आव्यूह है।

किसी भी लंबकोणीय आव्यूह का सारणीक+1 या -1 है। यह सारणीक के बारे में मूलभूत तथ्यों से है जैसा कि नीचे दिया गया है।

इसका विलोम सही नहीं है;±1 के सारणीक होने से लांबिक का कोई आश्वासन नहीं है, यहां तक ​​​​कि लंबकोणीय कॉलम के साथ भी, जैसा कि निम्नलिखित प्रत्युत्तर उदाहरण द्वारा दिखाया गया है।


क्रमचय आव्यूह के साथ सारणीक अंकित अंक से मेल खाता है, क्रमचय की समानता के रूप में +1 या-1 को सम या विषम किया जाना पंक्तियों का वैकल्पिक कार्य है।

सारणीक प्रतिबंध से मजबूत तथ्य यह है कि एक लंबकोणीय आव्यूह सदैव ईजेनवैल्यू और ईजेनसदिश के पूर्ण समुच्चय को प्रदर्शित करने के लिए जटिल संख्याओं पर विकर्ण आव्यूह हो सकता है, जिनमें से सभी का जटिल निरपेक्ष मान 1 होना चाहिए।

समूह गुण

प्रत्येक लंबकोणीय आव्यूह का प्रतिलोम पुनः लंबकोणीय होता है, जैसा कि दो लंबकोणीय आव्यूह का आव्यूह उत्पाद होता है। वास्तव में, सभी का समुच्चय n × n लंबकोणीय आव्यूह एक समूह के सभी एक्सीओम्स को संतुष्ट करता है। यह आयाम का एक कॉम्पैक्ट क्षेत्र लाई समूह n(n − 1)/2 है, इसे लंबकोणीय समूह कहा जाता है और O(n) द्वारा दर्शाया जाता है।

लंबकोणीय आव्यूह जिसका सारणीक +1 है, और सूचकांक 2 के SO(n) के पथ से जुड़े सामान्य उपसमूह का निर्माण करते है, इसके क्रमावर्तन का विशेष लंबकोणीय समूह SO(n) है। भागफल समूह O(n)/SO(n) के लिए तुल्याकारी है O(1), सारणीक के अनुसार [+1] या [−1] चुनने वाले प्रक्षेपण मानचित्र के साथ होते है । सारणीक-1 के साथ लंबकोणीय आव्यूह में तत्समक सम्मिलित नहीं है, और इसलिए एक उपसमूह नहीं बल्कि केवल सहसमुच्चय बनाते हैं, यह अलग से भी जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीय समूह के दो टुकड़े हो जाते हैं, और क्योंकि प्रक्षेपण मानचित्र पर विभाजन होता है, SO(n) द्वारा O(n) O(1) का अर्धप्रत्यक्ष उत्पाद है, व्यावहारिक संदर्भ में, एक तुलनीय कथन यह है कि क्रमावर्तन आव्यूह को लेकर किसी लंबकोणीय मैट्रिक्स का निर्माण किया जा सकता है। संभवतः इसके किसी एक कॉलम को नकार कर बनाया जा सकता है, जैसा कि हमने देखा 2 × 2 आव्यूह में। यदि n विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में समूहों का प्रत्यक्ष उत्पाद है, और किसी भी लंबकोणीय आव्यूह को क्रमावर्तन आव्यूह द्वारा और संभवतः इसके सभी कॉलम को अस्वीकार कर बनाया जा सकता है। यह सारणीक की गुण धर्म का अनुसरण करता है और यह एक कॉलम को अस्वीकार कर सारणीक को अस्वीकार करता है, और इस प्रकार कॉलम की एक विषम (लेकिन सम नहीं) संख्या को अस्वीकार कर सारणीक को अस्वीकार करता है।

अब विचार करें (n + 1) × (n + 1) लंबकोणीय आव्यूह जिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम और अंतिम पंक्ति का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है n × n लंबकोणीय आव्यूह, इस प्रकार O(n) का एक उपसमूह है O(n + 1) और सभी उच्च समूहों के।

चूंकि हाउसहोल्डर मैट्रिक्स के रूप में एक प्रारंभिक प्रतिबिंब किसी भी लंबकोणीय आव्यूह को बाधित कर सकता है, और इस तरह के प्रतिबिंबों की एक श्रृंखला किसी भी लंबकोणीय आव्यूह को तत्समक में ला सकती है, इस प्रकार एक लंबकोणीय समूह एक प्रतिबिंब समूह है। अंतिम स्तंभ किसी भी इकाई सदिश के लिए तय किया जा सकता है, और प्रत्येक विकल्प की एक अलग प्रति देता है O(n) में O(n + 1); तौर पर O(n + 1) इकाई गोले के ऊपर एक फाइबर बंडल Sn है और फाइबर के साथ O(n).है।

इसी प्रकार, SO(n) का एक उपसमूह है SO(n + 1), और किसी भी विशेष लंबकोणीय आव्यूह को एक समान प्रक्रिया का उपयोग करके सपाट क्रमावर्तन द्वारा उत्पन्न किया जा सकता है। बंडल संरचना बनी रहती है, SO(n) ↪ SO(n + 1) → Sn. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और श्रृंखला n − 1 क्रमावर्तन एक n × n क्रमावर्तन आव्यूह के अंतिम कॉलम की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा। चूंकि समतल स्थिर होते हैं, इसलिए प्रत्येक क्रमावर्तन में केवल एक डिग्री की स्वतंत्रता होती है, इसलिए प्रेरण में इसका कोण SO(n) सोन होता है।

स्वतंत्रता की डिग्री, और इसलिए O(n). करता है

क्रमचय आव्यूह अभी भी सरल हैं, वे लाई समूह नहीं, बल्कि केवल एक परिमित समूह बनाते हैं, ऑर्डर फैक्टोरियल n!सममित समूह Sn. इसी तर्क से, Sn का एक उपसमूह है Sn + 1. सम क्रम परिवर्तन सारणीक +1 के क्रमचय आव्यूह के उपसमूह का उत्पादन करते हैं, क्रम n!/2 वैकल्पिक समूह के होते है।

विहित रूप

अधिक मोटे तौर पर, किसी भी लंबकोणीय आव्यूह का प्रभाव लंबकोणीय द्वि-आयामी उप-स्थानों पर स्वतंत्र क्रियाओं में अलग हो जाता है। अर्थात, अगर Q विशेष लंबकोणीय है तो कोई हमेशा एक लंबकोणीय आव्यूह ढूंढ सकता है P, (घूर्णी) आधार का परिवर्तन पा सकता है, जो Q को ब्लॉक विकर्ण रूप में लाता है।

जहां आव्यूह R1, ..., Rk 2 × 2 क्रमावर्तन आव्यूह हैं, और शेष प्रविष्टियों के साथ शून्य असाधारण रूप से, एक क्रमावर्तन ब्लॉक विकर्ण हो सकता है, ±I. इस प्रकार, यदि आवश्यक हो तो एक कॉलम को नकारना और यह ध्यान रखना कि एक 2 × 2 प्रतिबिंब एक +1 और -1 के लिए विकर्ण है, किसी भी लंबकोणीय आव्यूह को क्रमबद्ध किया जा सकता है।
आव्यूह R1, ..., Rk सम्मिश्र संख्या में इकाई वृत्त पर स्थित अभिलक्षणिक मान ​​​​के संयुग्म को जोड़े देते हैं, इसलिए यह अपघटन पुष्टि करता है कि सभी अभिलक्षणिक मान और अभिलक्षणिक सदिश का पूर्ण मान 1 है। यदि n विषम है, कम से कम एक वास्तविक अभिलक्षणिक मान है, +1 या -1, एक के लिए 3 × 3 क्रमावर्तन, +1 से जुड़ा अभिलक्षणिक सदिश क्रमावर्तन अक्ष का है।

लेट बीजगणित

मान लीजिए की प्रविष्टियाँ Q के अलग-अलग कार्य हैं t, और कि t = 0 देता है Q = I. लंबकोणीयिटी की स्थिति को अलग करता है।

पैदावार
पर मूल्यांकन t = 0 (Q = I) तो तात्पर्य है
लाई(lie) समूह के शब्दों में, इसका मतलब है कि एक लंबकोणीय आव्यूह समूह के लाई बीजगणित में तिरछा-सममित आव्यूह होता है। दूसरी दिशा में जा रहे हैं, किसी भी तिरछा-सममित आव्यूह का आव्यूह घातीय लंबकोणीय आव्यूह है (वास्तव में, विशेष लंबकोणीय है)।

उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कहती है कि कोणीय वेग एक विभेदक क्रमावर्तन है, इस प्रकार लाई बीजगणित में एक सदिश है स्पर्शरेखा SO(3). दी गयी है ω = (, , ), साथ v = (x, y, z) एक इकाई सदिश होने के नाते, ω का सही तिरछा-सममित आव्यूह रूप है।

इसका घातांक अक्ष के चारों ओर घूमने के लिए लंबकोणीय आव्यूह है v कोण से θ, स्थापना c = cos θ/2, s = sin θ/2 है।


संख्यात्मक रैखिक बीजगणित

लाभ

संख्यात्मक विश्लेषण संख्यात्मक रैखिक बीजगणित के लिए लंबकोणीय आव्यूह के कई गुणों का फायदा उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए प्रसामान्य लंबकोणीय आधार, या आधारों के लंबकोणीय परिवर्तन की गणना करना अक्सर कठिन होता है, दोनों लंबकोणीय आव्यूह का रूप लेते हैं। सारणीक±1 और परिमाण 1 के सभी अभिलक्षणिक मान ​​संख्यात्मक स्थिरता के लिए बहुत फायदे का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है जो न्यूनतम है, इसलिए लंबकोणीय आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई कलन विधि लंबकोणीय आव्यूहों जैसे हाउसहोल्डर प्रतिबिंब का उपयोग करते हैं तथा इस कारण से दिए गए क्रमावर्तन का प्रयोग करते हैं। यह भी सहायक है कि न केवल लंबकोणीय आव्यूह वर्तनीय है बल्कि इसका प्रतिलोम सूचकांकों के विनिमय द्वारा अनिवार्य रूप से मुक्त भी है।

कई कलन विधि की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें वर्कहोर्स गौसी उन्मूलन के साथ आशिक धुरी भी सम्मिलित है (जहां क्रमपरिवर्तन धुरी का काम करते हैं)। चूँकि, वे शायद ही कभी स्पष्ट रूप से आव्यूह के रूप में प्रकट होते हैं, उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची n सूचकांक में है।


इसी तरह,हाउसहोल्ड और गिवेंस आव्यूह का उपयोग करने वाले कलन विधि सामान्तया गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंसक्रमावर्तन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण आव्यूह गुणन को बदलता है n3 बहुत अधिक कुशल आदेश के लिए n. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित Stewart (1976), हम एकक्रमावर्तन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)

अपघटन

कई महत्वपूर्ण आव्यूह अपघटन (Golub & Van Loan 1996) विशेष रूप से लंबकोणीय आव्यूहसम्मिलित करें:

क्यूआर अपघटन |QR अपघटन: M = QR, Q ओर्थोगोनल, R ऊपरी त्रिकोणीय

विलक्षण मान अपघटन
M = UΣVT, U तथा V ओर्थोगोनल, Σ विकर्ण आव्यूह
आव्यूह का ईजेनडीकम्पोज़िशन (वर्णक्रमीय प्रमेय के अनुसार अपघटन)
S = QΛQT, S सममित, Q ओर्थोगोनल, Λ विकर्ण
ध्रुवीय अपघटन
M = QS, Q ओर्थोगोनल, S सममित सकारात्मक-अर्धपरिमित

उदाहरण

रैखिक समीकरणों की एक अतिनिर्धारित प्रणाली पर विचार करें, जैसा कि प्रयोगात्मक त्रुटियों की भरपाई के लिए भौतिक घटना के बार-बार माप के साथ हो सकता है। लिखना Ax = b, जहाँ पे A है m × n, m > n. ए QR अपघटन कम हो जाता है A ऊपरी त्रिकोणीय के लिए R. उदाहरण के लिए, यदि A है 5 × 3 फिर R रूप है

रैखिक कम से कम वर्ग (गणित) समस्या को खोजने के लिए है x जो कम करता है ||Axb||, जो प्रक्षेपित करने के बराबर है b उप-स्थान के लिए के कॉलमद्वारा फैलाया गया A. के कॉलमको मानते हुए A (और इसलिए R) स्वतंत्र हैं, प्रक्षेपण समाधान से पाया जाता है ATAx = ATb. अब ATA वर्गाकार है (n × n) और उलटा, और बराबर भी RTR. लेकिन शून्य की निचली पंक्तियों में R उत्पाद में अतिश्योक्तिपूर्ण हैं, जो इस प्रकार पहले से ही निचले-त्रिकोणीय ऊपरी-त्रिकोणीय कारक रूप में है, जैसा कि गाऊसी उन्मूलन (चोल्स्की अपघटन ) में है। यहां रूढ़िवादिता न केवल कम करने के लिए महत्वपूर्ण है ATA = (RTQT)QR प्रति RTR, बल्कि संख्यात्मक समस्याओं को बढ़ाए बिना समाधान की अनुमति देने के लिए भी।

एक रैखिक प्रणाली के स्थितिमें जो कम निर्धारित है, या अन्यथा गैर-उलटा आव्यूह, एकवचन मूल्य अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ A के रूप में कारक UΣVT, एक संतोषजनक समाधान मूर-पेनरोज़ छद्म उलटा का उपयोग करता है, VΣ+UT, जहाँ पे Σ+ केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह x प्रति VΣ+UTb.

वर्ग उलटा आव्यूह का स्थितिभी रुचि रखता है। मान लीजिए, उदाहरण के लिए, कि A एक है 3 × 3क्रमावर्तन आव्यूह जिसकी गणना कई ट्विस्ट और टर्न की संरचना के रूप में की गई है। चल बिंदु वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाता है, इसलिए A धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया कॉलमको लंबकोणीयाइज़ेशन कर सकती है, लेकिन यह सबसे विश्वसनीय, न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है। ध्रुवीय अपघटन एक आव्यूह को एक जोड़ी में कारक बनाता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लंबकोणीय आव्यूह है, या यदि दिया गया आव्यूह एकवचन है तो निकटतम में से एक है। (निकटता को आधार के लंबकोणीय परिवर्तन के तहत किसी भी आव्यूह मानदंड अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड।) निकट-लंबकोणीय आव्यूह के लिए, लंबकोणीय कारक के लिए तेजी से अभिसरण न्यूटन की विधि दृष्टिकोण द्वारा प्राप्त किया जा सकता है। प्रति Higham (1986) (# CITEREFHigham1990), बार-बार आव्यूह को इसके व्युत्क्रम स्थानान्तरण के साथ औसत करता है। Dubrulle (1999) सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है।

उदाहरण के लिए, एक गैर-लंबकोणीय आव्यूह पर विचार करें जिसके लिए साधारण औसत एल्गोरिथ्म सात कदम उठाता है

और कौन सा त्वरण दो चरणों में कम हो जाता है (साथ में γ = 0.353553, 0.565685).

ग्राम-श्मिट न्यूनतम 8.12404 के बजाय 8.28659 की फ्रोबेनियस दूरी द्वारा दिखाए गए एक अवर समाधान का उत्पादन करता है।


यादृच्छिकीकरण

कुछ संख्यात्मक अनुप्रयोग, जैसे कि मोंटे कार्लो विधि तरीके और उच्च-आयामी डेटा रिक्त स्थान की खोज, समान वितरण (निरंतर) यादृच्छिक लंबकोणीय आव्यूह की पीढ़ी की आवश्यकता होती है। इस संदर्भ में, हार माप के संदर्भ में वर्दी को परिभाषित किया गया है, जो अनिवार्य रूप से आवश्यक है कि किसी भी स्वतंत्र रूप से चुने गए लंबकोणीय आव्यूह द्वारा गुणा किए जाने पर वितरण में परिवर्तन न हो। सांख्यिकीय स्वतंत्रता के साथ लंबकोणीयाइज़िंग आव्यूह समान रूप से वितरित रैंडम प्रविष्टियाँ समान रूप से वितरित लंबकोणीय आव्यूहमें परिणाम नहीं देती हैं[citation needed], लेकिन क्यूआर अपघटन|QR स्वतंत्र सामान्य वितरण का अपघटन यादृच्छिक प्रविष्टि करता है, जब तक कि का विकर्ण R केवल सकारात्मक प्रविष्टियां सम्मिलित हैं (Mezzadri 2006). Stewart (1980) इसे एक अधिक कुशल विचार के साथ बदल दिया Diaconis & Shahshahani (1987) बाद में उपसमूह एल्गोरिथ्म के रूप में सामान्यीकृत किया गया (जिस रूप में यह क्रमपरिवर्तन और घुमाव के लिए भी काम करता है)। एक उत्पन्न करने के लिए (n + 1) × (n + 1) लंबकोणीय आव्यूह, एक ले लो n × n एक और आयाम का एक समान रूप से वितरित इकाई सदिश n + 1. सदिश से हाउसहोल्ड रिफ्लेक्शन बनाएं, फिर इसे छोटे आव्यूह पर लागू करें (नीचे दाएं कोने में 1 के साथ बड़े आकार में एम्बेड किया गया)।

निकटतम लंबकोणीय आव्यूह

लंबकोणीय आव्यूह खोजने की समस्या Q किसी दिए गए आव्यूह के निकटतम M लंबकोणीय प्रोक्रस्ट्स समस्या से संबंधित है। अद्वितीय समाधान प्राप्त करने के कई अलग-अलग तरीके हैं, जिनमें से सबसे सरल एकवचन मान का अपघटन ले रहा है M और एकवचन मूल्यों को लोगों के साथ बदलना। एक अन्य विधि व्यक्त करती है R स्पष्ट रूप से लेकिन आव्यूह वर्गमूल के उपयोग की आवश्यकता है:[2]

यह पुनरावृत्ति देने के लिए एक आव्यूह के वर्गमूल को निकालने के लिए बेबीलोनियन विधि के साथ जोड़ा जा सकता है जो एक लंबकोणीय आव्यूह को द्विघात रूप से अभिसरण करता है:
जहाँ पे Q0 = M.

ये पुनरावृत्तियां स्थिर हैं बशर्ते की स्थिति संख्या M तीन से कम है।[3] व्युत्क्रम के प्रथम-क्रम के सन्निकटन का उपयोग करना और उसी आरंभीकरण के परिणामस्वरूप संशोधित पुनरावृत्ति होती है:


स्पिन और पिन

एक सूक्ष्म तकनीकी समस्या लंबकोणीय आव्यूह के कुछ उपयोगों को प्रभावित करती है। सारणीक+1 और -1 के साथ समूह घटक न केवल एक दूसरे से जुड़े हुए स्थान हैं, यहां तक ​​कि +1 घटक भी, SO(n), केवल जुड़ा हुआ स्थान नहीं है (SO(1) को छोड़कर, जो तुच्छ है)। इस प्रकार कभी-कभी एसओ (एन), स्पिनर समूह के कवरिंग मैप के साथ काम करना फायदेमंद या आवश्यक भी होता है, Spin(n). वैसे ही, O(n) कवरिंग ग्रुप, पिन समूह , पिन (एन) है। के लिये n > 2, Spin(n) बस जुड़ा हुआ है और इस प्रकार के लिए सार्वभौमिक कवरिंग समूह SO(n). स्पिन समूह का अब तक का सबसे प्रसिद्ध उदाहरण है Spin(3), जो और कुछ नहीं SU(2), या इकाई चतुष्कोणों का समूह।

पिन और स्पिन समूह क्लिफोर्ड बीजगणित के भीतर पाए जाते हैं, जो स्वयं लंबकोणीय आव्यूहसे बनाए जा सकते हैं।

आयताकार आव्यूह

यदि Q एक वर्ग आव्यूह नहीं है, तो शर्तें QTQ = I तथा QQT = I समकक्ष नहीं हैं। स्थिति QTQ = I कहता है कि Q के स्तंभ लम्बवत हैं। यह तभी हो सकता है जब Q एक m × n आव्यूह के साथ nm (रैखिक निर्भरता के कारण)। इसी प्रकार, QQT = I कहते हैं कि की पंक्तियाँ Q प्रसामान्य लंबकोणीय हैं, जिनकी आवश्यकता है nm.

इन आव्यूह के लिए कोई मानक शब्दावली नहीं है। उन्हें अर्ध-लंबकोणीय आव्यूह, प्रसामान्य लंबकोणीय आव्यूह, लंबकोणीय आव्यूह, और कभी-कभी प्रसामान्य लंबकोणीय पंक्तियों/कॉलमके साथ बस आव्यूह कहा जाता है।

स्थितिके लिए nm, प्रसामान्य लंबकोणीय कॉलम वाले मैट्रिस को k-फ्रेम के रूप में संदर्भित किया जा सकता है| लंबकोणीय कश्मीर फ्रेम और वे स्टिफ़ेल कई गुना के तत्व हैं।

यह भी देखें

टिप्पणियाँ

  1. "Paul's online math notes"[full citation needed], Paul Dawkins, Lamar University, 2008. Theorem 3(c)
  2. "Finding the Nearest Orthonormal Matrix", Berthold K.P. Horn, MIT.
  3. "Newton's Method for the Matrix Square Root" Archived 2011-09-29 at the Wayback Machine, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986.


संदर्भ

  • Diaconis, Persi; Shahshahani, Mehrdad (1987), "The subgroup algorithm for generating uniform random variables", Probability in the Engineering and Informational Sciences, 1: 15–32, doi:10.1017/S0269964800000255, ISSN 0269-9648, S2CID 122752374
  • Dubrulle, Augustin A. (1999), "An Optimum Iteration for the Matrix Polar Decomposition", Electronic Transactions on Numerical Analysis, 8: 21–25
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3/e ed.), Baltimore: Johns Hopkins University Press, ISBN 978-0-8018-5414-9
  • Higham, Nicholas (1986), "Computing the Polar Decomposition—with Applications" (PDF), SIAM Journal on Scientific and Statistical Computing, 7 (4): 1160–1174, doi:10.1137/0907079, ISSN 0196-5204
  • Higham, Nicholas; Schreiber, Robert (July 1990), "Fast polar decomposition of an arbitrary matrix", SIAM Journal on Scientific and Statistical Computing, 11 (4): 648–655, CiteSeerX 10.1.1.230.4322, doi:10.1137/0911038, ISSN 0196-5204, S2CID 14268409 [1]
  • Stewart, G. W. (1976), "The Economical Storage of Plane Rotations", Numerische Mathematik, 25 (2): 137–138, doi:10.1007/BF01462266, ISSN 0029-599X, S2CID 120372682
  • Stewart, G. W. (1980), "The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators", SIAM Journal on Numerical Analysis, 17 (3): 403–409, Bibcode:1980SJNA...17..403S, doi:10.1137/0717034, ISSN 0036-1429
  • Mezzadri, Francesco (2006), "How to generate random matrices from the classical compact groups", Notices of the American Mathematical Society, 54, arXiv:math-ph/0609050, Bibcode:2006math.ph...9050M


बाहरी संबंध