माइक्रोपम्प: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:TiCrPt micropump3.webm|thumb|एक Ti-Cr-Pt ट्यूब (~ 40 माइक्रोन लंबी) [[ हाइड्रोजन पेरोक्साइड ]] (उत्प्रेरक अपघटन) में डूबे रहने पर ऑक्सीजन के बुलबुले छोड़ती है। प्रवाह कैनेटीक्स का अध्ययन करने के लिए [[ polystyrene ]] क्षेत्रों (1 माइक्रोन व्यास) को जोड़ा गया था।<ref>{{cite journal|doi=10.1039/C1CP20542K|pmid=21505711|title=हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप|journal=Physical Chemistry Chemical Physics|volume=13|issue=21|pages=10131–5|year=2011|last1=Solovev|first1=Alexander A.|last2=Sanchez|first2=Samuel|last3=Mei|first3=Yongfeng|last4=Schmidt|first4=Oliver G.|s2cid=21754449|bibcode=2011PCCP...1310131S}}</ref>]]
[[File:TiCrPt micropump3.webm|thumb|एक Ti-Cr-Pt ट्यूब (~ 40 माइक्रोन लंबी) [[ हाइड्रोजन पेरोक्साइड ]] (उत्प्रेरक अपघटन) में डूबे रहने पर ऑक्सीजन के बुलबुले छोड़ती है। प्रवाह कैनेटीक्स का अध्ययन करने के लिए [[ polystyrene ]] क्षेत्रों (1 माइक्रोन व्यास) को जोड़ा गया था।<ref>{{cite journal|doi=10.1039/C1CP20542K|pmid=21505711|title=हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप|journal=Physical Chemistry Chemical Physics|volume=13|issue=21|pages=10131–5|year=2011|last1=Solovev|first1=Alexander A.|last2=Sanchez|first2=Samuel|last3=Mei|first3=Yongfeng|last4=Schmidt|first4=Oliver G.|s2cid=21754449|bibcode=2011PCCP...1310131S}}</ref>]]
[[File:Blood micropump.webm|thumb|इलेक्ट्रोकेमिकल माइक्रोपम्प 50×100 माइक्रोन पाइप के माध्यम से मानव रक्त के प्रवाह को सक्रिय करता है।<ref>{{cite journal|pmid=19458858|doi= 10.1039/B900139E |year= 2009 |last1= Chiu |first1= S. H. |title= ऑन-चिप रक्त परिवहन के लिए एक एयर-बबल-एक्ट्यूएटेड माइक्रोपम्प|journal= Lab on a Chip |volume= 9 |issue= 11 |pages= 1524–33 |last2= Liu |first2= C. H. |s2cid= 38015356 }}</ref>]]माइक्रोपंप ऐसे उपकरण हैं जो तरल पदार्थ की छोटी मात्रा को नियंत्रित और क्रमभंग कर सकते हैं।<ref name=":6">{{Cite journal|date=2021-10-15|title=दवा वितरण आवेदन के लिए सूक्ष्म खुराक - एक समीक्षा|url=https://www.sciencedirect.com/science/article/pii/S0924424721002831|journal=Sensors and Actuators A: Physical|language=en|volume=330|pages=112820|doi=10.1016/j.sna.2021.112820|issn=0924-4247|doi-access=free}}</ref><ref>{{Cite journal|last1=Laser|first1=D. J.|last2=Santiago|first2=J. G.|s2cid=35703576|date=2004|title=माइक्रोपंप की समीक्षा|journal=Journal of Micromechanics and Microengineering|language=en|volume=14|issue=6|pages=R35|doi=10.1088/0960-1317/14/6/R01|issn=0960-1317|bibcode=2004JMiMi..14R..35L}}</ref> चूकी किसी भी प्रकार के छोटे [[ पंप ]] को अधिकांशतः माइक्रोपम्प के रूप में संदर्भित किया जाता है, एक अधिक सही परिभाषा इस शब्द को माइक्रोमीटर रेंज में कार्यात्मक आयामों वाले पंपों तक सीमित करती है। ऐसे पंप [[ microfluidic | सूक्ष्मप्रवाही]] अनुसंधान में विशेष  महत्व रखते हैं, और आधुनिक वर्षों में औद्योगिक उत्पाद एकीकरण के लिए उपलब्ध हो गए हैं। सम्मालित लघु पंपों की तुलना में उनका छोटा समग्र आकार, संभावित लागत और बेहतर खुराक सटीकता इस अभिनव प्रकार के पंप के लिए बढ़ती महत्व को बढ़ावा देती है।
[[File:Blood micropump.webm|thumb|इलेक्ट्रोकेमिकल माइक्रोपम्प 50×100 माइक्रोन पाइप के माध्यम से मानव रक्त के प्रवाह को सक्रिय करता है।<ref>{{cite journal|pmid=19458858|doi= 10.1039/B900139E |year= 2009 |last1= Chiu |first1= S. H. |title= ऑन-चिप रक्त परिवहन के लिए एक एयर-बबल-एक्ट्यूएटेड माइक्रोपम्प|journal= Lab on a Chip |volume= 9 |issue= 11 |pages= 1524–33 |last2= Liu |first2= C. H. |s2cid= 38015356 }}</ref>]]माइक्रोपंप ऐसे उपकरण हैं जो द्रव पदार्थ की छोटी मात्रा को नियंत्रित और क्रमभंग कर सकते हैं।<ref name=":6">{{Cite journal|date=2021-10-15|title=दवा वितरण आवेदन के लिए सूक्ष्म खुराक - एक समीक्षा|url=https://www.sciencedirect.com/science/article/pii/S0924424721002831|journal=Sensors and Actuators A: Physical|language=en|volume=330|pages=112820|doi=10.1016/j.sna.2021.112820|issn=0924-4247|doi-access=free}}</ref><ref>{{Cite journal|last1=Laser|first1=D. J.|last2=Santiago|first2=J. G.|s2cid=35703576|date=2004|title=माइक्रोपंप की समीक्षा|journal=Journal of Micromechanics and Microengineering|language=en|volume=14|issue=6|pages=R35|doi=10.1088/0960-1317/14/6/R01|issn=0960-1317|bibcode=2004JMiMi..14R..35L}}</ref> चूकी किसी भी प्रकार के छोटे[[ पंप ]]को अधिकांशतः माइक्रोपम्प के रूप में संदर्भित किया जाता है, एक अधिक सही परिभाषा इस शब्द को माइक्रोमीटर रेंज में कार्यात्मक आयामों वाले पंपों तक सीमित करती है। ऐसे पंप [[ microfluidic | सूक्ष्मप्रवाही]] अनुसंधान में विशेष  महत्व रखते हैं, और आधुनिक वर्षों में औद्योगिक उत्पाद एकीकरण के लिए उपलब्ध हो गए हैं। सम्मालित लघु पंपों की तुलना में उनका छोटा समग्र आकार, संभावित लागत और बेहतर खुराक सटीकता इस अभिनव प्रकार के पंप के लिए बढ़ती महत्व को बढ़ावा देती है।


ध्यान दें कि विभिन्न प्रकारों माइक्रोपंप और उनके अनुप्रयोगों का एक अच्छा अवलोकन प्रदान करने के संदर्भ में नीचे दिया गया पाठ बहुत अधूरा है, और इसलिए कृपया इस विषय पर अच्छे समीक्षा लेख देखें।<ref name=":6" /><ref>{{cite journal|author= Nguyen|display-authors=etal|title= एमईएमएस-माइक्रोपंप: एक समीक्षा|journal= Journal of Fluids Engineering |volume= 124|issue= 2|pages= 384–392|year= 2002|doi= 10.1115/1.1459075}}</ref><ref name=":1">{{cite journal|author= Iverson|display-authors=etal|title= सूक्ष्म पम्पिंग प्रौद्योगिकियों में हालिया प्रगति: एक समीक्षा और मूल्यांकन|journal= Microfluid Nanofluid |volume= 5|issue= 2|pages= 145–174|year= 2008|doi= 10.1007/s10404-008-0266-8|s2cid=44242994|url=http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1080&context=nanopub}}</ref><ref>{{cite journal|author=Amirouche|display-authors=etal|title= वर्तमान माइक्रोपंप प्रौद्योगिकियां और उनके जैव चिकित्सा अनुप्रयोग|journal= Microsystem Technologies |volume= 15|issue= 5|pages= 647–666|year= 2009|doi= 10.1007/s00542-009-0804-7|s2cid=108575489}}</ref>
ध्यान दें कि विभिन्न प्रकारों माइक्रोपंप और उनके अनुप्रयोगों का एक अच्छा अवलोकन प्रदान करने के संदर्भ में नीचे दिया गया पाठ बहुत अधूरा है, और इसलिए कृपया इस विषय पर अच्छे समीक्षा लेख देखें।<ref name=":6" /><ref>{{cite journal|author= Nguyen|display-authors=etal|title= एमईएमएस-माइक्रोपंप: एक समीक्षा|journal= Journal of Fluids Engineering |volume= 124|issue= 2|pages= 384–392|year= 2002|doi= 10.1115/1.1459075}}</ref><ref name=":1">{{cite journal|author= Iverson|display-authors=etal|title= सूक्ष्म पम्पिंग प्रौद्योगिकियों में हालिया प्रगति: एक समीक्षा और मूल्यांकन|journal= Microfluid Nanofluid |volume= 5|issue= 2|pages= 145–174|year= 2008|doi= 10.1007/s10404-008-0266-8|s2cid=44242994|url=http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1080&context=nanopub}}</ref><ref>{{cite journal|author=Amirouche|display-authors=etal|title= वर्तमान माइक्रोपंप प्रौद्योगिकियां और उनके जैव चिकित्सा अनुप्रयोग|journal= Microsystem Technologies |volume= 15|issue= 5|pages= 647–666|year= 2009|doi= 10.1007/s00542-009-0804-7|s2cid=108575489}}</ref>




== परिचय और इतिहास ashif ==
== परिचय और इतिहास ==


1970 के दशक के मध्य में पहले सच्चे माइक्रोपम्प्स की सूचना मिली थी,<ref>Thomas, L. J. and Bessman, S. P. (1975) "Micropump powered by piezoelectric disk benders", {{US Patent|3963380}}</ref> लेकिन केवल 1980 के दशक में महत्व आकर्षित हुई, जब जेन स्मट्स और हेराल्ड वैन लिंटेल ने [[ माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम | माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली]] माइक्रोपंप विकसित किए।<ref name=":3">{{cite journal|author=Woias, P|doi=10.1016/j.snb.2004.02.033|title= माइक्रोपंप - पिछली प्रगति और भविष्य की संभावनाएं|journal= Sensors and Actuators B. |volume=105|issue= 1|pages=28–38|year=2005}}</ref> अधिकांश बुनियादी एमईएमएस माइक्रोपंप का काम 1990 के दशक में किया गया था। हाल ही में, गैर-यांत्रिक माइक्रोपम्पों को डिजाइन करने के प्रयास किए गए हैं जो बाहरी शक्ति पर निर्भरता के कारण दूरस्थ स्थानों में कार्यात्मक हैं।
1970 के दशक के मध्य में पहले वास्तविक माइक्रोपम्प्स की सूचना मिली थी,<ref>Thomas, L. J. and Bessman, S. P. (1975) "Micropump powered by piezoelectric disk benders", {{US Patent|3963380}}</ref> लेकिन 1980 के दशक में इसके प्रभाव ने आकर्षित किया, जब जेन स्मट्स और हेराल्ड वैन लिंटेल ने [[ माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम | माइक्रोइलेक्ट्रोयांत्रिक प्रणाली(MEMS)]] माइक्रोपंप विकसित किए।<ref name=":3">{{cite journal|author=Woias, P|doi=10.1016/j.snb.2004.02.033|title= माइक्रोपंप - पिछली प्रगति और भविष्य की संभावनाएं|journal= Sensors and Actuators B. |volume=105|issue= 1|pages=28–38|year=2005}}</ref> 1990 के दशक में अधिकांश मौलिक MEMS माइक्रोपंप का काम किया गया था। हाल ही में, गैर-यांत्रिक माइक्रोपम्पों कोअभिकल्पना करने के प्रयास किए गए हैं जो बाहरी शक्ति पर निर्भरता के कारण दूरस्थ स्थानों में कार्यात्मक हैं।
[[File:Pump cycle diagram for peristaltic micropump.svg|thumb|एक आरेख दिखाता है कि किस प्रकार श्रृंखला में तीन माइक्रोवाल्व का उपयोग द्रव को विस्थापित करने के लिए किया जा सकता है। चरण (ए) में, पहले वाल्व में इनलेट से द्रव खींचा जाता है। चरण (बी) - (ई) चरण (एफ) में तरल पदार्थ को आउटलेट की ओर निष्कासित करने से पहले, द्रव को अंतिम वाल्व में ले जाएं।]]
[[File:Pump cycle diagram for peristaltic micropump.svg|thumb|एक आरेख दिखाता है कि किस प्रकार श्रृंखला में तीन माइक्रोवाल्व का उपयोग द्रव को विस्थापित करने के लिए किया जा सकता है। चरण (ए) में, पहले वाल्व में प्रवेश से द्रव खींचा जाता है। चरण (बी) - (ई) चरण (एफ) में द्रव पदार्थ को निर्गम की ओर निष्कासित करने से पहले, द्रव को अंतिम वाल्व में ले जाएं।]]


== प्रकार और तकनीक ==
== प्रकार और तकनीक ==
माइक्रोफ्लुइडिक दुनिया के भीतर, भौतिक कानून अपना स्वरूप बदलते हैं।<ref>[http://www.cafefoundation.org/v2/pav_orderfromchaos.php Order from Chaos] {{webarchive|url=https://web.archive.org/web/20080723165004/http://www.cafefoundation.org/v2/pav_orderfromchaos.php |date=2008-07-23 }}, The CAFE Foundation</ref> एक उदाहरण के रूप में, भार या जड़ता जैसे वॉल्यूमेट्रिक बल अधिकांश नगण्य हो जाते हैं, जबकि सतही बल तरल व्यवहार पर हावी हो सकते हैं,<ref>{{Cite journal|last1=Thomas|first1=D. J.|last2=Tehrani|first2=Z.|last3=Redfearn|first3=B.|date=2016-01-01|title=पहनने योग्य बायोमेडिकल अनुप्रयोगों के लिए 3-डी मुद्रित समग्र माइक्रोफ्लुइडिक पंप|url=http://www.sciencedirect.com/science/article/pii/S221486041530004X|journal=Additive Manufacturing|language=en|volume=9|pages=30–38|doi=10.1016/j.addma.2015.12.004|issn=2214-8604}}</ref> खासकर जब तरल पदार्थों में गैस का समावेश मौजूद हो। केवल कुछ अपवादों के साथ, माइक्रोपंप माइक्रो-एक्ट्यूएशन सिद्धांतों पर भरोसा करते हैं, जिन्हें उचित रूप से केवल एक निश्चित आकार तक बढ़ाया जा सकता है।
माइक्रोफ्लुइडिक विश्व के भीतर, भौतिक नियम अपना स्वरूप बदलते हैं।<ref>[http://www.cafefoundation.org/v2/pav_orderfromchaos.php Order from Chaos] {{webarchive|url=https://web.archive.org/web/20080723165004/http://www.cafefoundation.org/v2/pav_orderfromchaos.php |date=2008-07-23 }}, The CAFE Foundation</ref> एक उदाहरण के रूप में, भार या जड़ता जैसे आयतनमितीय बल अधिकांश नगण्य हो जाते हैं, जबकि सतही बल द्रव व्यवहार पर प्रभावित कर सकते हैं,<ref>{{Cite journal|last1=Thomas|first1=D. J.|last2=Tehrani|first2=Z.|last3=Redfearn|first3=B.|date=2016-01-01|title=पहनने योग्य बायोमेडिकल अनुप्रयोगों के लिए 3-डी मुद्रित समग्र माइक्रोफ्लुइडिक पंप|url=http://www.sciencedirect.com/science/article/pii/S221486041530004X|journal=Additive Manufacturing|language=en|volume=9|pages=30–38|doi=10.1016/j.addma.2015.12.004|issn=2214-8604}}</ref> केवल जब द्रव पदार्थों में गैस का समावेश उपस्थितहो। कुछ अपवादों के साथ, माइक्रोपंप माइक्रो-प्रवर्तक सिद्धांतों पर भरोसा करते हैं, जिन्हें यथोचित रूप से केवल एक निश्चित आकार तक बढ़ाया जा सकता है।


माइक्रोपंप को यांत्रिक और गैर-यांत्रिक उपकरणों में वर्गीकृत किया जा सकता है।<ref>{{cite journal |last1=Wang |first1=Yao-Nan |last2=Fu |first2=Lung-Ming |title=माइक्रोपंप और बायोमेडिकल अनुप्रयोग - एक समीक्षा|journal=Microelectronic Engineering |date=5 August 2018 |volume=195 |pages=121–138 |doi=10.1016/j.mee.2018.04.008 }}</ref> मैकेनिकल प्रणाली में मूविंग पार्ट्स होते हैं, जो सामान्यतः एक्ट्यूएशन और [[ माइक्रोवाल्व ]] मेम्ब्रेन या फ्लैप होते हैं। [[ पीजोइलेक्ट्रिक ]] का उपयोग करके ड्राइविंग बल उत्पन्न किया जा सकता है,<ref>{{Cite journal|last1=Farshchi Yazdi|first1=Seyed Amir Fouad|last2=Corigliano|first2=Alberto|last3=Ardito|first3=Raffaele|date=2019-04-18|title=पीजोइलेक्ट्रिक माइक्रोपम्प का 3-डी डिजाइन और अनुकरण|journal=Micromachines|volume=10|issue=4|page=259|doi=10.3390/mi10040259|issn=2072-666X|pmc=6523882|pmid=31003481|doi-access=free}}</ref> [[ इलेक्ट्रोस्टैटिक ]], थर्मो-[[ वायवीय ]], वायवीय या [[ चुंबकीय ]] प्रभाव। गैर-यांत्रिक पंप इलेक्ट्रो-हाइड्रोडायनामिक, इलेक्ट्रोस्मोटिक प्रवाह के साथ कार्य करते हैं | इलेक्ट्रो-ऑस्मोटिक, इलेक्ट्रोकेमिकल <ref>{{cite journal|last1=Neagu|first1=C.R.|last2=Gardeniers|first2=J.G.E.|last3=Elwenspoek|first3=M.|last4=Kelly|first4=J.J.|year=1996|title=एक इलेक्ट्रोकेमिकल माइक्रोएक्ट्यूएटर: सिद्धांत और पहला परिणाम|url=http://doc.utwente.nl/14222/|journal=Journal of Microelectromechanical Systems|volume=5|issue=1|pages=2–9|doi=10.1109/84.485209}}</ref> या [[ अल्ट्रासाउंड ]] प्रवाह पीढ़ी, वर्तमान में अध्ययन किए गए कुछ एक्चुएशन तंत्र के नाम के लिए।
माइक्रोपंप को यांत्रिक और गैर-यांत्रिक उपकरणों में वर्गीकृत किया जा सकता है।<ref>{{cite journal |last1=Wang |first1=Yao-Nan |last2=Fu |first2=Lung-Ming |title=माइक्रोपंप और बायोमेडिकल अनुप्रयोग - एक समीक्षा|journal=Microelectronic Engineering |date=5 August 2018 |volume=195 |pages=121–138 |doi=10.1016/j.mee.2018.04.008 }}</ref> यांत्रिक प्रणाली में चलित पुर्ज़े होते हैं, जो सामान्यतः प्रवर्तक और [[ माइक्रोवाल्व ]]झिल्ली या पल्ले होते हैं। [[ पीजोइलेक्ट्रिक |दाब वैद्युत्]] का उपयोग करके परिचालन बल उत्पन्न किया जा सकता है,<ref>{{Cite journal|last1=Farshchi Yazdi|first1=Seyed Amir Fouad|last2=Corigliano|first2=Alberto|last3=Ardito|first3=Raffaele|date=2019-04-18|title=पीजोइलेक्ट्रिक माइक्रोपम्प का 3-डी डिजाइन और अनुकरण|journal=Micromachines|volume=10|issue=4|page=259|doi=10.3390/mi10040259|issn=2072-666X|pmc=6523882|pmid=31003481|doi-access=free}}</ref> [[ इलेक्ट्रोस्टैटिक | स्थिर वैद्युत भंडारण]], थर्मो-[[ वायवीय |वायवीय]], वायवीय या [[ चुंबकीय ]] प्रभाव। गैर-यांत्रिक पंप इलेक्ट्रो-हाइड्रोडायनामिक, विद्युत आसमाटिक प्रवाह के साथ कार्य करते हैं | विद्युत आसमाटिक,विद्युत रासायनिक <ref>{{cite journal|last1=Neagu|first1=C.R.|last2=Gardeniers|first2=J.G.E.|last3=Elwenspoek|first3=M.|last4=Kelly|first4=J.J.|year=1996|title=एक इलेक्ट्रोकेमिकल माइक्रोएक्ट्यूएटर: सिद्धांत और पहला परिणाम|url=http://doc.utwente.nl/14222/|journal=Journal of Microelectromechanical Systems|volume=5|issue=1|pages=2–9|doi=10.1109/84.485209}}</ref> या [[ अल्ट्रासाउंड ]] प्रवाह पीढ़ी गैर यांत्रिक पम्प कार्य करते है , वर्तमान में कुछ सक्रियण तंत्र के नाम के लिए अध्ययन किए गए।


=== यांत्रिक माइक्रोपंप ===
=== यांत्रिक माइक्रोपंप ===


==== डायाफ्राम माइक्रोपंप ====
==== झिल्ली माइक्रोपंप ====


एक डायाफ्राम माइक्रोपम्प एक द्रव को चलाने के लिए एक डायाफ्राम के बार-बार सक्रिय होने का उपयोग करता है। झिल्ली एक मुख्य पंप वाल्व के ऊपर स्थित होता है, जो इनलेट और आउटलेट माइक्रोवाल्व के बीच केंद्रित होता है। जब झिल्ली को किसी प्रेरक शक्ति के माध्यम से ऊपर की ओर विक्षेपित किया जाता है, तो द्रव को इनलेट वाल्व में मुख्य पंप वाल्व में खींच लिया जाता है। फिर झिल्ली को उतारा जाता है, आउटलेट वाल्व के माध्यम से द्रव को बाहर निकाल दिया जाता है। तरल पदार्थ को लगातार पंप करने के लिए इस प्रक्रिया को दोहराया जाता है।<ref name=":1" />
एक झिल्ली माइक्रोपम्प एक द्रव को चलाने के लिए एक झिल्ली के बार-बार सक्रिय होने का उपयोग करता है। झिल्ली एक मुख्य पंप कपाट के ऊपर स्थित होता है, जो प्रवेशिका और विसर्जन केन्द्र माइक्रोवाल्व के बीच केंद्रित होता है। जब झिल्ली को किसी प्रेरक शक्ति के माध्यम से ऊपर की ओर विक्षेपित किया जाता है, तो द्रव को प्रवेशिका वाल्व में मुख्य पंप वाल्व में खींच लिया जाता है। फिर झिल्ली को उतारा जाता है, विसर्जन केन्द्र वाल्व के माध्यम से द्रव को बाहर निकाल दिया जाता है। द्रव पदार्थ को लगातार पंप करने के लिए इस प्रक्रिया को दोहराया जाता है।<ref name=":1" />






===== पीजोइलेक्ट्रिक माइक्रोपंप =====
===== दाब वैद्युत् माइक्रोपंप =====
पीजोइलेक्ट्रिक माइक्रोपम्प सबसे आम प्रकार के विस्थापन पारस्परिक डायाफ्राम पंपों में से एक है। पीजोइलेक्ट्रिक चालित माइक्रोपंप लागू वोल्टेज के जवाब में विकृत करने के लिए पीजो सिरेमिक की इलेक्ट्रोमैकेनिकल संपत्ति पर भरोसा करते हैं। झिल्ली से जुड़ी पीजोइलेक्ट्रिक डिस्क बाहरी अक्षीय विद्युत क्षेत्र द्वारा संचालित डायाफ्राम विक्षेपण का कारण बनती है और इस प्रकार माइक्रोपम्प के कक्ष का विस्तार और संकुचन करती है।<ref name=":2">{{cite journal|author=Laser and Santiago|s2cid=35703576|year=2004|title=माइक्रोपंप की समीक्षा|journal=J. Micromech. Microeng.|volume=14|issue=6|pages=R35–R64|bibcode=2004JMiMi..14R..35L|doi=10.1088/0960-1317/14/6/R01}}</ref> इस यांत्रिक तनाव के परिणामस्वरूप कक्ष में दबाव भिन्नता होती है, जिससे द्रव का प्रवाह और बहिर्वाह होता है। प्रवाह दर को सामग्री की ध्रुवीकरण सीमा और पीजो पर लागू वोल्टेज द्वारा नियंत्रित किया जाता है।<ref name=":5">{{Cite journal|last1=Mohith|first1=S.|last2=Karanth|first2=P. Navin|last3=Kulkarni|first3=S. M.|date=2019-06-01|title=मैकेनिकल माइक्रोपंप और उनके अनुप्रयोगों में हाल के रुझान: एक समीक्षा|journal=Mechatronics|volume=60|pages=34–55|doi=10.1016/j.mechatronics.2019.04.009|issn=0957-4158}}</ref> अन्य एक्चुएशन सिद्धांतों की तुलना में पीजोइलेक्ट्रिक एक्चुएशन उच्च स्ट्रोक वॉल्यूम, उच्च एक्ट्यूएशन बल और तेज यांत्रिक प्रतिक्रिया को सक्षम बनाता है, चूकी तुलनात्मक रूप से उच्च एक्ट्यूएशन वोल्टेज और पीजो सिरेमिक की जटिल माउंटिंग प्रक्रिया की आवश्यकता होती है।<ref name=":3" />
दाब वैद्युत् माइक्रोपम्प सबसे साधारण  प्रकार के विस्थापन पारस्परिक झिल्ली पंपों में से एक है। दाब वैद्युत् चालित माइक्रोपंप लागू वोल्टेज के जवाब में विकृत करने के लिए दाब मृत्तिका कृति की विद्युत् यांत्रिक आलेखित्र पर भरोसा करते हैं। झिल्ली से जुड़ी दाब वैद्युत् चक्र बाहरी अक्षीय विद्युत क्षेत्र द्वारा संचालित झिल्ली विक्षेपण का कारण बनती है और इस प्रकार माइक्रोपम्प के कक्ष का विस्तार और संकुचन करती है।<ref name=":2">{{cite journal|author=Laser and Santiago|s2cid=35703576|year=2004|title=माइक्रोपंप की समीक्षा|journal=J. Micromech. Microeng.|volume=14|issue=6|pages=R35–R64|bibcode=2004JMiMi..14R..35L|doi=10.1088/0960-1317/14/6/R01}}</ref> इस यांत्रिक तनाव के परिणामस्वरूप कक्ष में दबाव में भिन्नता होती है, जिससे द्रव का प्रवाह और बहिर्वाह होता है। प्रवाह दर को सामग्री की ध्रुवीकरण सीमा और दाब पर लागू वोल्टेज द्वारा नियंत्रित किया जाता है।<ref name=":5">{{Cite journal|last1=Mohith|first1=S.|last2=Karanth|first2=P. Navin|last3=Kulkarni|first3=S. M.|date=2019-06-01|title=मैकेनिकल माइक्रोपंप और उनके अनुप्रयोगों में हाल के रुझान: एक समीक्षा|journal=Mechatronics|volume=60|pages=34–55|doi=10.1016/j.mechatronics.2019.04.009|issn=0957-4158}}</ref> अन्य प्रवर्तक सिद्धांतों की तुलना में दाब वैद्युत् प्रवर्तक उच्च आघात ध्वनि, उच्च प्रवर्तक बल और तेज यांत्रिक प्रतिक्रिया को सक्षम बनाता है, चूकी तुलनात्मक रूप से उच्च प्रवर्तक वोल्टेज और दाब मृत्तिका कृति  की जटिल आलंबन प्रक्रिया की आवश्यकता होती है।<ref name=":3" />


3.5x3.5x0.6 मिमी . के आयामों के साथ सबसे छोटा पीजोइलेक्ट्रिक माइक्रोपम्प<sup>3</sup> को Fraunhofer EMFT . द्वारा विकसित किया गया था<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/mediacenter/press-briefings/micropatchpump_PI.html|title=लघुकृत सूक्ष्म पैच पंप - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2019-12-03}}</ref> माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली पर ध्यान केंद्रित करने वाला विश्व प्रसिद्ध अनुसंधान संगठन। माइक्रोपंप में तीन सिलिकॉन परतें होती हैं, जिनमें से एक पंप डायाफ्राम के रूप में ऊपर से पंप कक्ष को सीमित करता है, जबकि दो अन्य मध्य वाल्व चिप और नीचे वाल्व चिप का प्रतिनिधित्व करते हैं। इनलेट और आउटलेट पर निष्क्रिय फ्लैप वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप डायाफ्राम पीजो में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे पंप कक्ष में तरल पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि सकारात्मक वोल्टेज इसके विपरीत डायफ्राम को नीचे ले जाता है, जिसके परिणामस्वरूप आउटलेट वाल्व अधिक दबाव में खुल जाता है और द्रव को कक्ष से बाहर निकाल देता है।
3.5x3.5x0.6 मिमी . के आयामों के साथ सबसे छोटा दाब वैद्युत् माइक्रोपम्प<sup>3</sup> को फ्रौनहोफर EMFT द्वारा विकसित किया गया था<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/mediacenter/press-briefings/micropatchpump_PI.html|title=लघुकृत सूक्ष्म पैच पंप - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2019-12-03}}</ref> MEMS और माइक्रोइलेक्ट्रोयांत्रिक प्रौद्योगिकियां प्रणाली पर ध्यान केंद्रित करने वाला विश्व प्रसिद्ध अनुसंधान संगठन है। माइक्रोपंप में तीन सिलिकॉन परतें होती हैं, जिनमें से एक पंप झिल्ली के रूप में ऊपर से पंप कक्ष को सीमित करता है, जबकि दो अन्य मध्य वाल्व चिप और नीचे वाल्व चिप का प्रतिनिधित्व करते हैं। प्रवेश और निर्गम पर निष्क्रिय झिल्ली वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप झिल्ली दाब में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे पंप कक्ष में द्रव पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि धनात्मक वोल्टेज इसके विपरीत झिल्ली को नीचे ले जाता है, जिसके परिणामस्वरूप निर्गम वाल्व अधिक दबाव में खुल जाता है और द्रव को कक्ष से बाहर निकाल देता है।


[[File:Back Pressure Capability of the Silicon Piezoelectric Micropump.png|thumb|right|upright=2|3.5x3.5mm . का बैक प्रेशर परफॉर्मेंस<sup>2</sup> सिलिकॉन पीजोइलेक्ट्रिक चालित माइक्रोपंप]]
[[File:Back Pressure Capability of the Silicon Piezoelectric Micropump.png|thumb|right|upright=2|3.5x3.5mm . का बैक प्रेशर परफॉर्मेंस<sup>2</sup> सिलिकॉन दाब वैद्युत् चालित माइक्रोपंप]]


[[File:Fraunhofer EMFT silicon piezoelectric micropump. Pumping principle.gif|thumb|right|इनलेट और आउटलेट पर निष्क्रिय फ्लैप वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप डायाफ्राम पीजो में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे आपूर्ति मोड में पंप कक्ष में तरल पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि सकारात्मक वोल्टेज डायफ्राम को नीचे की ओर ले जाता है, जिसके परिणामस्वरूप पंप मोड में अधिक दबाव के कारण आउटलेट वाल्व खुल जाता है।]]
[[File:Fraunhofer EMFT silicon piezoelectric micropump. Pumping principle.gif|thumb|right|प्रवेश और निर्गम पर निष्क्रिय लोलक वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप झिल्ली दाब में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे आपूर्ति मोड में पंप कक्ष में द्रव पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि सकारात्मक वोल्टेज डायफ्राम को नीचे की ओर ले जाता है, जिसके परिणामस्वरूप पंप मोड में अधिक दबाव के कारण निर्गम वाल्व खुल जाता है।]]


<!-- Deleted image removed: [[File:Fraunhofer EMFT piezoelectric micropump. Pumping principle.gif|thumb|right|Openings of the passive flap valves at the inlet and outlet are oriented according to the flow direction. The pump diaphragm expands with application of a negative voltage to the piezo thus creating negative pressure to suck the fluid into the pump chamber in supply mode. While positive voltage drives the diaphragm down, which results in opening outlet valve due to overpressure in pump mode]] -->
<!-- Deleted image removed: [[File:Fraunhofer EMFT piezoelectric micropump. Pumping principle.gif|thumb|right|Openings of the passive flap valves at the inlet and outlet are oriented according to the flow direction. The pump diaphragm expands with application of a negative voltage to the piezo thus creating negative pressure to suck the fluid into the pump chamber in supply mode. While positive voltage drives the diaphragm down, which results in opening outlet valve due to overpressure in pump mode]] -->
वर्तमान में मैकेनिकल माइक्रोपम्प तकनीक फैब्रिकेशन के लिए सिलिकॉन और ग्लास आधारित [[ माइक्रोमशीनरी ]] प्रक्रियाओं का व्यापक रूप से उपयोग करती है। सामान्य माइक्रोफैब्रिकेशन प्रक्रियाओं में, निम्नलिखित तकनीकों का नाम दिया जा सकता है: फोटोलिथोग्राफी, अनिसोट्रोपिक नक़्क़ाशी (माइक्रोफैब्रिकेशन), सतह माइक्रोमैचिनिंग और सिलिकॉन की थोक माइक्रोमैचिनिंग।<ref name=":5" />सिलिकॉन माइक्रोमशीनिंग के कई फायदे हैं जो उच्च प्रदर्शन अनुप्रयोगों में व्यापक रूप से प्रौद्योगिकी की सुविधा प्रदान करते हैं, उदाहरण के लिए, दवा वितरण में।<ref name=":3" />इस प्रकार, सिलिकॉन माइक्रोमैचिनिंग उच्च ज्यामितीय परिशुद्धता और दीर्घकालिक स्थिरता की अनुमति देता है, क्योंकि यांत्रिक रूप से चलने वाले हिस्से, उदा। वाल्व फ्लैप, पहनने और थकान का प्रदर्शन न करें। सिलिकॉन [[ पॉलीमर ]]-आधारित सामग्री जैसे [[ पॉलीडिमिथाइलसिलोक्सेन ]], पीएमएमए, पीएलएलए, आदि के विकल्प के रूप में बेहतर ताकत, उन्नत संरचनात्मक गुणों, स्थिरता और सस्तेपन के कारण उपयोग किया जा सकता है। फ्रौनहोफर ईएमएफटी में सिलिकॉन माइक्रोपंप सिलिकॉन माइक्रोमशीनिंग तकनीक द्वारा निर्मित होते हैं।<ref name=":4">{{Cite book|title=गंध की पुस्तिका|last=Richter|first=Martin|publisher=Springer International Publishing|year=2017|isbn=978-3-319-26930-6|editor-last=Buettner|editor-first=Andrea|pages=1081–1097|chapter=Microdosing of Scent}}</ref> तीन [[ मोनोक्रिस्टलाइन सिलिकॉन ]] वेफर्स (100 ओरिएंटेड) डबल साइडेड लिथोग्राफी द्वारा संरचित और सिलिकॉन वेट नक़्क़ाशी (पोटेशियम हाइड्रॉक्साइड सॉल्यूशन KOH का उपयोग करके) द्वारा बनाए गए हैं। संरचित वेफर परतों के बीच संबंध सिलिकॉन फ्यूजन बॉन्ड द्वारा महसूस किया जाता है। वेफर परतों के बीच एक सीधा सिलिकॉन-सिलिकॉन बंधन करने के लिए इस बंधन तकनीक को बहुत चिकनी सतहों (0.3 एनएम से कम खुरदरापन) और बहुत उच्च तापमान (1100 डिग्री सेल्सियस तक) की आवश्यकता होती है। संबंध परत की अनुपस्थिति ऊर्ध्वाधर पंप डिजाइन मापदंडों की परिभाषा की अनुमति देती है। इसके अतिरिक्त, पंप किए गए माध्यम से संबंध परत प्रभावित हो सकती है।
वर्तमान में यांत्रिक माइक्रोपम्प तकनीक की रचना के लिए सिलिकॉन और काँच आधारित [[ माइक्रोमशीनरी ]] प्रक्रियाओं का व्यापक रूप से उपयोग करती है। सामान्य सूक्ष्मरचना प्रक्रियाओं में, निम्नलिखित तकनीकों का नाम दिया जा सकता है: प्रकाशअश्मलेखन, विषमदैशिक नक़्क़ाशी (माइक्रोफैब्रिकेशन), सतह सूक्ष्म मशीन और सिलिकॉन की थोक सूक्ष्म मशीन।<ref name=":5" />सिलिकॉन सूक्ष्म मशीन के कई फायदे हैं जो उच्च प्रदर्शन अनुप्रयोगों में व्यापक रूप से प्रौद्योगिकी की सुविधा प्रदान करते हैं, उदाहरण के लिए, दवा वितरण में।<ref name=":3" /> इस प्रकार, सिलिकॉन सूक्ष्म मशीन उच्च ज्यामितीय परिशुद्धता और दीर्घकालिक स्थिरता की अनुमति देता है, क्योंकि यांत्रिक रूप से चलने वाले हिस्से, उदा। वाल्व लोलक, पहनने और थकान का प्रदर्शन न करें। सिलिकॉन [[ पॉलीमर ]]-आधारित सामग्री जैसे [[ पॉलीडिमिथाइलसिलोक्सेन ]], PMMA, PLLA, आदि के विकल्प के रूप में बेहतर शक्ति , उन्नत संरचनात्मक गुणों, स्थिरता और सस्ता होने  के कारण उपयोग किया जा सकता है। फ्रौनहोफर EMFT में सिलिकॉन माइक्रोपंप सिलिकॉन सूक्ष्म मशीन तकनीक द्वारा निर्मित होते हैं।<ref name=":4">{{Cite book|title=गंध की पुस्तिका|last=Richter|first=Martin|publisher=Springer International Publishing|year=2017|isbn=978-3-319-26930-6|editor-last=Buettner|editor-first=Andrea|pages=1081–1097|chapter=Microdosing of Scent}}</ref> तीन [[ मोनोक्रिस्टलाइन सिलिकॉन ]]टुकड़ा (100 उन्मुख) दोनों ओर शिला लिपि द्वारा संरचित और सिलिकॉन आर्द्र नक़्क़ाशी (पोटेशियम हाइड्रॉक्साइड सॉल्यूशन KOH का उपयोग करके) द्वारा बनाए गए हैं। संरचित टुकड़ा परतों के बीच संबंध सिलिकॉन संयोजन बन्ध द्वारा महसूस किया जाता है। टुकड़ा परतों के बीच एक सीधा सिलिकॉन-सिलिकॉन बंधन करने के लिए इस बंधन तकनीक को बहुत चिकनी सतहों (0.3 एनएम से कम खुरदरापन) और बहुत उच्च तापमान (1100 डिग्री सेल्सियस तक) की आवश्यकता होती है। संबंध परत की अनुपस्थिति ऊर्ध्वाधर पंप डिजाइन मापदंडों की परिभाषा की अनुमति देती है। इसके अतिरिक्त, पंप किए गए माध्यम से संबंधित परत प्रभावित हो सकती है।


महत्वपूर्ण प्रदर्शन संकेतक में से एक के रूप में माइक्रोपंप का संपीड़न अनुपात स्ट्रोक वॉल्यूम के बीच के अनुपात के रूप में परिभाषित किया गया है, यानी पंप चक्र के दौरान पंप झिल्ली द्वारा विस्थापित द्रव मात्रा, और मृत मात्रा, यानी न्यूनतम तरल मात्रा शेष पंप कक्ष में पम्पिंग मोड में।<ref name=":2" />
महत्वपूर्ण प्रदर्शन संकेतक में से एक के रूप में माइक्रोपंप का संपीड़न अनुपात स्ट्रोक आयतन के बीच के अनुपात के रूप में परिभाषित किया गया है, अर्थात् पंप चक्र के दौरान पंप झिल्ली द्वारा विस्थापित द्रव की मात्रा, और मृत मात्रा, अर्थात् पंप कक्ष में पम्पिंग मोड में शेष द्रव पदार्थ न्यूनतम मात्रा ।<ref name=":2" />


<बड़ा><math display="inline">\varepsilon = \bigtriangleup V/ V_0</math></बड़ा>
<math display="inline">\varepsilon = \bigtriangleup V/ V_0</math>


संपीड़न अनुपात बुलबुला सहिष्णुता और माइक्रोपंप की काउंटर दबाव क्षमता को परिभाषित करता है। चैम्बर के भीतर गैस के बुलबुले माइक्रोपंप के संचालन में बाधा डालते हैं क्योंकि गैस के बुलबुले के भिगोने के गुणों के कारण पंप कक्ष में दबाव शिखर (∆P) कम हो जाता है, जबकि सतह के गुणों के कारण महत्वपूर्ण दबाव (∆P)<sub>crit</sub>) जो निष्क्रिय वाल्व खोलता है वह बढ़ता है।<ref>{{Cite journal|last1=Richter|first1=M.|last2=Linnemann|first2=R.|last3=Woias|first3=P.|date=1998-06-15|title=गैस और तरल माइक्रोपंप का मजबूत डिजाइन|journal=Sensors and Actuators A: Physical|series=Eurosensors XI|volume=68|issue=1|pages=480–486|doi=10.1016/S0924-4247(98)00053-3|issn=0924-4247}}</ref> फ्रौनहोफर ईएमएफटी माइक्रोपंप का संपीड़न अनुपात 1 के मान तक पहुंच जाता है, जिसका अर्थ है कि आउटलेट दबाव की चुनौतीपूर्ण स्थितियों में भी आत्म-भड़काना क्षमता और बुलबुला सहिष्णुता। पीजो माउंटिंग की विशेष पेटेंट तकनीक की बदौलत बड़ा संपीड़न अनुपात हासिल किया जाता है, जब पीजो माउंटिंग के लिए उपयोग किए जाने वाले चिपकने की इलाज प्रक्रिया के दौरान पीजोइलेक्ट्रिक सिरेमिक के ऊपर और नीचे इलेक्ट्रोड पर विद्युत वोल्टेज लगाया जाता है। पूर्व-विक्षेपित एक्चुएटर्स के साथ-साथ उथले गढ़े हुए पंप चैंबर की ऊंचाई के परिणामस्वरूप मृत मात्रा में उल्लेखनीय कमी संपीड़न अनुपात को बढ़ाती है।
संपीड़न अनुपात बुलबुला सहिष्णुता और माइक्रोपंप की पटल दबाव क्षमता को परिभाषित करता है। चैम्बर के भीतर गैस के बुलबुले माइक्रोपंप के संचालन में बाधा डालते हैं क्योंकि गैस के बुलबुले के भिगोने के गुणों के कारण पंप कक्ष में दबाव शिखर (∆P) कम हो जाता है, जबकि सतह के गुणों के कारण महत्वपूर्ण दबाव (∆P)<sub>crit</sub>) जो निष्क्रिय वाल्व खोलता है वह बढ़ता है।<ref>{{Cite journal|last1=Richter|first1=M.|last2=Linnemann|first2=R.|last3=Woias|first3=P.|date=1998-06-15|title=गैस और तरल माइक्रोपंप का मजबूत डिजाइन|journal=Sensors and Actuators A: Physical|series=Eurosensors XI|volume=68|issue=1|pages=480–486|doi=10.1016/S0924-4247(98)00053-3|issn=0924-4247}}</ref> फ्रौनहोफर EMFT माइक्रोपंप का संपीड़न अनुपात 1 के मान तक पहुंच जाता है, जिसका अर्थ है कि निर्गम दबाव की चुनौतीपूर्ण स्थितियों में भी आत्म-उपक्रामण  क्षमता और बुलबुला सहिष्णुता। दाब आलंबन की विशेष पेटेंट तकनीक के परिणाम से  बड़ा संपीड़न अनुपात हासिल किया जाता है, जब दाब आलंबन के लिए उपयोग किए जाने वाले चिपकने की इलाज प्रक्रिया के दौरान दाब वैद्युत् मिट्टी का के ऊपर और नीचे इलेक्ट्रोड पर विद्युत वोल्टेज लगाया जाता है। पूर्व-विक्षेपित प्रवर्तक के साथ-साथ हल्की गढ़े हुए पंप चैंबर की ऊंचाई के परिणामस्वरूप मृत मात्रा में उल्लेखनीय कमी संपीड़न अनुपात को बढ़ाती है।


==== पेरिस्टाल्टिक माइक्रोपम्प्स ====
==== क्रमाकुंचक माइक्रोपम्प्स ====
एक क्रमिक वृत्तों में सिकुड़नेवाला माइक्रोपम्प एक माइक्रोपम्प है जो श्रृंखला में कम से कम तीन माइक्रोवाल्व से बना होता है। इन तीन वाल्वों को क्रमिक रूप से खोला और बंद किया जाता है ताकि तरल पदार्थ को इनलेट से आउटलेट तक एक प्रक्रिया में खींचा जा सके जिसे पेरिस्टलसिस कहा जाता है।<ref>{{Cite journal|last=Smits|first=Jan G.|title=तीन वाल्वों के साथ पीजोइलेक्ट्रिक माइक्रोपम्प क्रमिक रूप से काम कर रहा है|journal=Sensors and Actuators A: Physical|volume=21|issue=1–3|pages=203–206|doi=10.1016/0924-4247(90)85039-7|year=1990}}</ref>
एक क्रमिक वृत्तों में सिकुड़नेवाला माइक्रोपम्प एक माइक्रोपम्प है जो श्रृंखला में कम से कम तीन माइक्रोवाल्व से बना होता है। इन तीन वाल्वों को क्रमिक रूप से खोला और बंद किया जाता है ताकि द्रव पदार्थ को प्रवेश से निर्गम तक एक प्रक्रिया में खींचा जा सके जिसे क्रमांकुचन कहा जाता है।<ref>{{Cite journal|last=Smits|first=Jan G.|title=तीन वाल्वों के साथ पीजोइलेक्ट्रिक माइक्रोपम्प क्रमिक रूप से काम कर रहा है|journal=Sensors and Actuators A: Physical|volume=21|issue=1–3|pages=203–206|doi=10.1016/0924-4247(90)85039-7|year=1990}}</ref>




=== गैर-यांत्रिक माइक्रोपंप ===
=== गैर-यांत्रिक माइक्रोपंप ===


==== वाल्वलेस माइक्रोपंप ====
==== वाल्व रहित माइक्रोपंप ====


स्टेटिक वाल्व को वाल्व के रूप में परिभाषित किया जाता है जिसमें बिना किसी चलती भागों के निश्चित ज्यामिति होती है। ये वाल्व ऊर्जा (सक्रिय) के अतिरिक्त या द्रव जड़त्व (निष्क्रिय) द्वारा वांछित प्रवाह व्यवहार को प्रेरित करके प्रवाह सुधार प्रदान करते हैं। दो सबसे सामान्य प्रकार के स्थिर ज्यामिति निष्क्रिय वाल्व हैं डिफ्यूज़र-नोजल तत्व <ref>{{cite journal|author=Stemme and Stemme|year=1993|title=एक वाल्वलेस डिफ्यूज़र / नोजल-आधारित द्रव पंप|journal=Sensors and Actuators A: Physical|volume=39|issue=2|pages=159–167|doi=10.1016/0924-4247(93)80213-Z}}</ref><ref>{{cite journal|author=van der Wijngaart|year=2001|title=माइक्रोफ्लुइडिक विश्लेषणात्मक प्रणालियों के लिए एक वाल्व-कम विसारक माइक्रोपम्प|journal=Sensors and Actuators B: Chemical|volume=72|issue=3|pages=259–265|doi=10.1016/S0925-4005(00)00644-4}}</ref> और टेस्ला वाल्व। फ्लो रेक्टिफिकेशन डिवाइस के रूप में नोजल-डिफ्यूज़र तत्वों वाले माइक्रोपम्प्स को सामान्यतः वाल्वलेस माइक्रोपम्प्स के रूप में जाना जाता है।
स्थैतिक वाल्व को वाल्व के रूप में परिभाषित किया जाता है जिसमें बिना किसी गतिमान भागों के निश्चित ज्यामिति होती है। ये वाल्व ऊर्जा (सक्रिय) के अतिरिक्त या द्रव जड़त्व (निष्क्रिय) द्वारा वांछित प्रवाह व्यवहार को प्रेरित करके प्रवाह को सुधारते हैं। दो सबसे सामान्य प्रकार के स्थिर ज्यामिति निष्क्रिय वाल्व हैं डिफ्यूज़र-नोजल तत्व <ref>{{cite journal|author=Stemme and Stemme|year=1993|title=एक वाल्वलेस डिफ्यूज़र / नोजल-आधारित द्रव पंप|journal=Sensors and Actuators A: Physical|volume=39|issue=2|pages=159–167|doi=10.1016/0924-4247(93)80213-Z}}</ref><ref>{{cite journal|author=van der Wijngaart|year=2001|title=माइक्रोफ्लुइडिक विश्लेषणात्मक प्रणालियों के लिए एक वाल्व-कम विसारक माइक्रोपम्प|journal=Sensors and Actuators B: Chemical|volume=72|issue=3|pages=259–265|doi=10.1016/S0925-4005(00)00644-4}}</ref> और टेस्ला वाल्व। फ्लो रेक्टिफिकेशन डिवाइस के रूप में नली का अगला भाग -विसारक तत्वों वाले माइक्रोपम्प्स को सामान्यतः वाल्व रहित माइक्रोपम्प्स के रूप में जाना जाता है।


==== केशिका पंप ====
==== केशिका पंप ====


माइक्रोफ्लुइडिक्स में, केशिका पंपिंग एक महत्वपूर्ण भूमिका निभाती है क्योंकि पंपिंग क्रिया को बाहरी सक्रियण शक्ति की आवश्यकता नहीं होती है। ग्लास केशिकाएं और झरझरा मीडिया, जिसमें नाइट्रोसेल्यूलोज पेपर और सिंथेटिक पेपर शामिल हैं,<ref name="Synthetic microfluidic paper">{{cite journal |author1=Jonas Hansson |author2=Hiroki Yasuga |author3=Tommy Haraldsson |author4=Wouter van der Wijngaart | year = 2016 | title = सिंथेटिक माइक्रोफ्लुइडिक पेपर: उच्च सतह क्षेत्र और उच्च सरंध्रता बहुलक माइक्रोप्रिलर सरणियाँ| journal = Lab on a Chip |volume= 16 |issue=2 |pages= 298–304 |doi=10.1039/C5LC01318F|pmid=26646057 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180009 }}</ref> माइक्रोफ्लुइडिक चिप्स में एकीकृत किया जा सकता है। पार्श्व प्रवाह परीक्षण में केशिका पंपिंग का व्यापक रूप से उपयोग किया जाता है। हाल ही में, उपन्यास केशिका पंप, तरल चिपचिपाहट और सतह ऊर्जा से स्वतंत्र एक निरंतर पंपिंग प्रवाह दर के साथ,<ref name="synthetic paper pump">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2016 | title = चिपचिपापन स्वतंत्र कागज माइक्रोफ्लुइडिक असंतुलन| url = https://www.diva-portal.org/smash/get/diva2:1048748/FULLTEXT01.pdf| journal = MicroTAS 2016, Dublin, Ireland}}</ref><ref name="viscosity independent pump">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2016 | title = तरल नमूना चिपचिपाहट से स्वतंत्र केशिका पम्पिंग| journal = Langmuir |volume= 32 |issue= 48 |pages= 12650–12655 |doi=10.1021/acs.langmuir.6b03488|pmid=27798835 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196135 }}</ref><ref name="liquid properties independent pump 1">{{Cite book|author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2017 | title = तरल नमूना चिपचिपाहट और सतह ऊर्जा से स्वतंत्र निरंतर प्रवाह दर के साथ केशिका पंपिंग| journal = IEEE MEMS 2017, Las Vegas, USA|pages=339–341 |doi=10.1109/MEMSYS.2017.7863410|isbn=978-1-5090-5078-9 |s2cid=13219735 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196738 }}</ref><ref name="liquid properties independent pump 2">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2018 | title = तरल सतह ऊर्जा और चिपचिपाहट से स्वतंत्र केशिका पम्पिंग| journal = Microsystems & Nanoengineering |volume=4 |issue=1 |pages=2 |doi=10.1038/s41378-018-0002-9|pmid=31057892 |pmc=6220164 |bibcode=2018MicNa...4....2G }}</ref> विकसित किए गए थे, जिनका पारंपरिक केशिका पंप पर एक महत्वपूर्ण लाभ है (जिनमें से प्रवाह व्यवहार वाशबर्न व्यवहार है, अर्थात् प्रवाह दर स्थिर नहीं है) क्योंकि उनका प्रदर्शन नमूना चिपचिपाहट पर निर्भर नहीं करता है।
केशिका में, केशिका पंपिंग एक महत्वपूर्ण भूमिका निभाती है क्योंकि पंपिंग क्रिया को बाहरी सक्रियण शक्ति की आवश्यकता नहीं होती है। कांच केशिकाएं और छिद्रयुक्त माध्यम, जिसमें नाइट्रोसेल्यूलोज पेपर और सिंथेटिक पेपर सम्मालित हैं,<ref name="Synthetic microfluidic paper">{{cite journal |author1=Jonas Hansson |author2=Hiroki Yasuga |author3=Tommy Haraldsson |author4=Wouter van der Wijngaart | year = 2016 | title = सिंथेटिक माइक्रोफ्लुइडिक पेपर: उच्च सतह क्षेत्र और उच्च सरंध्रता बहुलक माइक्रोप्रिलर सरणियाँ| journal = Lab on a Chip |volume= 16 |issue=2 |pages= 298–304 |doi=10.1039/C5LC01318F|pmid=26646057 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180009 }}</ref> माइक्रोफ्लुइडिक चिप्स में एकीकृत किया जा सकता है। पार्श्व प्रवाह परीक्षण में केशिका पंपिंग का व्यापक रूप से उपयोग किया जाता है। हाल ही में, उपन्यास केशिका पंप, द्रव श्यानता और सतह ऊर्जा से स्वतंत्र एक निरंतर पंपिंग प्रवाह दर के साथ,<ref name="synthetic paper pump">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2016 | title = चिपचिपापन स्वतंत्र कागज माइक्रोफ्लुइडिक असंतुलन| url = https://www.diva-portal.org/smash/get/diva2:1048748/FULLTEXT01.pdf| journal = MicroTAS 2016, Dublin, Ireland}}</ref><ref name="viscosity independent pump">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2016 | title = तरल नमूना चिपचिपाहट से स्वतंत्र केशिका पम्पिंग| journal = Langmuir |volume= 32 |issue= 48 |pages= 12650–12655 |doi=10.1021/acs.langmuir.6b03488|pmid=27798835 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196135 }}</ref><ref name="liquid properties independent pump 1">{{Cite book|author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2017 | title = तरल नमूना चिपचिपाहट और सतह ऊर्जा से स्वतंत्र निरंतर प्रवाह दर के साथ केशिका पंपिंग| journal = IEEE MEMS 2017, Las Vegas, USA|pages=339–341 |doi=10.1109/MEMSYS.2017.7863410|isbn=978-1-5090-5078-9 |s2cid=13219735 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196738 }}</ref><ref name="liquid properties independent pump 2">{{cite journal |author1=Weijin Guo |author2=Jonas Hansson |author3=Wouter van der Wijngaart | year = 2018 | title = तरल सतह ऊर्जा और चिपचिपाहट से स्वतंत्र केशिका पम्पिंग| journal = Microsystems & Nanoengineering |volume=4 |issue=1 |pages=2 |doi=10.1038/s41378-018-0002-9|pmid=31057892 |pmc=6220164 |bibcode=2018MicNa...4....2G }}</ref> विकसित किए गए थे, जिनका पारंपरिक केशिका पंप पर एक महत्वपूर्ण लाभ है (जिनमें से प्रवाह व्यवहार वाशबर्न व्यवहार है, अर्थात् प्रवाह दर स्थिर नहीं है) क्योंकि उनका प्रदर्शन अकृति श्यानता पर निर्भर नहीं करती है।


==== रासायनिक रूप से संचालित पंप ====
==== रासायनिक रूप से संचालित पंप ====


रासायनिक रूप से संचालित गैर-यांत्रिक पंपों को [[ नैनोमोटर्स ]] को सतहों से जोड़कर, रासायनिक प्रतिक्रियाओं के माध्यम से द्रव प्रवाह को चलाकर तैयार किया गया है। पम्पिंग प्रणाली की एक विस्तृत विविधता मौजूद है जिसमें जैविक एंजाइम आधारित पंप,<ref name="pizza1">{{cite journal|author1=Sengupta, S. |author2=Patra, D. |author3=Ortiz-Rivera, I. |author4=Agrawal, A. |author5=Shklyaev, S. |author6=Dey, K. K. |author7=Córdova-Figueroa, U. |author8=Mallouk, T. E. |author9=Sen, A. |s2cid=14639241 |title= स्व-संचालित एंजाइम माइक्रोपम्प्स|journal= Nature Chemistry |year=2014|volume= 6 |issue=5|pages= 415–422|pmid= 24755593|doi= 10.1038/nchem.1895|bibcode=2014NatCh...6..415S }}</ref><ref name="pizza2">{{cite journal|author1=Ortiz-Rivera, I. |author2=Shum, H. |author3=Agrawal, A. |author4=Balazs, A. C. |author5=Sen, A. |title= स्व-संचालित एंजाइम माइक्रोपंप में संवहनी प्रवाह उत्क्रमण|journal= Proceedings of the National Academy of Sciences |year=2016|volume=113 |issue=10 |pages=2585–2590|doi=10.1073/pnas.1517908113|pmid=26903618 |pmc=4791027|bibcode=2016PNAS..113.2585O |doi-access=free }}</ref><ref name="pizza3">{{cite journal|author1=Ortiz-Rivera, I. |author2=Courtney, T. |author3=Sen, A. |title= एंजाइम माइक्रोपम्प-आधारित अवरोधक परख|journal= Advanced Functional Materials |year=2016|volume=26 |issue=13 |pages=2135–2142|doi=10.1002/adfm.201504619|doi-access=free }}</ref><ref name=":0">{{Cite journal|last1=Das|first1=S.|last2=Shklyaev|first2=O. E.|last3=Altemose|first3=A.|last4=Shum|first4=H.|last5=Ortiz-Rivera|first5=I.|last6=Valdez|first6=L.|last7=Mallouk|first7=T. E.|last8=Balazs|first8=A. C.|last9=Sen|first9=A.|date=2017-02-17|title=माइक्रोचैम्बर्स में माइक्रोपार्टिकल्स के दिशात्मक वितरण के लिए उत्प्रेरक पंपों का दोहन|journal=Nature Communications|language=en|volume=8|pages=14384|doi=10.1038/ncomms14384|issn=2041-1723|pmc=5321755|pmid=28211454|bibcode=2017NatCo...814384D}}</ref><ref name="lu">{{cite journal|author1=Valdez, L. |author2=Shum, H. |author3=Ortiz-Rivera, I. |author4=Balazs, A. C. |author5=Sen, A. |s2cid=22257211 |title= स्व-संचालित फॉस्फेट माइक्रोपंप में विलेय और थर्मल उछाल प्रभाव|journal=Soft Matter|year=2017|volume=13 |issue=15 |pages=2800–2807|doi=10.1039/C7SM00022G|pmid=28345091 |bibcode=2017SMat...13.2800V }}</ref><ref>{{Cite journal|last1=Maiti|first1=Subhabrata|last2=Shklyaev|first2=Oleg E.|last3=Balazs|first3=Anna C.|last4=Sen|first4=Ayusman|date=2019-03-12|title=एक बहुएंजाइमेटिक पंप प्रणाली में द्रवों का स्व-संगठन|journal=Langmuir|volume=35|issue=10|pages=3724–3732|doi=10.1021/acs.langmuir.8b03607|pmid=30721619|issn=0743-7463}}</ref> कार्बनिक फोटोकैटलिस्ट पंप,<ref>{{cite journal|author1=Yadav, V. |author2=Zhang, H. |author3=Pavlick, R. |author4=Sen, A. |title= ट्रिगर "चालू/बंद" माइक्रोपंप और कोलाइडल फोटोडायोड|journal= Journal of the American Chemical Society |year=2012|volume= 134 |issue=38|pages= 15688–15691|pmid= 22971044|doi= 10.1021/ja307270d|url=https://figshare.com/articles/Triggered_On_Off_Micropumps_and_Colloidal_Photodiode/2483404 }}</ref> और धातु उत्प्रेरक पंप।<ref name=":0" /><ref>{{cite journal|author1=Solovev, A. A. |author2=Sanchez, S. |author3=Mei, Y. |author4=Schmidt, O. G. |s2cid=21754449 |title= हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप|pmid=21505711|journal= Physical Chemistry Chemical Physics |year=2011|volume=13 |issue=21|pages=10131–10135|doi= 10.1039/c1cp20542k|bibcode=2011PCCP...1310131S }}</ref> ये पंप स्व-डिफ्यूसीओफोरेसिस, वैद्युतकणसंचलन, बुलबुला प्रणोदन और घनत्व ढाल की पीढ़ी सहित कई विभिन्न तंत्रों के माध्यम से प्रवाह उत्पन्न करते हैं।<ref name="pizza2" /><ref name="lu" /><ref>{{cite journal|author1=Yadav, V. |author2=Duan, W. |author3=Butler, P. J. |author4=Sen, A. |title= नैनोस्केल प्रणोदन का एनाटॉमी|pmid=26098511|doi=10.1146/annurev-biophys-060414-034216|journal=Annual Review of Biophysics |year=2015|volume= 44 |issue=1|pages= 77–100}}</ref> इसके अतिरिक्त, इन रासायनिक रूप से संचालित माइक्रोपम्पों को जहरीले एजेंटों का पता लगाने के लिए सेंसर के रूप में इस्तेमाल किया जा सकता है।<ref name="pizza3" /><ref>{{Cite journal|last1=Zhao|first1=Xi|last2=Gentile|first2=Kayla|last3=Mohajerani|first3=Farzad|last4=Sen|first4=Ayusman|date=2018-10-16|title=एंजाइमों के साथ शक्ति गति|journal=Accounts of Chemical Research|volume=51|issue=10|pages=2373–2381|doi=10.1021/acs.accounts.8b00286|pmid=30256612|issn=0001-4842}}</ref>
रासायनिक रूप से संचालित गैर-यांत्रिक पंपों को [[ नैनोमोटर्स ]] को सतहों से जोड़कर, रासायनिक प्रतिक्रियाओं के माध्यम से द्रव प्रवाह को चलाकर तैयार किया गया है। पम्पिंग प्रणाली की एक विस्तृत विविधता उपस्थितहै जिसमें जैविक एंजाइम आधारित पंप,<ref name="pizza1">{{cite journal|author1=Sengupta, S. |author2=Patra, D. |author3=Ortiz-Rivera, I. |author4=Agrawal, A. |author5=Shklyaev, S. |author6=Dey, K. K. |author7=Córdova-Figueroa, U. |author8=Mallouk, T. E. |author9=Sen, A. |s2cid=14639241 |title= स्व-संचालित एंजाइम माइक्रोपम्प्स|journal= Nature Chemistry |year=2014|volume= 6 |issue=5|pages= 415–422|pmid= 24755593|doi= 10.1038/nchem.1895|bibcode=2014NatCh...6..415S }}</ref><ref name="pizza2">{{cite journal|author1=Ortiz-Rivera, I. |author2=Shum, H. |author3=Agrawal, A. |author4=Balazs, A. C. |author5=Sen, A. |title= स्व-संचालित एंजाइम माइक्रोपंप में संवहनी प्रवाह उत्क्रमण|journal= Proceedings of the National Academy of Sciences |year=2016|volume=113 |issue=10 |pages=2585–2590|doi=10.1073/pnas.1517908113|pmid=26903618 |pmc=4791027|bibcode=2016PNAS..113.2585O |doi-access=free }}</ref><ref name="pizza3">{{cite journal|author1=Ortiz-Rivera, I. |author2=Courtney, T. |author3=Sen, A. |title= एंजाइम माइक्रोपम्प-आधारित अवरोधक परख|journal= Advanced Functional Materials |year=2016|volume=26 |issue=13 |pages=2135–2142|doi=10.1002/adfm.201504619|doi-access=free }}</ref><ref name=":0">{{Cite journal|last1=Das|first1=S.|last2=Shklyaev|first2=O. E.|last3=Altemose|first3=A.|last4=Shum|first4=H.|last5=Ortiz-Rivera|first5=I.|last6=Valdez|first6=L.|last7=Mallouk|first7=T. E.|last8=Balazs|first8=A. C.|last9=Sen|first9=A.|date=2017-02-17|title=माइक्रोचैम्बर्स में माइक्रोपार्टिकल्स के दिशात्मक वितरण के लिए उत्प्रेरक पंपों का दोहन|journal=Nature Communications|language=en|volume=8|pages=14384|doi=10.1038/ncomms14384|issn=2041-1723|pmc=5321755|pmid=28211454|bibcode=2017NatCo...814384D}}</ref><ref name="lu">{{cite journal|author1=Valdez, L. |author2=Shum, H. |author3=Ortiz-Rivera, I. |author4=Balazs, A. C. |author5=Sen, A. |s2cid=22257211 |title= स्व-संचालित फॉस्फेट माइक्रोपंप में विलेय और थर्मल उछाल प्रभाव|journal=Soft Matter|year=2017|volume=13 |issue=15 |pages=2800–2807|doi=10.1039/C7SM00022G|pmid=28345091 |bibcode=2017SMat...13.2800V }}</ref><ref>{{Cite journal|last1=Maiti|first1=Subhabrata|last2=Shklyaev|first2=Oleg E.|last3=Balazs|first3=Anna C.|last4=Sen|first4=Ayusman|date=2019-03-12|title=एक बहुएंजाइमेटिक पंप प्रणाली में द्रवों का स्व-संगठन|journal=Langmuir|volume=35|issue=10|pages=3724–3732|doi=10.1021/acs.langmuir.8b03607|pmid=30721619|issn=0743-7463}}</ref> कार्बनिक प्रकाशोत्प्रेरित पंप,<ref>{{cite journal|author1=Yadav, V. |author2=Zhang, H. |author3=Pavlick, R. |author4=Sen, A. |title= ट्रिगर "चालू/बंद" माइक्रोपंप और कोलाइडल फोटोडायोड|journal= Journal of the American Chemical Society |year=2012|volume= 134 |issue=38|pages= 15688–15691|pmid= 22971044|doi= 10.1021/ja307270d|url=https://figshare.com/articles/Triggered_On_Off_Micropumps_and_Colloidal_Photodiode/2483404 }}</ref> और धातु उत्प्रेरक पंप।<ref name=":0" /><ref>{{cite journal|author1=Solovev, A. A. |author2=Sanchez, S. |author3=Mei, Y. |author4=Schmidt, O. G. |s2cid=21754449 |title= हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप|pmid=21505711|journal= Physical Chemistry Chemical Physics |year=2011|volume=13 |issue=21|pages=10131–10135|doi= 10.1039/c1cp20542k|bibcode=2011PCCP...1310131S }}</ref> ये पंप स्व-प्रसार, वैद्युतकणसंचलन, बुलबुला प्रणोदन और घनत्व ढाल की पीढ़ी सहित कई विभिन्न तंत्रों के माध्यम से प्रवाह उत्पन्न करते हैं।<ref name="pizza2" /><ref name="lu" /><ref>{{cite journal|author1=Yadav, V. |author2=Duan, W. |author3=Butler, P. J. |author4=Sen, A. |title= नैनोस्केल प्रणोदन का एनाटॉमी|pmid=26098511|doi=10.1146/annurev-biophys-060414-034216|journal=Annual Review of Biophysics |year=2015|volume= 44 |issue=1|pages= 77–100}}</ref> इसके अतिरिक्त, इन रासायनिक रूप से संचालित माइक्रोपम्पों को विषैले वाहक का पता लगाने के लिए संवेदक के रूप में इस्तेमाल किया जा सकता है।<ref name="pizza3" /><ref>{{Cite journal|last1=Zhao|first1=Xi|last2=Gentile|first2=Kayla|last3=Mohajerani|first3=Farzad|last4=Sen|first4=Ayusman|date=2018-10-16|title=एंजाइमों के साथ शक्ति गति|journal=Accounts of Chemical Research|volume=51|issue=10|pages=2373–2381|doi=10.1021/acs.accounts.8b00286|pmid=30256612|issn=0001-4842}}</ref>




==== प्रकाश से चलने वाले पंप ====
==== प्रकाश से चलने वाले पंप ====


गैर-यांत्रिक पम्पिंग का एक अन्य वर्ग प्रकाश-संचालित पम्पिंग है।<ref>{{Cite journal|last1=Li|first1=Mingtong|last2=Su|first2=Yajun|last3=Zhang|first3=Hui|last4=Dong|first4=Bin|date=2018-04-01|title=प्रकाश-संचालित दिशा-नियंत्रित माइक्रोपम्प|journal=Nano Research|language=en|volume=11|issue=4|pages=1810–1821|doi=10.1007/s12274-017-1799-5|s2cid=139110468|issn=1998-0000}}</ref><ref>{{Cite journal|last1=Yue|first1=Shuai|last2=Lin|first2=Feng|last3=Zhang|first3=Qiuhui|last4=Epie|first4=Njumbe|last5=Dong|first5=Suchuan|last6=Shan|first6=Xiaonan|last7=Liu|first7=Dong|last8=Chu|first8=Wei-Kan|last9=Wang|first9=Zhiming|last10=Bao|first10=Jiming|date=2019-04-02|title=लेजर-संचालित फोटोकॉस्टिक माइक्रोफ्लुइडिक पंपों के लिए लॉन्च पैड के रूप में गोल्ड-प्रत्यारोपित प्लास्मोनिक क्वार्ट्ज प्लेट|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=14|pages=6580–6585|doi=10.1073/pnas.1818911116|issn=0027-8424|pmid=30872482|pmc=6452654|bibcode=2019PNAS..116.6580Y|doi-access=free}}</ref> कुछ नैनोकण एक यूवी स्रोत से प्रकाश को ऊष्मा में बदलने में सक्षम होते हैं जो संवहनी पंपिंग उत्पन्न करता है। टाइटेनियम डाइऑक्साइड नैनोकणों के साथ इस प्रकार के पंप संभव हैं और पम्पिंग की गति को प्रकाश स्रोत की तीव्रता और कणों की एकाग्रता दोनों द्वारा नियंत्रित किया जा सकता है।<ref>{{Cite journal|last1=Tansi|first1=Benjamin M.|last2=Peris|first2=Matthew L.|last3=Shklyaev|first3=Oleg E.|last4=Balazs|first4=Anna C.|last5=Sen|first5=Ayusman|date=2019|title=प्रकाश-संचालित द्रव पम्पिंग के माध्यम से कण द्वीपों का संगठन|journal=Angewandte Chemie International Edition|language=en|volume=58|issue=8|pages=2295–2299|doi=10.1002/anie.201811568|pmid=30548990|issn=1521-3773}}</ref>
गैर-यांत्रिक पम्पिंग का एक अन्य वर्ग प्रकाश-संचालित पम्पिंग है।<ref>{{Cite journal|last1=Li|first1=Mingtong|last2=Su|first2=Yajun|last3=Zhang|first3=Hui|last4=Dong|first4=Bin|date=2018-04-01|title=प्रकाश-संचालित दिशा-नियंत्रित माइक्रोपम्प|journal=Nano Research|language=en|volume=11|issue=4|pages=1810–1821|doi=10.1007/s12274-017-1799-5|s2cid=139110468|issn=1998-0000}}</ref><ref>{{Cite journal|last1=Yue|first1=Shuai|last2=Lin|first2=Feng|last3=Zhang|first3=Qiuhui|last4=Epie|first4=Njumbe|last5=Dong|first5=Suchuan|last6=Shan|first6=Xiaonan|last7=Liu|first7=Dong|last8=Chu|first8=Wei-Kan|last9=Wang|first9=Zhiming|last10=Bao|first10=Jiming|date=2019-04-02|title=लेजर-संचालित फोटोकॉस्टिक माइक्रोफ्लुइडिक पंपों के लिए लॉन्च पैड के रूप में गोल्ड-प्रत्यारोपित प्लास्मोनिक क्वार्ट्ज प्लेट|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=14|pages=6580–6585|doi=10.1073/pnas.1818911116|issn=0027-8424|pmid=30872482|pmc=6452654|bibcode=2019PNAS..116.6580Y|doi-access=free}}</ref> कुछ नैनोकण एक UV स्रोत से प्रकाश को ऊष्मा में बदलने में सक्षम होते हैं जो संवहनी पंपिंग उत्पन्न करता है। टाइटेनियम डाइऑक्साइड नैनोकणों के साथ इस प्रकार के पंप संभव हैं और पम्पिंग की गति को प्रकाश स्रोत की तीव्रता और कणों की एकाग्रता दोनों द्वारा नियंत्रित किया जा सकता है।<ref>{{Cite journal|last1=Tansi|first1=Benjamin M.|last2=Peris|first2=Matthew L.|last3=Shklyaev|first3=Oleg E.|last4=Balazs|first4=Anna C.|last5=Sen|first5=Ayusman|date=2019|title=प्रकाश-संचालित द्रव पम्पिंग के माध्यम से कण द्वीपों का संगठन|journal=Angewandte Chemie International Edition|language=en|volume=58|issue=8|pages=2295–2299|doi=10.1002/anie.201811568|pmid=30548990|issn=1521-3773}}</ref>




== अनुप्रयोग ==
== अनुप्रयोग ==
माइक्रोपंप में संभावित औद्योगिक अनुप्रयोग होते हैं, जैसे विनिर्माण प्रक्रियाओं के दौरान गोंद की थोड़ी मात्रा का वितरण, और जैव चिकित्सा अनुप्रयोग, जिसमें पोर्टेबल या प्रत्यारोपित दवा वितरण उपकरण शामिल हैं। जैव-प्रेरित अनुप्रयोगों में [[ लसीका वाहिकाओं ]] को बदलने के लिए [[ मैग्नेटोरियोलॉजिकल इलास्टोमेर ]] का उपयोग करके एक लचीला विद्युत चुम्बकीय माइक्रोपम्प शामिल है।<ref>{{cite book|title=सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014|author1=Behrooz, M.|author2=Gordaninejad, F.|year=2014|series=सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014|volume=9057|pages=90572Q|chapter=A flexible magnetically-controllable fluid transport system|doi=10.1117/12.2046359|s2cid=17879262|name-list-style=amp|editor1-last=Liao|editor1-first=Wei-Hsin}}</ref> रासायनिक रूप से संचालित माइक्रोपम्प रासायनिक युद्ध एजेंटों और पारा और साइनाइड जैसे पर्यावरणीय खतरों का पता लगाने के मामले में रासायनिक संवेदन में अनुप्रयोगों के लिए क्षमता प्रदर्शित करते हैं।<ref name="pizza3" />
माइक्रोपंप में संभावित औद्योगिक अनुप्रयोग होते हैं, जैसे विनिर्माण प्रक्रियाओं के दौरान गोंद की थोड़ी मात्रा का वितरण, और जैव चिकित्सा अनुप्रयोग, जिसमें वहनीय या प्रत्यारोपित दवा वितरण उपकरण सम्मालितहैं। जैव-प्रेरित अनुप्रयोगों में [[ लसीका वाहिकाओं ]] को बदलने के लिए [[ मैग्नेटोरियोलॉजिकल इलास्टोमेर | मैग्नेटोरियोलॉजिकल  प्रत्यास्थलक]] का उपयोग करके एक लचीला विद्युत चुम्बकीय माइक्रोपम्प सम्मालित है।<ref>{{cite book|title=सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014|author1=Behrooz, M.|author2=Gordaninejad, F.|year=2014|series=सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014|volume=9057|pages=90572Q|chapter=A flexible magnetically-controllable fluid transport system|doi=10.1117/12.2046359|s2cid=17879262|name-list-style=amp|editor1-last=Liao|editor1-first=Wei-Hsin}}</ref> रासायनिक रूप से संचालित माइक्रोपम्प रासायनिक संघर्ष वाहक और पारा और साइनाइड जैसे पर्यावरणीय खतरों का पता लगाने के मामले में रासायनिक संवेदन में अनुप्रयोगों के लिए क्षमता प्रदर्शित करते हैं।<ref name="pizza3" />


वायु प्रदूषण की समकालीन स्थिति को ध्यान में रखते हुए, माइक्रोपम्प के लिए सबसे आशाजनक अनुप्रयोगों में से एक व्यक्तिगत वायु गुणवत्ता की निगरानी के लिए गैस और पार्टिकुलेट मैटर सेंसर को बढ़ाना है। एमईएमएस फैब्रिकेशन तकनीक के लिए धन्यवाद, एमओएसएफईटी पर आधारित गैस सेंसर, [[ नॉनडिस्पर्सिव इन्फ्रारेड सेंसर ]], [[ विद्युत रासायनिक गैस सेंसर ]] सिद्धांतों को पोर्टेबल उपकरणों के साथ-साथ स्मार्टफोन और वियरेबल्स में फिट करने के लिए छोटा किया जा सकता है। फ्रौनहोफर ईएमएफटी पीजोइलेक्ट्रिक माइक्रोपम्प का अनुप्रयोग परिवेशी वायु के तेजी से नमूने के माध्यम से सेंसर के प्रतिक्रिया समय को 2 सेकंड तक कम कर देता है।<ref>{{Cite web|url=https://www.aerztezeitung.de/Medizin/Warnung-vor-zu-viel-Feinstaub-per-Handy-297699.html|title=सेल फोन के माध्यम से बहुत अधिक पार्टिकुलेट मैटर की चेतावनी|website=AZ-Online|language=de|access-date=2019-12-04}}</ref> यह तेजी से संवहन द्वारा समझाया गया है जो तब होता है जब माइक्रोपंप हवा को सेंसर की ओर ले जाता है, जबकि माइक्रोपंप की अनुपस्थिति में धीमी प्रसार सेंसर प्रतिक्रिया के कारण कई मिनट तक देरी होती है। माइक्रोपंप के वर्तमान विकल्प - पंखे - में कई कमियां हैं। पर्याप्त नकारात्मक दबाव प्राप्त करने में असमर्थ पंखा फिल्टर डायाफ्राम पर दबाव ड्रॉप को दूर नहीं कर सकता है। इसके अतिरिक्त, गैस के अणु और कण आसानी से सेंसर की सतह और उसके आवास का फिर से पालन कर सकते हैं, जिसके परिणामस्वरूप समय में सेंसर का बहाव होता है।
वायु प्रदूषण की समकालीन स्थिति को ध्यान में रखते हुए, माइक्रोपम्प के लिए सबसे आशाजनक अनुप्रयोगों में से एक व्यक्तिगत वायु गुणवत्ता की निगरानी के लिए गैस और कणिका द्रव्य संवेदक को बढ़ाना है। MEMS रचना तकनीक के लिए धन्यवाद, MOSFET पर आधारित गैस संवेदक, [[ नॉनडिस्पर्सिव इन्फ्रारेड सेंसर | नॉनडिस्पर्सिव इन्फ्रारेड संवेदक]] , [[ विद्युत रासायनिक गैस सेंसर | विद्युत रासायनिक गैस संवेदक]] सिद्धांतों को पोर्टेबल उपकरणों के साथ-साथ स्मार्टफोन और पहनने योग्य बनाने में फिट करने के लिए छोटा किया जा सकता है। फ्रौनहोफर EMFT दाब वैद्युत् माइक्रोपम्प का अनुप्रयोग परिवेशी वायु के तेजी से अकृति के माध्यम से संवेदक के प्रतिक्रिया समय को 2 सेकंड तक कम कर देता है।<ref>{{Cite web|url=https://www.aerztezeitung.de/Medizin/Warnung-vor-zu-viel-Feinstaub-per-Handy-297699.html|title=सेल फोन के माध्यम से बहुत अधिक पार्टिकुलेट मैटर की चेतावनी|website=AZ-Online|language=de|access-date=2019-12-04}}</ref> यह तेजी से संवहन द्वारा समझाया गया है जो तब होता है जब माइक्रोपंप हवा को संवेदक की ओर ले जाता है, जबकि माइक्रोपंप की अनुपस्थिति में धीमी प्रसार संवेदक प्रतिक्रिया के कारण कई मिनट तक की देरी होती है। माइक्रोपंप के वर्तमान विकल्प - पंखे - में कई कमियां हैं। पर्याप्त नकारात्मक दबाव प्राप्त करने में असमर्थ पंखा फिल्टर झिल्ली पर दबाव पात को दूर नहीं कर सकता है। इसके अतिरिक्त, गैस के अणु और कण आसानी से संवेदक की सतह और उसके आवास का फिर से पालन कर सकते हैं, जिसके परिणामस्वरूप समय में संवेदक का बहाव होता है।


इसके अतिरिक्त इनबिल्ट माइक्रोपम्प सेंसर के पुनर्जनन की सुविधा प्रदान करता है और इस प्रकार सेंसर सतह से गैस अणुओं को बाहर निकालकर संतृप्ति के मुद्दों को हल करता है। श्वास विश्लेषण गैस सेंसर के लिए उपयोग का संबंधित क्षेत्र है जो माइक्रोपम्प द्वारा सशक्त है। माइक्रोपम्प [[ टेलीहेल्थ ]] कार्यक्रमों के भीतर पोर्टेबल उपकरणों के माध्यम से जठरांत्र संबंधी मार्ग और फुफ्फुसीय रोगों, मधुमेह, कैंसर आदि के दूरस्थ निदान और निगरानी को आगे बढ़ा सकता है।
इसके अतिरिक्त अन्तर्निहित माइक्रोपम्प संवेदक के पुनर्जनन की सुविधा प्रदान करता है और इस प्रकार संवेदक सतह से गैस अणुओं को बाहर निकालकर संतृप्ति के मुद्दों को हल करता है। श्वास विश्लेषण गैस संवेदक के लिए उपयोग का संबंधित क्षेत्र है जो माइक्रोपम्प द्वारा सशक्त है। माइक्रोपम्प [[ टेलीहेल्थ |सुदूर]] कार्यक्रमों के भीतर वहनीय उपकरणों के माध्यम से जठरांत्र संबंधी मार्ग और फुफ्फुसीय रोगों, मधुमेह, कैंसर आदि के दूरस्थ निदान और निगरानी को आगे बढ़ा सकता है।


एमईएमएस माइक्रोपंप के लिए आशाजनक अनुप्रयोग मधुमेह के लिए दवा वितरण प्रणाली में निहित है- ट्यूमर-, हार्मोन-, अल्ट्रा-थिन पैच के रूप में दर्द और ओकुलर थेरेपी, इम्प्लांटेबल प्रणाली या [[ डिजिटल गोली ]] के भीतर लक्षित वितरण। पीजोइलेक्ट्रिक एमईएमएस माइक्रोपंप [[ अंतःशिरा चिकित्सा ]], [[ अंतस्त्वचा इंजेक्शन ]], धमनी, ओकुलर ड्रग इंजेक्शन के लिए पारंपरिक पेरिस्टाल्टिक या सिरिंज पंपों की जगह ले सकते हैं। दवा वितरण आवेदन के लिए उच्च प्रवाह दर की आवश्यकता नहीं होती है, चूकी, माइक्रोपंप को छोटी खुराक देने में सटीक माना जाता है और बैक प्रेशर स्वतंत्र प्रवाह प्रदर्शित करता है।<ref name=":5" />बायोकम्पैटिबिलिटी और लघु आकार के कारण, [[ आंख का रोग ]] या [[ फ्थिसिस बुलबि ]] के इलाज के लिए सिलिकॉन पीजोइलेक्ट्रिक माइक्रोपम्प को नेत्रगोलक पर लगाया जा सकता है। चूंकि इन स्थितियों के तहत आंख जलीय हास्य के बहिर्वाह या उत्पादन को सुनिश्चित करने की अपनी क्षमता खो देती है, फ्रौन्होफर ईएमएफटी द्वारा 30 μl / s की प्रवाह दर के साथ विकसित प्रत्यारोपित माइक्रोपम्प रोगी को बिना किसी प्रतिबंध या असुविधा के तरल पदार्थ के उचित प्रवाह की सुविधा प्रदान करता है।<ref>{{Cite web|url=https://www.labo.de/dosier-und-vakuumtechnik/implantierbare-miniaturpumpe-regelt-augeninnendruck.htm|title=लघु पंप अंतःस्रावी दबाव को नियंत्रित करता है|website=www.labo.de|language=de|access-date=2020-01-13}}</ref> माइक्रोपम्प द्वारा हल की जाने वाली एक अन्य स्वास्थ्य समस्या [[ मूत्र असंयम ]] है। टाइटेनियम माइक्रोपंप पर आधारित कृत्रिम स्फिंक्टर तकनीक हंसी या खांसने के दौरान दबाव को स्वचालित रूप से समायोजित करके निरंतरता सुनिश्चित करती है। यूरेथ्रा एक तरल पदार्थ से भरी आस्तीन के माध्यम से खोला और बंद किया जाता है जिसे माइक्रोपम्प द्वारा नियंत्रित किया जाता है।<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/applications/artificial-sphincter-system-microfluid-actuators.html|title=माइक्रोफ्लुइड एक्ट्यूएटर्स के साथ कृत्रिम स्फिंक्टर सिस्टम - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2020-01-13}}</ref>
MEMS माइक्रोपंप के लिए आशाजनक अनुप्रयोग मधुमेह के लिए दवा वितरण प्रणाली में निहित है- ट्यूमर-, हार्मोन-, अल्ट्रा-थिन पैच के रूप में दर्द और नेत्र थेरेपी, प्रत्यारोपण प्रणाली या [[ डिजिटल गोली ]] के भीतर लक्षित वितरण। दाब वैद्युत् एमईएमएस माइक्रोपंप [[ अंतःशिरा चिकित्सा ]], [[ अंतस्त्वचा इंजेक्शन ]], धमनी, ओकुलर ड्रग इंजेक्शन के लिए पारंपरिक पेरिस्टाल्टिक या सिरिंज पंपों की जगह ले सकते हैं। दवा वितरण आवेदन के लिए उच्च प्रवाह दर की आवश्यकता नहीं होती है, चूकी, माइक्रोपंप को छोटी खुराक देने में सही माना जाता है और बैक प्रेशर स्वतंत्र प्रवाह प्रदर्शित करता है।<ref name=":5" /> जैव और लघु आकार के कारण, [[ आंख का रोग ]] या [[ फ्थिसिस बुलबि | मोतियाबिंद तपेदिक]] के इलाज के लिए सिलिकॉन दाब वैद्युत् माइक्रोपम्प को नेत्रगोलक पर लगाया जा सकता है। चूंकि इन स्थितियों के अनुसारआंख जलीय हास्य के बहिर्वाह या उत्पादन को सुनिश्चित करने की अपनी क्षमता खो देती है, फ्रौन्होफर ईएमएफटी द्वारा 30 μl / s की प्रवाह दर के साथ विकसित प्रत्यारोपित माइक्रोपम्प रोगी को बिना किसी प्रतिबंध या असुविधा के द्रव पदार्थ के उचित प्रवाह की सुविधा प्रदान करता है।<ref>{{Cite web|url=https://www.labo.de/dosier-und-vakuumtechnik/implantierbare-miniaturpumpe-regelt-augeninnendruck.htm|title=लघु पंप अंतःस्रावी दबाव को नियंत्रित करता है|website=www.labo.de|language=de|access-date=2020-01-13}}</ref> माइक्रोपम्प द्वारा हल की जाने वाली एक अन्य स्वास्थ्य समस्या [[ मूत्र असंयम ]] है। टाइटेनियम माइक्रोपंप पर आधारित कृत्रिम अवरोधिनी तकनीक हंसी या खांसने के दौरान दबाव को स्वचालित रूप से समायोजित करके निरंतरता सुनिश्चित करती है। यूरेथ्रा एक द्रव पदार्थ से भरी आस्तीन के माध्यम से खोला और बंद किया जाता है जिसे माइक्रोपम्प द्वारा नियंत्रित किया जाता है।<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/applications/artificial-sphincter-system-microfluid-actuators.html|title=माइक्रोफ्लुइड एक्ट्यूएटर्स के साथ कृत्रिम स्फिंक्टर सिस्टम - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2020-01-13}}</ref>
माइक्रोपम्प सर्वव्यापी चित्र परिदृश्यों (फिल्मों) और ध्वनि परिदृश्यों (संगीत) के प्रभाव को बढ़ाने के लिए उपभोक्ता, चिकित्सा, रक्षा, प्रथम प्रतिक्रिया अनुप्रयोगों आदि के लिए सुगंध परिदृश्य की सुविधा प्रदान कर सकता है। कई सुगंधित जलाशयों के साथ माइक्रोडोज़िंग उपकरण जो नाक के पास लगे होते हैं, 1 मिनट में 15 अलग-अलग गंध छाप छोड़ सकते हैं।<ref name=":4" />माइक्रोपम्प का लाभ विभिन्न गंधों को मिश्रित किए बिना गंधों के अनुक्रम को सूंघने की संभावना में निहित है। प्रणाली यह सुनिश्चित करता है कि गंध के अणुओं की डिलीवरी के बाद ही उपयोगकर्ता द्वारा गंध की उचित खुराक का पता लगाया जाए। सुगंध-खुराक के लिए माइक्रोपंप के साथ कई अनुप्रयोग संभव हैं: वांछित वातावरण में पूर्ण विसर्जन की सुविधा के लिए टेस्टर्स ट्रेनिंग (वाइन, भोजन), सीखने के कार्यक्रम, मनोचिकित्सा, [[ घ्राणशक्ति का नाश ]] उपचार, प्रथम प्रतिक्रिया प्रशिक्षण इत्यादि।


विश्लेषणात्मक प्रणालियों के भीतर, माइक्रोपम्प लैब-ऑन-चिप अनुप्रयोगों, उच्च-प्रदर्शन तरल क्रोमैटोग्राफी और [[ गैस वर्णलेखन ]] प्रणाली आदि के लिए हो सकता है। बाद वाले माइक्रोपम्पों के लिए सटीक वितरण और गैसों के प्रवाह को सुनिश्चित करने की आवश्यकता होती है। चूंकि गैसों की संपीड्यता चुनौतीपूर्ण है, इसलिए माइक्रोपम्प में उच्च संपीड़न अनुपात होना चाहिए।<ref name=":5" />
माइक्रोपम्प सर्वव्यापी चित्र परिदृश्यों (फिल्मों) और ध्वनि परिदृश्यों (संगीत) के प्रभाव को बढ़ाने के लिए उपभोक्ता, चिकित्सा, रक्षा, प्रथम प्रतिक्रिया अनुप्रयोगों आदि के लिए सुगंध परिदृश्य की सुविधा प्रदान कर सकता है। कई सुगंधित जलाशयों के साथ माइक्रोडोज़िंग उपकरण जो नाक के पास लगे होते हैं, 1 मिनट में 15 अलग-अलग गंध छाप छोड़ सकते हैं।<ref name=":4" />माइक्रोपम्प का लाभ विभिन्न गंधों को मिश्रित किए बिना गंधों के अनुक्रम को सूंघने की संभावना में निहित है। प्रणाली यह सुनिश्चित करता है कि गंध के अणुओं को छोड़ने के बाद ही उपयोगकर्ता द्वारा गंध की उचित खुराक का पता लगाया जाए। सुगंध-खुराक के लिए माइक्रोपंप के साथ कई अनुप्रयोग संभव हैं: वांछित वातावरण में पूर्ण विसर्जन की सुविधा के लिए स्वादक प्रशिक्षण (वाइन, भोजन), सीखने के कार्यक्रम, मनोचिकित्सा, [[ घ्राणशक्ति का नाश | घ्राणशक्ति का नाश]] उपचार, प्रथम प्रतिक्रिया प्रशिक्षण इत्यादि।
 
विश्लेषणात्मक प्रणालियों के भीतर, माइक्रोपम्प लैब-ऑन-चिप अनुप्रयोगों, उच्च-प्रदर्शन द्रव क्रोमैटोग्राफी और [[ गैस वर्णलेखन | गैस वर्णलेखन]] प्रणाली आदि के लिए हो सकता है। बाद वाले माइक्रोपम्पों के लिए सही  वितरण और गैसों के प्रवाह को सुनिश्चित करने की आवश्यकता होती है। चूंकि गैसों की संपीड्यता चुनौतीपूर्ण है, इसलिए माइक्रोपम्प में उच्च संपीड़न अनुपात होना चाहिए।<ref name=":5" />
 
अन्य अनुप्रयोगों में, निम्नलिखित क्षेत्रों का नाम दिया जा सकता है: स्नेहक की छोटी मात्रा के लिए खुराक प्रणाली, ईंधन खुराक प्रणाली, सूक्ष्म वायवीय, सूक्ष्म हाइड्रोलिक प्रणाली और उत्पादन प्रक्रियाओं में खुराक प्रणाली, [[ लिक्विड हैंडलिंग रोबोट | द्रव प्रबन्ध रोबोट]] (तकिया  पतली नलिका, माइक्रोलीटर प्लेट)।<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/competences/micro-dosing.html|title=सूक्ष्म खुराक - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2020-01-13}}</ref>


अन्य अनुप्रयोगों में, निम्नलिखित क्षेत्रों का नाम दिया जा सकता है: स्नेहक की छोटी मात्रा के लिए खुराक प्रणाली, ईंधन खुराक प्रणाली, सूक्ष्म वायवीय, सूक्ष्म हाइड्रोलिक प्रणाली और उत्पादन प्रक्रियाओं में खुराक प्रणाली, [[ लिक्विड हैंडलिंग रोबोट ]] (कुशन पिपेट, माइक्रोलीटर प्लेट)।<ref>{{Cite web|url=https://www.emft.fraunhofer.de/en/competences/micro-dosing.html|title=सूक्ष्म खुराक - फ्रौनहोफर ईएमएफटी|website=Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT|language=en|access-date=2020-01-13}}</ref>





Revision as of 13:37, 27 November 2022

एक Ti-Cr-Pt ट्यूब (~ 40 माइक्रोन लंबी) हाइड्रोजन पेरोक्साइड (उत्प्रेरक अपघटन) में डूबे रहने पर ऑक्सीजन के बुलबुले छोड़ती है। प्रवाह कैनेटीक्स का अध्ययन करने के लिए polystyrene क्षेत्रों (1 माइक्रोन व्यास) को जोड़ा गया था।[1]
इलेक्ट्रोकेमिकल माइक्रोपम्प 50×100 माइक्रोन पाइप के माध्यम से मानव रक्त के प्रवाह को सक्रिय करता है।[2]

माइक्रोपंप ऐसे उपकरण हैं जो द्रव पदार्थ की छोटी मात्रा को नियंत्रित और क्रमभंग कर सकते हैं।[3][4] चूकी किसी भी प्रकार के छोटेपंप को अधिकांशतः माइक्रोपम्प के रूप में संदर्भित किया जाता है, एक अधिक सही परिभाषा इस शब्द को माइक्रोमीटर रेंज में कार्यात्मक आयामों वाले पंपों तक सीमित करती है। ऐसे पंप सूक्ष्मप्रवाही अनुसंधान में विशेष महत्व रखते हैं, और आधुनिक वर्षों में औद्योगिक उत्पाद एकीकरण के लिए उपलब्ध हो गए हैं। सम्मालित लघु पंपों की तुलना में उनका छोटा समग्र आकार, संभावित लागत और बेहतर खुराक सटीकता इस अभिनव प्रकार के पंप के लिए बढ़ती महत्व को बढ़ावा देती है।

ध्यान दें कि विभिन्न प्रकारों माइक्रोपंप और उनके अनुप्रयोगों का एक अच्छा अवलोकन प्रदान करने के संदर्भ में नीचे दिया गया पाठ बहुत अधूरा है, और इसलिए कृपया इस विषय पर अच्छे समीक्षा लेख देखें।[3][5][6][7]


परिचय और इतिहास

1970 के दशक के मध्य में पहले वास्तविक माइक्रोपम्प्स की सूचना मिली थी,[8] लेकिन 1980 के दशक में इसके प्रभाव ने आकर्षित किया, जब जेन स्मट्स और हेराल्ड वैन लिंटेल ने माइक्रोइलेक्ट्रोयांत्रिक प्रणाली(MEMS) माइक्रोपंप विकसित किए।[9] 1990 के दशक में अधिकांश मौलिक MEMS माइक्रोपंप का काम किया गया था। हाल ही में, गैर-यांत्रिक माइक्रोपम्पों कोअभिकल्पना करने के प्रयास किए गए हैं जो बाहरी शक्ति पर निर्भरता के कारण दूरस्थ स्थानों में कार्यात्मक हैं।

एक आरेख दिखाता है कि किस प्रकार श्रृंखला में तीन माइक्रोवाल्व का उपयोग द्रव को विस्थापित करने के लिए किया जा सकता है। चरण (ए) में, पहले वाल्व में प्रवेश से द्रव खींचा जाता है। चरण (बी) - (ई) चरण (एफ) में द्रव पदार्थ को निर्गम की ओर निष्कासित करने से पहले, द्रव को अंतिम वाल्व में ले जाएं।

प्रकार और तकनीक

माइक्रोफ्लुइडिक विश्व के भीतर, भौतिक नियम अपना स्वरूप बदलते हैं।[10] एक उदाहरण के रूप में, भार या जड़ता जैसे आयतनमितीय बल अधिकांश नगण्य हो जाते हैं, जबकि सतही बल द्रव व्यवहार पर प्रभावित कर सकते हैं,[11] केवल जब द्रव पदार्थों में गैस का समावेश उपस्थितहो। कुछ अपवादों के साथ, माइक्रोपंप माइक्रो-प्रवर्तक सिद्धांतों पर भरोसा करते हैं, जिन्हें यथोचित रूप से केवल एक निश्चित आकार तक बढ़ाया जा सकता है।

माइक्रोपंप को यांत्रिक और गैर-यांत्रिक उपकरणों में वर्गीकृत किया जा सकता है।[12] यांत्रिक प्रणाली में चलित पुर्ज़े होते हैं, जो सामान्यतः प्रवर्तक और माइक्रोवाल्व झिल्ली या पल्ले होते हैं। दाब वैद्युत् का उपयोग करके परिचालन बल उत्पन्न किया जा सकता है,[13] स्थिर वैद्युत भंडारण, थर्मो-वायवीय, वायवीय या चुंबकीय प्रभाव। गैर-यांत्रिक पंप इलेक्ट्रो-हाइड्रोडायनामिक, विद्युत आसमाटिक प्रवाह के साथ कार्य करते हैं | विद्युत आसमाटिक,विद्युत रासायनिक [14] या अल्ट्रासाउंड प्रवाह पीढ़ी गैर यांत्रिक पम्प कार्य करते है , वर्तमान में कुछ सक्रियण तंत्र के नाम के लिए अध्ययन किए गए।

यांत्रिक माइक्रोपंप

झिल्ली माइक्रोपंप

एक झिल्ली माइक्रोपम्प एक द्रव को चलाने के लिए एक झिल्ली के बार-बार सक्रिय होने का उपयोग करता है। झिल्ली एक मुख्य पंप कपाट के ऊपर स्थित होता है, जो प्रवेशिका और विसर्जन केन्द्र माइक्रोवाल्व के बीच केंद्रित होता है। जब झिल्ली को किसी प्रेरक शक्ति के माध्यम से ऊपर की ओर विक्षेपित किया जाता है, तो द्रव को प्रवेशिका वाल्व में मुख्य पंप वाल्व में खींच लिया जाता है। फिर झिल्ली को उतारा जाता है, विसर्जन केन्द्र वाल्व के माध्यम से द्रव को बाहर निकाल दिया जाता है। द्रव पदार्थ को लगातार पंप करने के लिए इस प्रक्रिया को दोहराया जाता है।[6]


दाब वैद्युत् माइक्रोपंप

दाब वैद्युत् माइक्रोपम्प सबसे साधारण प्रकार के विस्थापन पारस्परिक झिल्ली पंपों में से एक है। दाब वैद्युत् चालित माइक्रोपंप लागू वोल्टेज के जवाब में विकृत करने के लिए दाब मृत्तिका कृति की विद्युत् यांत्रिक आलेखित्र पर भरोसा करते हैं। झिल्ली से जुड़ी दाब वैद्युत् चक्र बाहरी अक्षीय विद्युत क्षेत्र द्वारा संचालित झिल्ली विक्षेपण का कारण बनती है और इस प्रकार माइक्रोपम्प के कक्ष का विस्तार और संकुचन करती है।[15] इस यांत्रिक तनाव के परिणामस्वरूप कक्ष में दबाव में भिन्नता होती है, जिससे द्रव का प्रवाह और बहिर्वाह होता है। प्रवाह दर को सामग्री की ध्रुवीकरण सीमा और दाब पर लागू वोल्टेज द्वारा नियंत्रित किया जाता है।[16] अन्य प्रवर्तक सिद्धांतों की तुलना में दाब वैद्युत् प्रवर्तक उच्च आघात ध्वनि, उच्च प्रवर्तक बल और तेज यांत्रिक प्रतिक्रिया को सक्षम बनाता है, चूकी तुलनात्मक रूप से उच्च प्रवर्तक वोल्टेज और दाब मृत्तिका कृति की जटिल आलंबन प्रक्रिया की आवश्यकता होती है।[9]

3.5x3.5x0.6 मिमी . के आयामों के साथ सबसे छोटा दाब वैद्युत् माइक्रोपम्प3 को फ्रौनहोफर EMFT द्वारा विकसित किया गया था[17] MEMS और माइक्रोइलेक्ट्रोयांत्रिक प्रौद्योगिकियां प्रणाली पर ध्यान केंद्रित करने वाला विश्व प्रसिद्ध अनुसंधान संगठन है। माइक्रोपंप में तीन सिलिकॉन परतें होती हैं, जिनमें से एक पंप झिल्ली के रूप में ऊपर से पंप कक्ष को सीमित करता है, जबकि दो अन्य मध्य वाल्व चिप और नीचे वाल्व चिप का प्रतिनिधित्व करते हैं। प्रवेश और निर्गम पर निष्क्रिय झिल्ली वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप झिल्ली दाब में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे पंप कक्ष में द्रव पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि धनात्मक वोल्टेज इसके विपरीत झिल्ली को नीचे ले जाता है, जिसके परिणामस्वरूप निर्गम वाल्व अधिक दबाव में खुल जाता है और द्रव को कक्ष से बाहर निकाल देता है।

3.5x3.5mm . का बैक प्रेशर परफॉर्मेंस2 सिलिकॉन दाब वैद्युत् चालित माइक्रोपंप
प्रवेश और निर्गम पर निष्क्रिय लोलक वाल्व के उद्घाटन प्रवाह की दिशा के अनुसार उन्मुख होते हैं। पंप झिल्ली दाब में एक नकारात्मक वोल्टेज के आवेदन के साथ फैलता है जिससे आपूर्ति मोड में पंप कक्ष में द्रव पदार्थ को चूसने के लिए नकारात्मक दबाव पैदा होता है। जबकि सकारात्मक वोल्टेज डायफ्राम को नीचे की ओर ले जाता है, जिसके परिणामस्वरूप पंप मोड में अधिक दबाव के कारण निर्गम वाल्व खुल जाता है।

वर्तमान में यांत्रिक माइक्रोपम्प तकनीक की रचना के लिए सिलिकॉन और काँच आधारित माइक्रोमशीनरी प्रक्रियाओं का व्यापक रूप से उपयोग करती है। सामान्य सूक्ष्मरचना प्रक्रियाओं में, निम्नलिखित तकनीकों का नाम दिया जा सकता है: प्रकाशअश्मलेखन, विषमदैशिक नक़्क़ाशी (माइक्रोफैब्रिकेशन), सतह सूक्ष्म मशीन और सिलिकॉन की थोक सूक्ष्म मशीन।[16]सिलिकॉन सूक्ष्म मशीन के कई फायदे हैं जो उच्च प्रदर्शन अनुप्रयोगों में व्यापक रूप से प्रौद्योगिकी की सुविधा प्रदान करते हैं, उदाहरण के लिए, दवा वितरण में।[9] इस प्रकार, सिलिकॉन सूक्ष्म मशीन उच्च ज्यामितीय परिशुद्धता और दीर्घकालिक स्थिरता की अनुमति देता है, क्योंकि यांत्रिक रूप से चलने वाले हिस्से, उदा। वाल्व लोलक, पहनने और थकान का प्रदर्शन न करें। सिलिकॉन पॉलीमर -आधारित सामग्री जैसे पॉलीडिमिथाइलसिलोक्सेन , PMMA, PLLA, आदि के विकल्प के रूप में बेहतर शक्ति , उन्नत संरचनात्मक गुणों, स्थिरता और सस्ता होने के कारण उपयोग किया जा सकता है। फ्रौनहोफर EMFT में सिलिकॉन माइक्रोपंप सिलिकॉन सूक्ष्म मशीन तकनीक द्वारा निर्मित होते हैं।[18] तीन मोनोक्रिस्टलाइन सिलिकॉन टुकड़ा (100 उन्मुख) दोनों ओर शिला लिपि द्वारा संरचित और सिलिकॉन आर्द्र नक़्क़ाशी (पोटेशियम हाइड्रॉक्साइड सॉल्यूशन KOH का उपयोग करके) द्वारा बनाए गए हैं। संरचित टुकड़ा परतों के बीच संबंध सिलिकॉन संयोजन बन्ध द्वारा महसूस किया जाता है। टुकड़ा परतों के बीच एक सीधा सिलिकॉन-सिलिकॉन बंधन करने के लिए इस बंधन तकनीक को बहुत चिकनी सतहों (0.3 एनएम से कम खुरदरापन) और बहुत उच्च तापमान (1100 डिग्री सेल्सियस तक) की आवश्यकता होती है। संबंध परत की अनुपस्थिति ऊर्ध्वाधर पंप डिजाइन मापदंडों की परिभाषा की अनुमति देती है। इसके अतिरिक्त, पंप किए गए माध्यम से संबंधित परत प्रभावित हो सकती है।

महत्वपूर्ण प्रदर्शन संकेतक में से एक के रूप में माइक्रोपंप का संपीड़न अनुपात स्ट्रोक आयतन के बीच के अनुपात के रूप में परिभाषित किया गया है, अर्थात् पंप चक्र के दौरान पंप झिल्ली द्वारा विस्थापित द्रव की मात्रा, और मृत मात्रा, अर्थात् पंप कक्ष में पम्पिंग मोड में शेष द्रव पदार्थ न्यूनतम मात्रा ।[15]

संपीड़न अनुपात बुलबुला सहिष्णुता और माइक्रोपंप की पटल दबाव क्षमता को परिभाषित करता है। चैम्बर के भीतर गैस के बुलबुले माइक्रोपंप के संचालन में बाधा डालते हैं क्योंकि गैस के बुलबुले के भिगोने के गुणों के कारण पंप कक्ष में दबाव शिखर (∆P) कम हो जाता है, जबकि सतह के गुणों के कारण महत्वपूर्ण दबाव (∆P)crit) जो निष्क्रिय वाल्व खोलता है वह बढ़ता है।[19] फ्रौनहोफर EMFT माइक्रोपंप का संपीड़न अनुपात 1 के मान तक पहुंच जाता है, जिसका अर्थ है कि निर्गम दबाव की चुनौतीपूर्ण स्थितियों में भी आत्म-उपक्रामण क्षमता और बुलबुला सहिष्णुता। दाब आलंबन की विशेष पेटेंट तकनीक के परिणाम से बड़ा संपीड़न अनुपात हासिल किया जाता है, जब दाब आलंबन के लिए उपयोग किए जाने वाले चिपकने की इलाज प्रक्रिया के दौरान दाब वैद्युत् मिट्टी का के ऊपर और नीचे इलेक्ट्रोड पर विद्युत वोल्टेज लगाया जाता है। पूर्व-विक्षेपित प्रवर्तक के साथ-साथ हल्की गढ़े हुए पंप चैंबर की ऊंचाई के परिणामस्वरूप मृत मात्रा में उल्लेखनीय कमी संपीड़न अनुपात को बढ़ाती है।

क्रमाकुंचक माइक्रोपम्प्स

एक क्रमिक वृत्तों में सिकुड़नेवाला माइक्रोपम्प एक माइक्रोपम्प है जो श्रृंखला में कम से कम तीन माइक्रोवाल्व से बना होता है। इन तीन वाल्वों को क्रमिक रूप से खोला और बंद किया जाता है ताकि द्रव पदार्थ को प्रवेश से निर्गम तक एक प्रक्रिया में खींचा जा सके जिसे क्रमांकुचन कहा जाता है।[20]


गैर-यांत्रिक माइक्रोपंप

वाल्व रहित माइक्रोपंप

स्थैतिक वाल्व को वाल्व के रूप में परिभाषित किया जाता है जिसमें बिना किसी गतिमान भागों के निश्चित ज्यामिति होती है। ये वाल्व ऊर्जा (सक्रिय) के अतिरिक्त या द्रव जड़त्व (निष्क्रिय) द्वारा वांछित प्रवाह व्यवहार को प्रेरित करके प्रवाह को सुधारते हैं। दो सबसे सामान्य प्रकार के स्थिर ज्यामिति निष्क्रिय वाल्व हैं डिफ्यूज़र-नोजल तत्व [21][22] और टेस्ला वाल्व। फ्लो रेक्टिफिकेशन डिवाइस के रूप में नली का अगला भाग -विसारक तत्वों वाले माइक्रोपम्प्स को सामान्यतः वाल्व रहित माइक्रोपम्प्स के रूप में जाना जाता है।

केशिका पंप

केशिका में, केशिका पंपिंग एक महत्वपूर्ण भूमिका निभाती है क्योंकि पंपिंग क्रिया को बाहरी सक्रियण शक्ति की आवश्यकता नहीं होती है। कांच केशिकाएं और छिद्रयुक्त माध्यम, जिसमें नाइट्रोसेल्यूलोज पेपर और सिंथेटिक पेपर सम्मालित हैं,[23] माइक्रोफ्लुइडिक चिप्स में एकीकृत किया जा सकता है। पार्श्व प्रवाह परीक्षण में केशिका पंपिंग का व्यापक रूप से उपयोग किया जाता है। हाल ही में, उपन्यास केशिका पंप, द्रव श्यानता और सतह ऊर्जा से स्वतंत्र एक निरंतर पंपिंग प्रवाह दर के साथ,[24][25][26][27] विकसित किए गए थे, जिनका पारंपरिक केशिका पंप पर एक महत्वपूर्ण लाभ है (जिनमें से प्रवाह व्यवहार वाशबर्न व्यवहार है, अर्थात् प्रवाह दर स्थिर नहीं है) क्योंकि उनका प्रदर्शन अकृति श्यानता पर निर्भर नहीं करती है।

रासायनिक रूप से संचालित पंप

रासायनिक रूप से संचालित गैर-यांत्रिक पंपों को नैनोमोटर्स को सतहों से जोड़कर, रासायनिक प्रतिक्रियाओं के माध्यम से द्रव प्रवाह को चलाकर तैयार किया गया है। पम्पिंग प्रणाली की एक विस्तृत विविधता उपस्थितहै जिसमें जैविक एंजाइम आधारित पंप,[28][29][30][31][32][33] कार्बनिक प्रकाशोत्प्रेरित पंप,[34] और धातु उत्प्रेरक पंप।[31][35] ये पंप स्व-प्रसार, वैद्युतकणसंचलन, बुलबुला प्रणोदन और घनत्व ढाल की पीढ़ी सहित कई विभिन्न तंत्रों के माध्यम से प्रवाह उत्पन्न करते हैं।[29][32][36] इसके अतिरिक्त, इन रासायनिक रूप से संचालित माइक्रोपम्पों को विषैले वाहक का पता लगाने के लिए संवेदक के रूप में इस्तेमाल किया जा सकता है।[30][37]


प्रकाश से चलने वाले पंप

गैर-यांत्रिक पम्पिंग का एक अन्य वर्ग प्रकाश-संचालित पम्पिंग है।[38][39] कुछ नैनोकण एक UV स्रोत से प्रकाश को ऊष्मा में बदलने में सक्षम होते हैं जो संवहनी पंपिंग उत्पन्न करता है। टाइटेनियम डाइऑक्साइड नैनोकणों के साथ इस प्रकार के पंप संभव हैं और पम्पिंग की गति को प्रकाश स्रोत की तीव्रता और कणों की एकाग्रता दोनों द्वारा नियंत्रित किया जा सकता है।[40]


अनुप्रयोग

माइक्रोपंप में संभावित औद्योगिक अनुप्रयोग होते हैं, जैसे विनिर्माण प्रक्रियाओं के दौरान गोंद की थोड़ी मात्रा का वितरण, और जैव चिकित्सा अनुप्रयोग, जिसमें वहनीय या प्रत्यारोपित दवा वितरण उपकरण सम्मालितहैं। जैव-प्रेरित अनुप्रयोगों में लसीका वाहिकाओं को बदलने के लिए मैग्नेटोरियोलॉजिकल प्रत्यास्थलक का उपयोग करके एक लचीला विद्युत चुम्बकीय माइक्रोपम्प सम्मालित है।[41] रासायनिक रूप से संचालित माइक्रोपम्प रासायनिक संघर्ष वाहक और पारा और साइनाइड जैसे पर्यावरणीय खतरों का पता लगाने के मामले में रासायनिक संवेदन में अनुप्रयोगों के लिए क्षमता प्रदर्शित करते हैं।[30]

वायु प्रदूषण की समकालीन स्थिति को ध्यान में रखते हुए, माइक्रोपम्प के लिए सबसे आशाजनक अनुप्रयोगों में से एक व्यक्तिगत वायु गुणवत्ता की निगरानी के लिए गैस और कणिका द्रव्य संवेदक को बढ़ाना है। MEMS रचना तकनीक के लिए धन्यवाद, MOSFET पर आधारित गैस संवेदक, नॉनडिस्पर्सिव इन्फ्रारेड संवेदक , विद्युत रासायनिक गैस संवेदक सिद्धांतों को पोर्टेबल उपकरणों के साथ-साथ स्मार्टफोन और पहनने योग्य बनाने में फिट करने के लिए छोटा किया जा सकता है। फ्रौनहोफर EMFT दाब वैद्युत् माइक्रोपम्प का अनुप्रयोग परिवेशी वायु के तेजी से अकृति के माध्यम से संवेदक के प्रतिक्रिया समय को 2 सेकंड तक कम कर देता है।[42] यह तेजी से संवहन द्वारा समझाया गया है जो तब होता है जब माइक्रोपंप हवा को संवेदक की ओर ले जाता है, जबकि माइक्रोपंप की अनुपस्थिति में धीमी प्रसार संवेदक प्रतिक्रिया के कारण कई मिनट तक की देरी होती है। माइक्रोपंप के वर्तमान विकल्प - पंखे - में कई कमियां हैं। पर्याप्त नकारात्मक दबाव प्राप्त करने में असमर्थ पंखा फिल्टर झिल्ली पर दबाव पात को दूर नहीं कर सकता है। इसके अतिरिक्त, गैस के अणु और कण आसानी से संवेदक की सतह और उसके आवास का फिर से पालन कर सकते हैं, जिसके परिणामस्वरूप समय में संवेदक का बहाव होता है।

इसके अतिरिक्त अन्तर्निहित माइक्रोपम्प संवेदक के पुनर्जनन की सुविधा प्रदान करता है और इस प्रकार संवेदक सतह से गैस अणुओं को बाहर निकालकर संतृप्ति के मुद्दों को हल करता है। श्वास विश्लेषण गैस संवेदक के लिए उपयोग का संबंधित क्षेत्र है जो माइक्रोपम्प द्वारा सशक्त है। माइक्रोपम्प सुदूर कार्यक्रमों के भीतर वहनीय उपकरणों के माध्यम से जठरांत्र संबंधी मार्ग और फुफ्फुसीय रोगों, मधुमेह, कैंसर आदि के दूरस्थ निदान और निगरानी को आगे बढ़ा सकता है।

MEMS माइक्रोपंप के लिए आशाजनक अनुप्रयोग मधुमेह के लिए दवा वितरण प्रणाली में निहित है- ट्यूमर-, हार्मोन-, अल्ट्रा-थिन पैच के रूप में दर्द और नेत्र थेरेपी, प्रत्यारोपण प्रणाली या डिजिटल गोली के भीतर लक्षित वितरण। दाब वैद्युत् एमईएमएस माइक्रोपंप अंतःशिरा चिकित्सा , अंतस्त्वचा इंजेक्शन , धमनी, ओकुलर ड्रग इंजेक्शन के लिए पारंपरिक पेरिस्टाल्टिक या सिरिंज पंपों की जगह ले सकते हैं। दवा वितरण आवेदन के लिए उच्च प्रवाह दर की आवश्यकता नहीं होती है, चूकी, माइक्रोपंप को छोटी खुराक देने में सही माना जाता है और बैक प्रेशर स्वतंत्र प्रवाह प्रदर्शित करता है।[16] जैव और लघु आकार के कारण, आंख का रोग या मोतियाबिंद तपेदिक के इलाज के लिए सिलिकॉन दाब वैद्युत् माइक्रोपम्प को नेत्रगोलक पर लगाया जा सकता है। चूंकि इन स्थितियों के अनुसारआंख जलीय हास्य के बहिर्वाह या उत्पादन को सुनिश्चित करने की अपनी क्षमता खो देती है, फ्रौन्होफर ईएमएफटी द्वारा 30 μl / s की प्रवाह दर के साथ विकसित प्रत्यारोपित माइक्रोपम्प रोगी को बिना किसी प्रतिबंध या असुविधा के द्रव पदार्थ के उचित प्रवाह की सुविधा प्रदान करता है।[43] माइक्रोपम्प द्वारा हल की जाने वाली एक अन्य स्वास्थ्य समस्या मूत्र असंयम है। टाइटेनियम माइक्रोपंप पर आधारित कृत्रिम अवरोधिनी तकनीक हंसी या खांसने के दौरान दबाव को स्वचालित रूप से समायोजित करके निरंतरता सुनिश्चित करती है। यूरेथ्रा एक द्रव पदार्थ से भरी आस्तीन के माध्यम से खोला और बंद किया जाता है जिसे माइक्रोपम्प द्वारा नियंत्रित किया जाता है।[44]

माइक्रोपम्प सर्वव्यापी चित्र परिदृश्यों (फिल्मों) और ध्वनि परिदृश्यों (संगीत) के प्रभाव को बढ़ाने के लिए उपभोक्ता, चिकित्सा, रक्षा, प्रथम प्रतिक्रिया अनुप्रयोगों आदि के लिए सुगंध परिदृश्य की सुविधा प्रदान कर सकता है। कई सुगंधित जलाशयों के साथ माइक्रोडोज़िंग उपकरण जो नाक के पास लगे होते हैं, 1 मिनट में 15 अलग-अलग गंध छाप छोड़ सकते हैं।[18]माइक्रोपम्प का लाभ विभिन्न गंधों को मिश्रित किए बिना गंधों के अनुक्रम को सूंघने की संभावना में निहित है। प्रणाली यह सुनिश्चित करता है कि गंध के अणुओं को छोड़ने के बाद ही उपयोगकर्ता द्वारा गंध की उचित खुराक का पता लगाया जाए। सुगंध-खुराक के लिए माइक्रोपंप के साथ कई अनुप्रयोग संभव हैं: वांछित वातावरण में पूर्ण विसर्जन की सुविधा के लिए स्वादक प्रशिक्षण (वाइन, भोजन), सीखने के कार्यक्रम, मनोचिकित्सा, घ्राणशक्ति का नाश उपचार, प्रथम प्रतिक्रिया प्रशिक्षण इत्यादि।

विश्लेषणात्मक प्रणालियों के भीतर, माइक्रोपम्प लैब-ऑन-चिप अनुप्रयोगों, उच्च-प्रदर्शन द्रव क्रोमैटोग्राफी और गैस वर्णलेखन प्रणाली आदि के लिए हो सकता है। बाद वाले माइक्रोपम्पों के लिए सही वितरण और गैसों के प्रवाह को सुनिश्चित करने की आवश्यकता होती है। चूंकि गैसों की संपीड्यता चुनौतीपूर्ण है, इसलिए माइक्रोपम्प में उच्च संपीड़न अनुपात होना चाहिए।[16]

अन्य अनुप्रयोगों में, निम्नलिखित क्षेत्रों का नाम दिया जा सकता है: स्नेहक की छोटी मात्रा के लिए खुराक प्रणाली, ईंधन खुराक प्रणाली, सूक्ष्म वायवीय, सूक्ष्म हाइड्रोलिक प्रणाली और उत्पादन प्रक्रियाओं में खुराक प्रणाली, द्रव प्रबन्ध रोबोट (तकिया पतली नलिका, माइक्रोलीटर प्लेट)।[45]


यह भी देखें


संदर्भ

  1. Solovev, Alexander A.; Sanchez, Samuel; Mei, Yongfeng; Schmidt, Oliver G. (2011). "हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप". Physical Chemistry Chemical Physics. 13 (21): 10131–5. Bibcode:2011PCCP...1310131S. doi:10.1039/C1CP20542K. PMID 21505711. S2CID 21754449.
  2. Chiu, S. H.; Liu, C. H. (2009). "ऑन-चिप रक्त परिवहन के लिए एक एयर-बबल-एक्ट्यूएटेड माइक्रोपम्प". Lab on a Chip. 9 (11): 1524–33. doi:10.1039/B900139E. PMID 19458858. S2CID 38015356.
  3. 3.0 3.1 "दवा वितरण आवेदन के लिए सूक्ष्म खुराक - एक समीक्षा". Sensors and Actuators A: Physical (in English). 330: 112820. 2021-10-15. doi:10.1016/j.sna.2021.112820. ISSN 0924-4247.
  4. Laser, D. J.; Santiago, J. G. (2004). "माइक्रोपंप की समीक्षा". Journal of Micromechanics and Microengineering (in English). 14 (6): R35. Bibcode:2004JMiMi..14R..35L. doi:10.1088/0960-1317/14/6/R01. ISSN 0960-1317. S2CID 35703576.
  5. Nguyen; et al. (2002). "एमईएमएस-माइक्रोपंप: एक समीक्षा". Journal of Fluids Engineering. 124 (2): 384–392. doi:10.1115/1.1459075.
  6. 6.0 6.1 Iverson; et al. (2008). "सूक्ष्म पम्पिंग प्रौद्योगिकियों में हालिया प्रगति: एक समीक्षा और मूल्यांकन". Microfluid Nanofluid. 5 (2): 145–174. doi:10.1007/s10404-008-0266-8. S2CID 44242994.
  7. Amirouche; et al. (2009). "वर्तमान माइक्रोपंप प्रौद्योगिकियां और उनके जैव चिकित्सा अनुप्रयोग". Microsystem Technologies. 15 (5): 647–666. doi:10.1007/s00542-009-0804-7. S2CID 108575489.
  8. Thomas, L. J. and Bessman, S. P. (1975) "Micropump powered by piezoelectric disk benders", U.S. Patent 3,963,380
  9. 9.0 9.1 9.2 Woias, P (2005). "माइक्रोपंप - पिछली प्रगति और भविष्य की संभावनाएं". Sensors and Actuators B. 105 (1): 28–38. doi:10.1016/j.snb.2004.02.033.
  10. Order from Chaos Archived 2008-07-23 at the Wayback Machine, The CAFE Foundation
  11. Thomas, D. J.; Tehrani, Z.; Redfearn, B. (2016-01-01). "पहनने योग्य बायोमेडिकल अनुप्रयोगों के लिए 3-डी मुद्रित समग्र माइक्रोफ्लुइडिक पंप". Additive Manufacturing (in English). 9: 30–38. doi:10.1016/j.addma.2015.12.004. ISSN 2214-8604.
  12. Wang, Yao-Nan; Fu, Lung-Ming (5 August 2018). "माइक्रोपंप और बायोमेडिकल अनुप्रयोग - एक समीक्षा". Microelectronic Engineering. 195: 121–138. doi:10.1016/j.mee.2018.04.008.
  13. Farshchi Yazdi, Seyed Amir Fouad; Corigliano, Alberto; Ardito, Raffaele (2019-04-18). "पीजोइलेक्ट्रिक माइक्रोपम्प का 3-डी डिजाइन और अनुकरण". Micromachines. 10 (4): 259. doi:10.3390/mi10040259. ISSN 2072-666X. PMC 6523882. PMID 31003481.
  14. Neagu, C.R.; Gardeniers, J.G.E.; Elwenspoek, M.; Kelly, J.J. (1996). "एक इलेक्ट्रोकेमिकल माइक्रोएक्ट्यूएटर: सिद्धांत और पहला परिणाम". Journal of Microelectromechanical Systems. 5 (1): 2–9. doi:10.1109/84.485209.
  15. 15.0 15.1 Laser and Santiago (2004). "माइक्रोपंप की समीक्षा". J. Micromech. Microeng. 14 (6): R35–R64. Bibcode:2004JMiMi..14R..35L. doi:10.1088/0960-1317/14/6/R01. S2CID 35703576.
  16. 16.0 16.1 16.2 16.3 Mohith, S.; Karanth, P. Navin; Kulkarni, S. M. (2019-06-01). "मैकेनिकल माइक्रोपंप और उनके अनुप्रयोगों में हाल के रुझान: एक समीक्षा". Mechatronics. 60: 34–55. doi:10.1016/j.mechatronics.2019.04.009. ISSN 0957-4158.
  17. "लघुकृत सूक्ष्म पैच पंप - फ्रौनहोफर ईएमएफटी". Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT (in English). Retrieved 2019-12-03.
  18. 18.0 18.1 Richter, Martin (2017). "Microdosing of Scent". In Buettner, Andrea (ed.). गंध की पुस्तिका. Springer International Publishing. pp. 1081–1097. ISBN 978-3-319-26930-6.
  19. Richter, M.; Linnemann, R.; Woias, P. (1998-06-15). "गैस और तरल माइक्रोपंप का मजबूत डिजाइन". Sensors and Actuators A: Physical. Eurosensors XI. 68 (1): 480–486. doi:10.1016/S0924-4247(98)00053-3. ISSN 0924-4247.
  20. Smits, Jan G. (1990). "तीन वाल्वों के साथ पीजोइलेक्ट्रिक माइक्रोपम्प क्रमिक रूप से काम कर रहा है". Sensors and Actuators A: Physical. 21 (1–3): 203–206. doi:10.1016/0924-4247(90)85039-7.
  21. Stemme and Stemme (1993). "एक वाल्वलेस डिफ्यूज़र / नोजल-आधारित द्रव पंप". Sensors and Actuators A: Physical. 39 (2): 159–167. doi:10.1016/0924-4247(93)80213-Z.
  22. van der Wijngaart (2001). "माइक्रोफ्लुइडिक विश्लेषणात्मक प्रणालियों के लिए एक वाल्व-कम विसारक माइक्रोपम्प". Sensors and Actuators B: Chemical. 72 (3): 259–265. doi:10.1016/S0925-4005(00)00644-4.
  23. Jonas Hansson; Hiroki Yasuga; Tommy Haraldsson; Wouter van der Wijngaart (2016). "सिंथेटिक माइक्रोफ्लुइडिक पेपर: उच्च सतह क्षेत्र और उच्च सरंध्रता बहुलक माइक्रोप्रिलर सरणियाँ". Lab on a Chip. 16 (2): 298–304. doi:10.1039/C5LC01318F. PMID 26646057.
  24. Weijin Guo; Jonas Hansson; Wouter van der Wijngaart (2016). "चिपचिपापन स्वतंत्र कागज माइक्रोफ्लुइडिक असंतुलन" (PDF). MicroTAS 2016, Dublin, Ireland.
  25. Weijin Guo; Jonas Hansson; Wouter van der Wijngaart (2016). "तरल नमूना चिपचिपाहट से स्वतंत्र केशिका पम्पिंग". Langmuir. 32 (48): 12650–12655. doi:10.1021/acs.langmuir.6b03488. PMID 27798835.
  26. Weijin Guo; Jonas Hansson; Wouter van der Wijngaart (2017). तरल नमूना चिपचिपाहट और सतह ऊर्जा से स्वतंत्र निरंतर प्रवाह दर के साथ केशिका पंपिंग. pp. 339–341. doi:10.1109/MEMSYS.2017.7863410. ISBN 978-1-5090-5078-9. S2CID 13219735. {{cite book}}: |journal= ignored (help)
  27. Weijin Guo; Jonas Hansson; Wouter van der Wijngaart (2018). "तरल सतह ऊर्जा और चिपचिपाहट से स्वतंत्र केशिका पम्पिंग". Microsystems & Nanoengineering. 4 (1): 2. Bibcode:2018MicNa...4....2G. doi:10.1038/s41378-018-0002-9. PMC 6220164. PMID 31057892.
  28. Sengupta, S.; Patra, D.; Ortiz-Rivera, I.; Agrawal, A.; Shklyaev, S.; Dey, K. K.; Córdova-Figueroa, U.; Mallouk, T. E.; Sen, A. (2014). "स्व-संचालित एंजाइम माइक्रोपम्प्स". Nature Chemistry. 6 (5): 415–422. Bibcode:2014NatCh...6..415S. doi:10.1038/nchem.1895. PMID 24755593. S2CID 14639241.
  29. 29.0 29.1 Ortiz-Rivera, I.; Shum, H.; Agrawal, A.; Balazs, A. C.; Sen, A. (2016). "स्व-संचालित एंजाइम माइक्रोपंप में संवहनी प्रवाह उत्क्रमण". Proceedings of the National Academy of Sciences. 113 (10): 2585–2590. Bibcode:2016PNAS..113.2585O. doi:10.1073/pnas.1517908113. PMC 4791027. PMID 26903618.
  30. 30.0 30.1 30.2 Ortiz-Rivera, I.; Courtney, T.; Sen, A. (2016). "एंजाइम माइक्रोपम्प-आधारित अवरोधक परख". Advanced Functional Materials. 26 (13): 2135–2142. doi:10.1002/adfm.201504619.
  31. 31.0 31.1 Das, S.; Shklyaev, O. E.; Altemose, A.; Shum, H.; Ortiz-Rivera, I.; Valdez, L.; Mallouk, T. E.; Balazs, A. C.; Sen, A. (2017-02-17). "माइक्रोचैम्बर्स में माइक्रोपार्टिकल्स के दिशात्मक वितरण के लिए उत्प्रेरक पंपों का दोहन". Nature Communications (in English). 8: 14384. Bibcode:2017NatCo...814384D. doi:10.1038/ncomms14384. ISSN 2041-1723. PMC 5321755. PMID 28211454.
  32. 32.0 32.1 Valdez, L.; Shum, H.; Ortiz-Rivera, I.; Balazs, A. C.; Sen, A. (2017). "स्व-संचालित फॉस्फेट माइक्रोपंप में विलेय और थर्मल उछाल प्रभाव". Soft Matter. 13 (15): 2800–2807. Bibcode:2017SMat...13.2800V. doi:10.1039/C7SM00022G. PMID 28345091. S2CID 22257211.
  33. Maiti, Subhabrata; Shklyaev, Oleg E.; Balazs, Anna C.; Sen, Ayusman (2019-03-12). "एक बहुएंजाइमेटिक पंप प्रणाली में द्रवों का स्व-संगठन". Langmuir. 35 (10): 3724–3732. doi:10.1021/acs.langmuir.8b03607. ISSN 0743-7463. PMID 30721619.
  34. Yadav, V.; Zhang, H.; Pavlick, R.; Sen, A. (2012). "ट्रिगर "चालू/बंद" माइक्रोपंप और कोलाइडल फोटोडायोड". Journal of the American Chemical Society. 134 (38): 15688–15691. doi:10.1021/ja307270d. PMID 22971044.
  35. Solovev, A. A.; Sanchez, S.; Mei, Y.; Schmidt, O. G. (2011). "हाइड्रोजन पेरोक्साइड की कम सांद्रता पर काम करने वाले ट्यूनेबल कैटेलिटिक ट्यूबलर माइक्रो-पंप". Physical Chemistry Chemical Physics. 13 (21): 10131–10135. Bibcode:2011PCCP...1310131S. doi:10.1039/c1cp20542k. PMID 21505711. S2CID 21754449.
  36. Yadav, V.; Duan, W.; Butler, P. J.; Sen, A. (2015). "नैनोस्केल प्रणोदन का एनाटॉमी". Annual Review of Biophysics. 44 (1): 77–100. doi:10.1146/annurev-biophys-060414-034216. PMID 26098511.
  37. Zhao, Xi; Gentile, Kayla; Mohajerani, Farzad; Sen, Ayusman (2018-10-16). "एंजाइमों के साथ शक्ति गति". Accounts of Chemical Research. 51 (10): 2373–2381. doi:10.1021/acs.accounts.8b00286. ISSN 0001-4842. PMID 30256612.
  38. Li, Mingtong; Su, Yajun; Zhang, Hui; Dong, Bin (2018-04-01). "प्रकाश-संचालित दिशा-नियंत्रित माइक्रोपम्प". Nano Research (in English). 11 (4): 1810–1821. doi:10.1007/s12274-017-1799-5. ISSN 1998-0000. S2CID 139110468.
  39. Yue, Shuai; Lin, Feng; Zhang, Qiuhui; Epie, Njumbe; Dong, Suchuan; Shan, Xiaonan; Liu, Dong; Chu, Wei-Kan; Wang, Zhiming; Bao, Jiming (2019-04-02). "लेजर-संचालित फोटोकॉस्टिक माइक्रोफ्लुइडिक पंपों के लिए लॉन्च पैड के रूप में गोल्ड-प्रत्यारोपित प्लास्मोनिक क्वार्ट्ज प्लेट". Proceedings of the National Academy of Sciences (in English). 116 (14): 6580–6585. Bibcode:2019PNAS..116.6580Y. doi:10.1073/pnas.1818911116. ISSN 0027-8424. PMC 6452654. PMID 30872482.
  40. Tansi, Benjamin M.; Peris, Matthew L.; Shklyaev, Oleg E.; Balazs, Anna C.; Sen, Ayusman (2019). "प्रकाश-संचालित द्रव पम्पिंग के माध्यम से कण द्वीपों का संगठन". Angewandte Chemie International Edition (in English). 58 (8): 2295–2299. doi:10.1002/anie.201811568. ISSN 1521-3773. PMID 30548990.
  41. Behrooz, M. & Gordaninejad, F. (2014). "A flexible magnetically-controllable fluid transport system". In Liao, Wei-Hsin (ed.). सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014. सक्रिय और निष्क्रिय स्मार्ट संरचनाएं और एकीकृत प्रणाली 2014. Vol. 9057. pp. 90572Q. doi:10.1117/12.2046359. S2CID 17879262.
  42. "सेल फोन के माध्यम से बहुत अधिक पार्टिकुलेट मैटर की चेतावनी". AZ-Online (in Deutsch). Retrieved 2019-12-04.
  43. "लघु पंप अंतःस्रावी दबाव को नियंत्रित करता है". www.labo.de (in Deutsch). Retrieved 2020-01-13.
  44. "माइक्रोफ्लुइड एक्ट्यूएटर्स के साथ कृत्रिम स्फिंक्टर सिस्टम - फ्रौनहोफर ईएमएफटी". Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT (in English). Retrieved 2020-01-13.
  45. "सूक्ष्म खुराक - फ्रौनहोफर ईएमएफटी". Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT (in English). Retrieved 2020-01-13.