संबंध (गणित): Difference between revisions
(tetx) |
No edit summary |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Relationship between two sets, defined by a set of ordered pairs}} | {{Short description|Relationship between two sets, defined by a set of ordered pairs}} | ||
{{about| | {{about|गणित में संबंधों की बुनियादी धारणाएँ|एक और उन्नत उपचार|द्वयाधारी संबंध}} | ||
[[File:Relación binaria 01.svg|thumb|300px|एक समुच्चय पर एक उदाहरण संबंध का चित्रण {{math|1= A = { a, b, c, d } }}। से एक तीर {{mvar|x}} प्रति {{mvar|y}} इंगित करता है कि संबंध के बीच रहता है {{mvar|x}} तथा {{mvar|y}}। संबंध समुच्चय द्वारा दर्शाया गया है | [[File:Relación binaria 01.svg|thumb|300px|एक समुच्चय पर एक उदाहरण संबंध का चित्रण {{math|1= A = { a, b, c, d } }}। से एक तीर {{mvar|x}} प्रति {{mvar|y}} इंगित करता है कि संबंध के बीच रहता है {{mvar|x}} तथा {{mvar|y}}। संबंध समुच्चय द्वारा दर्शाया गया है | ||
Line 6: | Line 6: | ||
{{math|1= { (a,a), (a,b), (a,d), }} {{math|1= (b,a), (b,d), }} {{math|1= (c,b), (d,c), (d,d) } }} आदेशित जोड़े की।]] | {{math|1= { (a,a), (a,b), (a,d), }} {{math|1= (b,a), (b,d), }} {{math|1= (c,b), (d,c), (d,d) } }} आदेशित जोड़े की।]] | ||
गणित में, समुच्चय पर दो दिए गए समुच्चय अवयव के बीच संबंध हो | गणित में, समुच्चय पर दो दिए गए समुच्चय अवयव के बीच संबंध हो सकता है और नहीं भी सकता है। उदाहरण के लिए, "इससे कम है" [[प्राकृतिक संख्या]]ओं के समुच्चय पर संबंध है, यह धारण करता है उदाहरण 1 और 3 के बीच (1<3 के रूप में दर्शाता है), और इसी तरह 3 और 4 के बीच (3<4 के रूप में चिह्नित), लेकिन न तो 3 और 1 के बीच और न ही 4 और 4 के बीच संबंध है। अन्य उदाहरण के रूप में, "इसकी बहन" संबंध है सभी लोगों के समुच्चय पर, यह धारण करता है उदाहरण [[मैरी क्यूरी]] और ब्रोनिस्लावा डुस्का के बीच, और इसी तरह इसके विपरीत। समुच्चय सदस्य "निश्चित डिग्री" के संबंध में नहीं हो सकते हैं, इसलिए उदाहरण "इसमें कुछ समानता है" एक संबंध नहीं हो सकता। | ||
औपचारिक रूप से, समुच्चय X पर संबंध R को X के सदस्यों के [[क्रमित युग्म|क्रमित युग्मों]] (x, y) के समुच्चय के रूप में देखा जा सकता है।<ref name="Codd1970">{{cite journal |last1=Codd |first1=Edgar Frank |date=June 1970 |title=बड़े साझा डेटा बैंकों के लिए डेटा का एक संबंधपरक मॉडल|url=https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf |journal=Communications of the ACM |volume=13 |issue=6 |pages=377–387 |doi=10.1145/362384.362685 |s2cid=207549016 |access-date=2020-04-29}}</ref>संबंध R, x और y के बीच रखता है यदि (x, y) R का सदस्य है। उदाहरण के लिए, प्राकृतिक संख्याओं पर संबंध "से कम है" अनंत समुच्चय है जिसमें प्राकृतिक संख्याओं जिनमें दोनों (1, 3) और (3,4), लेकिन न तो (3,1) और न ही (4,4) के जोड़े सम्मिलित हैं। अंकीय प्राकृत संख्याओं के समुच्चय पर संबंध "का गैर-तुच्छ भाजक है" यहाँ दिखाए जाने के लिए पर्याप्त रूप से छोटा है: R<sub>div</sub> = { (2,4), (2,6), (2,8), (3, 6), (3,9), (4,8)},उदाहरण के लिए 2, 8 का गैर-तुच्छ भाजक है, लेकिन इसके विपरीत नहीं, इसलिए (2,8) ∈ R<sub>div</sub> , लेकिन (8,2) ∈ R<sub>div</sub> । | औपचारिक रूप से, समुच्चय X पर संबंध R को X के सदस्यों के [[क्रमित युग्म|क्रमित युग्मों]] (x, y) के समुच्चय के रूप में देखा जा सकता है।<ref name="Codd1970">{{cite journal |last1=Codd |first1=Edgar Frank |date=June 1970 |title=बड़े साझा डेटा बैंकों के लिए डेटा का एक संबंधपरक मॉडल|url=https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf |journal=Communications of the ACM |volume=13 |issue=6 |pages=377–387 |doi=10.1145/362384.362685 |s2cid=207549016 |access-date=2020-04-29}}</ref>संबंध R, x और y के बीच रखता है यदि (x, y) R का सदस्य है। उदाहरण के लिए, प्राकृतिक संख्याओं पर संबंध "से कम है" अनंत समुच्चय है जिसमें प्राकृतिक संख्याओं जिनमें दोनों (1, 3) और (3, 4), लेकिन न तो (3,1) और न ही (4,4) के जोड़े सम्मिलित हैं। अंकीय प्राकृत संख्याओं के समुच्चय पर संबंध "का गैर-तुच्छ भाजक है" यहाँ दिखाए जाने के लिए पर्याप्त रूप से छोटा है: R<sub>div</sub> = { (2,4), (2,6), (2,8), (3,6), (3,9), (4,8)},उदाहरण के लिए 2, 8 का गैर-तुच्छ भाजक है, लेकिन इसके विपरीत नहीं, इसलिए (2,8) ∈ R<sub>div</sub> , लेकिन (8,2) ∈ R<sub>div</sub> । | ||
यदि R एक ऐसा संबंध है जो x और y के लिए है तो अक्सर xRy लिखा जाता है। गणित में सबसे आम संबंधों के लिए, विशेष प्रतीकों को पेश किया जाता है, जैसे "<" के लिए "इससे कम है", और "|" के लिए "का गैर-तुच्छ भाजक है", और, सबसे लोकप्रिय "=" के लिए "के बराबर है"। उदाहरण के लिए, "1<3", "1, 3 से कम है", और "(1,3) ∈ R<sub>less</sub>" का अर्थ सभी समान है,कुछ लेखक "(1,3) ∈ (<)" भी लिखते हैं। | यदि R एक ऐसा संबंध है जो x और y के लिए है तो अक्सर '''xRy''' लिखा जाता है। गणित में सबसे आम संबंधों के लिए, विशेष प्रतीकों को पेश किया जाता है, जैसे "<" के लिए "इससे कम है", और "|" के लिए "का गैर-तुच्छ भाजक है", और, सबसे लोकप्रिय "=" के लिए "के बराबर है"। उदाहरण के लिए, "1<3", "1, 3 से कम है", और "(1,3) ∈ R<sub>less</sub>" का अर्थ सभी समान है,कुछ लेखक "(1,3) ∈ (<)" भी लिखते हैं। | ||
संबंधों के विभिन्न गुणों की जांच की जाती है। संबंध R स्वतुल्य है यदि xRx सभी x के लिए धारण करता है, और अपरिवर्तनीय है यदि xRx कोई x के लिए धारण नहीं करता है। यह सममित है यदि xRy का अर्थ हमेशा | संबंधों के विभिन्न गुणों की जांच की जाती है। संबंध R स्वतुल्य है यदि '''xRx''' सभी x के लिए धारण करता है, और अपरिवर्तनीय है यदि xRx कोई x के लिए धारण नहीं करता है। यह सममित है यदि '''xRy''' का अर्थ हमेशा सकता हैहोता है, और असममित यदि सकता है का अर्थ है कि '''yRx''' असंभव है। यह संक्रामी है यदि '''xRy''' और '''yRz''' का अर्थ हमेशा '''xRz''' होता है। उदाहरण के लिए, "इससे कम है" अपरिवर्तनीय, असममित और संक्रामी है, लेकिन न तो प्रतिवर्त और न ही सममित, "की बहन है" सममित और संक्रमणीय है, लेकिन न तो प्रतिवर्त (जैसे पियरे क्यूरी खुद की बहन नहीं है) और न ही असममित, जबकि अपरिवर्तनीय होना या न होना परिभाषा का विषय हो सकता है (क्या हर महिला खुद की बहन है?), "पूर्वज है" संक्रामी है, जबकि "माता-पिता" नहीं है। गणितीय प्रमेयों को संबंध गुणों के संयोजन के बारे में जाना जाता है, जैसे "एक संक्रमणीय संबंध अपरिवर्तनीय है, और केवल अगर, यह असममित है"। | ||
विशेष महत्व के संबंध हैं जो गुणों के कुछ संयोजनों को संतुष्ट करते हैं।आंशिक क्रम एक ऐसा संबंध है जो अपरिवर्तनीय, असममित और संक्रमणीय है, [[तुल्यता संबंध]] ऐसा संबंध है जो प्रतिवर्त, सममित और संक्रमणीय है,{{cn|date=November 2022}} फलन एक ऐसा संबंध है जो सही-अद्वितीय और बाएं-कुल है (नीचे देखें) है।<ref>{{Cite web|url=https://mathinsight.org/definition/relation|title=संबंध परिभाषा - गणित अंतर्दृष्टि|website=mathinsight.org|access-date=2019-12-11}}</ref> | विशेष महत्व के संबंध हैं जो गुणों के कुछ संयोजनों को संतुष्ट करते हैं।आंशिक क्रम एक ऐसा संबंध है जो अपरिवर्तनीय, असममित और संक्रमणीय है, [[तुल्यता संबंध]] ऐसा संबंध है जो प्रतिवर्त, सममित और संक्रमणीय है,{{cn|date=November 2022}} फलन एक ऐसा संबंध है जो सही-अद्वितीय और बाएं-कुल है (नीचे देखें) है।<ref>{{Cite web|url=https://mathinsight.org/definition/relation|title=संबंध परिभाषा - गणित अंतर्दृष्टि|website=mathinsight.org|access-date=2019-12-11}}</ref> | ||
Line 22: | Line 22: | ||
== परिभाषा == | == परिभाषा == | ||
दिए गए समुच्चय X और Y, '''[[कार्तीय गुणन]]''' फल {{math|''X'' × ''Y''}} {(x, y) | के रूप में परिभाषित किया गया है x ∈ X और y ∈ Y}, और इसके अवयवों को क्रमित युग्म कहा जाता है। | |||
समुच्चय X और Y पर द्वयी संबंध R का उपसमुच्चय है {{math|''X'' × ''Y''}}।'''<ref name="Codd1970" /><ref>{{harvnb|Enderton|1977|loc=Ch 3. pg. 40}}</ref>''' समुच्चय X को 'डोमेन' कहा जाता है'''<ref name="Codd1970" />'''या '''R''' के प्रस्थान का समुच्चय, और समुच्चय '''Y''' को कोडोमेन या '''R''' के गंतव्य का समुच्चय कहा जाता है। समुच्चय '''X''' और '''Y''' के विकल्पों को निर्दिष्ट करने के लिए, कुछ लेखक द्विआधारी संबंध या पत्राचार को आदेशित त्रिगुण के रूप में परिभाषित करते हैं '''{{math|(''X'', ''Y'', ''G'')}},''' जहां '''G''' का उपसमुच्चय है '''{{math|''X'' × ''Y''}}''' द्वयी संबंध का ग्राफ कहा जाता है। कथन '''{{math|(''x'', ''y'') ∈ ''R''}}''' पढ़ता है कि '''x, R सकता है infix''' संकेतन में '''xRy''' के रूप में लिखा गया है।'''<ref name="Schroder.1895">[[Ernst Schröder (mathematician)|Ernst Schröder]] (1895) [https://archive.org/details/vorlesungenberd03mlgoog Algebra und Logic der Relative], via [[Internet Archive]]</ref><ref name="Lewis.1918">[[C. I. Lewis]] (1918) [https://archive.org/details/asurveyofsymboli00lewiuoft A Survey of Symbolic Logic] , pages 269 to 279, via internet Archive</ref>'''परिभाषा का डोमेन या सक्रिय डोमेन'''<ref name="Codd1970" />R''' का सभी '''x''' का ऐसा समुच्चय है कि कम से कम एक '''y''' के लिए '''xRy''' है। परिभाषा का कोडोमेन, सक्रिय कोडोमेन''',<ref name="Codd1970" />[[छवि (गणित)]]''' या '''R''' के किसी फलन की श्रेणी सभी '''y''' का ऐसा समुच्चय है जो कम से कम एक '''x''' के लिए '''xRy''' हो। '''R''' का क्षेत्र परिभाषा के अपने डोमेन और परिभाषा के कोडोमेन का संघ है।'''<ref name="suppes"> | |||
{{cite book | {{cite book | ||
|title=Axiomatic Set Theory | |title=Axiomatic Set Theory | ||
Line 73: | Line 73: | ||
; {{em|[[अपरावर्ती संबंध]]}} (या {{em|पूर्णतः}}): सभी के लिए {{math|''x'' ∈ ''X''}}, नहीं {{math|''xRx''}}, उदाहरण के लिए, > अपरावर्ती संबंध है, लेकिन ≥ नहीं है। | ; {{em|[[अपरावर्ती संबंध]]}} (या {{em|पूर्णतः}}): सभी के लिए {{math|''x'' ∈ ''X''}}, नहीं {{math|''xRx''}}, उदाहरण के लिए, > अपरावर्ती संबंध है, लेकिन ≥ नहीं है। | ||
पिछले 2 विकल्प संपूर्ण नहीं हैं,उदाहरण के लिए, लाल द्वयाधारी संबंध {{math|1=''y'' = ''x''<sup>2</sup>}} खण्ड में दिया गया है {{section link|| | पिछले 2 विकल्प संपूर्ण नहीं हैं,उदाहरण के लिए, लाल द्वयाधारी संबंध {{math|1=''y'' = ''x''<sup>2</sup>}} खण्ड में दिया गया है {{section link||विशेष प्रकार के द्विआधारी संबंध}} न तो अपवर्तक है, न ही प्रतिवर्ती है, क्योंकि इसमें युग्म {{math|(0, 0)}}, लेकिन नहीं {{math|(2, 2)}}, क्रमश है। | ||
; {{em|[[ सममित संबंध]]}}: सभी के लिए {{math|''x'', ''y'' ∈ ''X''}}, यदि {{math|''xRy''}} फिर {{math|''yRx''}} है। उदाहरण के लिए, रक्त रिश्तेदार एक सममित संबंध है, क्योंकि {{mvar|x}} का रक्त संबंधी है {{mvar|y}} केवल अगर {{mvar|y}} का रक्त संबंधी है {{mvar|x}}। | ; {{em|[[ सममित संबंध]]}}: सभी के लिए {{math|''x'', ''y'' ∈ ''X''}}, यदि {{math|''xRy''}} फिर {{math|''yRx''}} है। उदाहरण के लिए, रक्त रिश्तेदार एक सममित संबंध है, क्योंकि {{mvar|x}} का रक्त संबंधी है {{mvar|y}} केवल अगर {{mvar|y}} का रक्त संबंधी है {{mvar|x}}। | ||
Line 84: | Line 84: | ||
; {{em|[[संक्रामी संबंध]]}}: सभी के लिए {{math|''x'', ''y'', ''z'' ∈ ''X''}}, यदि {{math|''xRy''}} तथा {{math|''yRz''}} फिर {{math|''xRz''}}। संक्रामी संबंध अपरिवर्तनीय है अगर और केवल अगर यह असममित है।<ref>{{cite book|last1=Flaška|first1=V.|last2=Ježek|first2=J.|last3=Kepka|first3=T.|last4=Kortelainen|first4=J.|title=बाइनरी रिलेशंस का सकर्मक क्लोजर I|year=2007|publisher=School of Mathematics – Physics Charles University|location=Prague|page=1|url=http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|url-status=dead|archive-url=https://web.archive.org/web/20131102214049/http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|archive-date=2013-11-02}} Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</ref> उदाहरण के लिए, "के पूर्वज में" संक्रामी संबंध है, जबकि का जनक नहीं है। | ; {{em|[[संक्रामी संबंध]]}}: सभी के लिए {{math|''x'', ''y'', ''z'' ∈ ''X''}}, यदि {{math|''xRy''}} तथा {{math|''yRz''}} फिर {{math|''xRz''}}। संक्रामी संबंध अपरिवर्तनीय है अगर और केवल अगर यह असममित है।<ref>{{cite book|last1=Flaška|first1=V.|last2=Ježek|first2=J.|last3=Kepka|first3=T.|last4=Kortelainen|first4=J.|title=बाइनरी रिलेशंस का सकर्मक क्लोजर I|year=2007|publisher=School of Mathematics – Physics Charles University|location=Prague|page=1|url=http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|url-status=dead|archive-url=https://web.archive.org/web/20131102214049/http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|archive-date=2013-11-02}} Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</ref> उदाहरण के लिए, "के पूर्वज में" संक्रामी संबंध है, जबकि का जनक नहीं है। | ||
; {{em|[[सघन]]}}: सभी x, y ∈ X के लिए ऐसा है कि xRy, कुछ z ∈ X ऐसे शामिलहैं कि xRz और zRy। इसका उपयोग घने आदेशों में किया जाता है। | ; {{em|[[सघन]]}}: सभी x, y ∈ X के लिए ऐसा है कि ''xRy,'' कुछ z ∈ X ऐसे शामिलहैं कि xRz और zRy। इसका उपयोग घने आदेशों में किया जाता है। | ||
; {{em|[[सम्बद्ध संबंध]]}}: सभी{{math|''x'', ''y'' ∈ ''X''}} के लिए, यदि {{math|1=''x'' ≠ ''y''}} फिर {{math|''xRy''}} या {{math|''yRx''}} हैं । इस गुण को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है {{section link|संबंध (गणित) § (विषम) संबंधों के गुण।}}। | ; {{em|[[सम्बद्ध संबंध]]}}: सभी{{math|''x'', ''y'' ∈ ''X''}} के लिए, यदि {{math|1=''x'' ≠ ''y''}} फिर {{math|''xRy''}} या {{math|''yRx''}} हैं । इस गुण को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है {{section link|संबंध (गणित) § (विषम) संबंधों के गुण।}}। | ||
Line 91: | Line 91: | ||
; {{em|[[ त्रिगुणात्मक]]}}: सभी {{math|''x'', ''y'' ∈ ''X''}} के लिए, बिल्कुल एक {{math|''xRy''}}, {{math|''yRx''}} या {{math|1=''x'' = ''y''}} रखती है। उदाहरण के लिए, > त्रिगुणात्मक संबंध है, जबकि प्राकृतिक संख्याओं पर विभाजित संबंध नहीं है।<ref>Since neither 5 divides 3, nor 3 divides 5, nor 3=5.</ref> | ; {{em|[[ त्रिगुणात्मक]]}}: सभी {{math|''x'', ''y'' ∈ ''X''}} के लिए, बिल्कुल एक {{math|''xRy''}}, {{math|''yRx''}} या {{math|1=''x'' = ''y''}} रखती है। उदाहरण के लिए, > त्रिगुणात्मक संबंध है, जबकि प्राकृतिक संख्याओं पर विभाजित संबंध नहीं है।<ref>Since neither 5 divides 3, nor 3 divides 5, nor 3=5.</ref> | ||
; {{em|[[सुस्थापित संबंध]]}}: हर गैर-खाली उपसमुच्चय {{mvar|S}} का {{mvar|X}} के संबंध में [[अधिकतम और न्यूनतम तत्व]] सम्मिलित हैं {{mvar|R}}। सुस्थापित होने का तात्पर्य [[अवरोही श्रृंखला की स्थिति]] से है (अर्थात, कोई अनंत श्रृंखला नहीं है..... {{math|''x''<sub>''n''</sub>''R''...''Rx''<sub>3</sub>''Rx''<sub>2</sub>''Rx''<sub>1</sub>}} सम्मिलित हो सकता है)। यदि आश्रित पसंद का स्वयंसिद्ध मान लिया जाए, तो दोनों स्थितियाँ समतुल्य हैं।<ref>{{cite web |title=अच्छी तरह से स्थापित होने की स्थिति|url=https://proofwiki.org/wiki/Condition_for_Well-Foundedness |website=ProofWiki |access-date=20 February 2019 |archive-date=20 February 2019 |archive-url=https://web.archive.org/web/20190220181521/https://proofwiki.org/wiki/Condition_for_Well-Foundedness |url-status=dead }}</ref><ref>{{cite book |last1=Fraisse |first1=R. |title=संबंधों का सिद्धांत, खंड 145 - पहला संस्करण|date=15 December 2000 |publisher=Elsevier |isbn=9780444505422 |page=46 |edition=1st |url=https://www.elsevier.com/books/theory-of-relations/fraisse/978-0-444-50542-2 |access-date=20 February 2019}}</ref> | ; {{em|[[सुस्थापित संबंध]]}}: हर गैर-खाली उपसमुच्चय {{mvar|S}} का {{mvar|X}} के संबंध में [[अधिकतम और न्यूनतम तत्व]] सम्मिलित हैं {{mvar|R}}। सुस्थापित होने का तात्पर्य [[अवरोही श्रृंखला की स्थिति]] से है (अर्थात, कोई अनंत श्रृंखला नहीं है..... {{math|''x''<sub>''n''</sub>''R''...''Rx''<sub>3</sub>''Rx''<sub>2</sub>''Rx''<sub>1</sub>}} सम्मिलित हो सकता है)। यदि आश्रित पसंद का स्वयंसिद्ध मान लिया जाए, तो दोनों स्थितियाँ समतुल्य हैं।<ref>{{cite web |title=अच्छी तरह से स्थापित होने की स्थिति|url=https://proofwiki.org/wiki/Condition_for_Well-Foundedness |website=ProofWiki |access-date=20 February 2019 |archive-date=20 February 2019 |archive-url=https://web.archive.org/web/20190220181521/https://proofwiki.org/wiki/Condition_for_Well-Foundedness |url-status=dead }}</ref><ref>{{cite book |last1=Fraisse |first1=R. |title=संबंधों का सिद्धांत, खंड 145 - पहला संस्करण|date=15 December 2000 |publisher=Elsevier |isbn=9780444505422 |page=46 |edition=1st |url=https://www.elsevier.com/books/theory-of-relations/fraisse/978-0-444-50542-2 |access-date=20 February 2019}}</ref>:{{em|[[ पूर्व क्रम]]}} | ||
;रिश्ता जो स्वतुल्य और संक्रामी है। | |||
; | |||
;; '''{{em|[[कुल अग्रिम क्रम]]}} (भी, {{em|रेखीय अग्रिम क्रम}} या {{em|कमजोर क्रम}})''': '''संबंध जो प्रतिवर्त, संक्रामी और जुड़ा हुआ है।''' | ;; '''{{em|[[कुल अग्रिम क्रम]]}} (भी, {{em|रेखीय अग्रिम क्रम}} या {{em|कमजोर क्रम}})''': '''संबंध जो प्रतिवर्त, संक्रामी और जुड़ा हुआ है।''' | ||
; {{em|[[आंशिक क्रम]]}} ( | ; {{em|[[आंशिक क्रम]]}} ({{em|क्रम}}{{citation needed|date=March 2020}} भी): संबंध जो प्रतिवर्ती, प्रतिसममित और संक्रामी है।:'''{{em|[[पूर्णतः आंशिक क्रम]]}}''' ({{em|पूर्णतः क्रम}}{{citation needed|date=March 2020}} भी) | ||
:संबंध जो अपरावर्ती , प्रतिसममित और संक्रामी | :संबंध जो अपरावर्ती , प्रतिसममित और संक्रामी है। | ||
:'''{{em|[[कुल क्रम]]}}''' ( | :'''{{em|[[कुल क्रम]]}}''' ({{em|रैखिक क्रम}}, {{em| सरल क्रम}}, या {{em| श्रृंखला}} भी ) | ||
:संबंध जो प्रतिवर्त, प्रतिसममित, संक्रामी और जुड़ा हुआ है।<ref>Joseph G. Rosenstein, ''Linear orderings'', Academic Press, 1982, {{ISBN|0-12-597680-1}}, p. 4</ref> | :संबंध जो प्रतिवर्त, प्रतिसममित, संक्रामी और जुड़ा हुआ है।<ref>Joseph G. Rosenstein, ''Linear orderings'', Academic Press, 1982, {{ISBN|0-12-597680-1}}, p. 4</ref> | ||
:'''{{em|[[पूर्णतः कुल क्रम]]}}''' ( | :'''{{em|[[पूर्णतः कुल क्रम]]}}''' ({{em|पूर्णतः रैखिक क्रम}}, {{em|पूर्णतः सरल क्रम}}, या {{em| पूर्णतः श्रृंखला}} भी) | ||
:संबंध जो अप्रतिवर्ती, प्रतिसममित, संक्रामी और जुड़ा हुआ है। | :संबंध जो अप्रतिवर्ती, प्रतिसममित, संक्रामी और जुड़ा हुआ है। | ||
:'''{{em|[[आंशिक तुल्यता संबंध]]}}''' | :'''{{em|[[आंशिक तुल्यता संबंध]]}}''' | ||
Line 108: | Line 107: | ||
== (विषम) संबंधों के गुण == | == (विषम) संबंधों के गुण == | ||
[[File:The four types of binary relations.png|thumb|[[वास्तविक संख्या]]ओं पर चार प्रकार के द्विआधारी संबंधों के उदाहरण: एक-से-एक (हरे रंग में), एक-से-अनेक (नीले रंग में), कई-से-एक (लाल रंग में), कई-से-अनेक (काले रंग में) )।]]''' | [[File:The four types of binary relations.png|thumb|[[वास्तविक संख्या]]ओं पर चार प्रकार के द्विआधारी संबंधों के उदाहरण: एक-से-एक (हरे रंग में), एक-से-अनेक (नीले रंग में), कई-से-एक (लाल रंग में), कई-से-अनेक (काले रंग में) )।]]समुच्चय '''X''' और '''Y''' पर कुछ महत्वपूर्ण प्रकार के द्वयाधारी संबंध '''R''' नीचे सूचीबद्ध हैं। | ||
विशिष्टता गुण: | |||
; ''' | ; अंतःक्षे'''पक (जिसे वाम-अद्वितीय भी कहा जाता है''')'''<ref name="kkm" /> सभी के लिए {{math|''x'', ''z'' ∈ ''X''}} और सभी {{math|''y'' ∈ ''Y''}}, यदि {{math|''xRy''}} तथा {{math|''zRy''}} फिर {{math|1=''x'' = ''z''}}। ऐसे संबंध के लिए, {Y} को R की [[प्राथमिक कुंजी]] कहा जाता है।<ref name="Codd1970" />उदाहरण के लिए, आरेख में हरे और नीले द्विआधारी संबंध अंतःक्षेपकहैं, लेकिन लाल वाला नहीं है (क्योंकि यह -1 और 1 से 1 दोनों से संबंधित है), न ही काला वाला (क्योंकि यह -1 और 1 से 0 दोनों से संबंधित है) ।''' | ||
; '''कार्यात्मक (जिसे सही-अद्वितीय भी कहा जाता है,<ref name="kkm">Kilp, Knauer and Mikhalev: p. 3. The same four definitions appear in the following: | ; '''कार्यात्मक (जिसे सही-अद्वितीय भी कहा जाता है,<ref name="kkm">Kilp, Knauer and Mikhalev: p. 3. The same four definitions appear in the following: | ||
*{{cite book | *{{cite book | ||
Line 137: | Line 136: | ||
| isbn=978-3-89675-629-9 | | isbn=978-3-89675-629-9 | ||
| pages=21–22 | | pages=21–22 | ||
}}</ref>सही-निश्चित<ref>{{citation|title=Spatial Information Theory: 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23, 2007, Proceedings|series=Lecture Notes in Computer Science|publisher=Springer|volume=4736|year=2007|pages=285–302|contribution=Reasoning on Spatial Semantic Integrity Constraints|first=Stephan|last=Mäs|doi=10.1007/978-3-540-74788-8_18}}</ref> या असंबद्ध)''':'''<ref name="gs">[[Gunther Schmidt]], 2010. ''Relational Mathematics''. Cambridge University Press, {{ISBN|978-0-521-76268-7}}, Chapt. 5</ref> सभी के लिए {{math|''x'' ∈ ''X''}} और सभी {{math|''y'', ''z'' ∈ ''Y''}}, यदि {{math|''xRy''}} तथा {{math|''xRz''}} फिर {{math|1=''y'' = ''z''}}। इस तरह के द्वयी संबंध को कहा जाता है {{em|[[partial function]]}}। ऐसे संबंध के लिए, {X} कहा जाता है {{em|a primary key}} R का<ref name="Codd1970" /> | }}</ref>सही-निश्चित<ref>{{citation|title=Spatial Information Theory: 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23, 2007, Proceedings|series=Lecture Notes in Computer Science|publisher=Springer|volume=4736|year=2007|pages=285–302|contribution=Reasoning on Spatial Semantic Integrity Constraints|first=Stephan|last=Mäs|doi=10.1007/978-3-540-74788-8_18}}</ref> या असंबद्ध)''':'''<ref name="gs">[[Gunther Schmidt]], 2010. ''Relational Mathematics''. Cambridge University Press, {{ISBN|978-0-521-76268-7}}, Chapt. 5</ref> सभी के लिए {{math|''x'' ∈ ''X''}} और सभी {{math|''y'', ''z'' ∈ ''Y''}}, यदि {{math|''xRy''}} तथा {{math|''xRz''}} फिर {{math|1=''y'' = ''z''}}। इस तरह के द्वयी संबंध को कहा जाता है {{em|[[partial function]]}}।''' ऐसे संबंध के लिए, '''{X} कहा जाता है {{em|a primary key}} R का<ref name="Codd1970" />उ'''दाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कार्यात्मक हैं, लेकिन नीला नहीं है (क्योंकि यह '''1 से -1 और 1 दोनों से संबंधित है),''' और न ही काला वाला (क्योंकि यह '''0 से -1 और 1''' दोनों से संबंधित है) । | ||
; एक-से-एक: अंतःक्षेपक और कार्यात्मक। उदाहरण के लिए, आरेख में हरा द्वयाधारी संबंध एक-से-एक है, लेकिन लाल, नीला और काला नहीं है। | ; एक-से-एक: अंतःक्षेपक और कार्यात्मक। उदाहरण के लिए, आरेख में हरा द्वयाधारी संबंध एक-से-एक है, लेकिन लाल, नीला और काला नहीं है। | ||
; एक-से-कई: अंतःक्षेपक और कार्यात्मक नहीं। उदाहरण के लिए, आरेख में नीला द्वयाधारी संबंध एक-से-कई है, लेकिन लाल, हरा और काला नहीं है। | ; एक-से-कई: अंतःक्षेपक और कार्यात्मक नहीं। उदाहरण के लिए, आरेख में नीला द्वयाधारी संबंध एक-से-कई है, लेकिन लाल, हरा और काला नहीं है। | ||
Line 148: | Line 147: | ||
: X में सभी X के लिए Y में ऐसा सम्मिलित है {{math|''xRy''}}। दूसरे शब्दों में, R की परिभाषा का डोमेन X के बराबर है। यह गुण [[जुड़ा हुआ संबंध]] की परिभाषा से खंड द्वयाधारी संबंध गुण में अलग है (जिसे कुछ लेखकों द्वारा कुल भी कहा जाता है){{citation needed|date=June 2020}}। इस तरह के द्वयी संबंध को [[बहुविकल्पी समारोह|बहुविकल्पी फलन]] कहा जाता है। उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कुल हैं, लेकिन नीला वाला नहीं है (क्योंकि यह -1 को किसी वास्तविक संख्या से संबंधित नहीं करता है), और न ही काला वाला (क्योंकि यह 2 को किसी वास्तविक संख्या से संबंधित नहीं करता है) )।:'''{{em|[[क्रमिक संबंधl]]}}''' (या {{em|बाएं-कुल}}) | : X में सभी X के लिए Y में ऐसा सम्मिलित है {{math|''xRy''}}। दूसरे शब्दों में, R की परिभाषा का डोमेन X के बराबर है। यह गुण [[जुड़ा हुआ संबंध]] की परिभाषा से खंड द्वयाधारी संबंध गुण में अलग है (जिसे कुछ लेखकों द्वारा कुल भी कहा जाता है){{citation needed|date=June 2020}}। इस तरह के द्वयी संबंध को [[बहुविकल्पी समारोह|बहुविकल्पी फलन]] कहा जाता है। उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कुल हैं, लेकिन नीला वाला नहीं है (क्योंकि यह -1 को किसी वास्तविक संख्या से संबंधित नहीं करता है), और न ही काला वाला (क्योंकि यह 2 को किसी वास्तविक संख्या से संबंधित नहीं करता है) )।:'''{{em|[[क्रमिक संबंधl]]}}''' (या {{em|बाएं-कुल}}) | ||
: सभी के लिए {{math|''x'' ∈ ''X''}}, कुछ शामिलहै {{math|''y'' ∈ ''X''}} ऐसा है कि {{math|''xRy''}}। उदाहरण के लिए, > पूर्णांकों पर एक क्रमिक संबंध है। लेकिन यह धनात्मक पूर्णांकों पर क्रमिक संबंध नहीं है, क्योंकि ऐसा नहीं है {{mvar|y}} सकारात्मक पूर्णांकों में जैसे कि {{math|1 > ''y''}}।<ref>{{cite journal|last = Yao|first = Y.Y.|author2=Wong, S.K.M.|title = विशेषता मानों के बीच संबंधों का उपयोग करते हुए किसी न किसी सेट का सामान्यीकरण|journal = Proceedings of the 2nd Annual Joint Conference on Information Sciences|year = 1995|pages = 30–33|url = http://www2.cs.uregina.ca/~yyao/PAPERS/relation.pdf}}.</ref> हालाँकि, < धनात्मक पूर्णांकों, परिमेय संख्याओं और वास्तविक संख्याओं पर एक क्रमिक संबंध है। हर स्वतुल्य संबंध क्रमिक संबंध है: दिए गए के लिए {{mvar|x}}, चुनें {{math|1=''y'' = ''x''}}। | : सभी के लिए {{math|''x'' ∈ ''X''}}, कुछ शामिलहै {{math|''y'' ∈ ''X''}} ऐसा है कि {{math|''xRy''}}। उदाहरण के लिए, > पूर्णांकों पर एक क्रमिक संबंध है। लेकिन यह धनात्मक पूर्णांकों पर क्रमिक संबंध नहीं है, क्योंकि ऐसा नहीं है {{mvar|y}} सकारात्मक पूर्णांकों में जैसे कि {{math|1 > ''y''}}।<ref>{{cite journal|last = Yao|first = Y.Y.|author2=Wong, S.K.M.|title = विशेषता मानों के बीच संबंधों का उपयोग करते हुए किसी न किसी सेट का सामान्यीकरण|journal = Proceedings of the 2nd Annual Joint Conference on Information Sciences|year = 1995|pages = 30–33|url = http://www2.cs.uregina.ca/~yyao/PAPERS/relation.pdf}}.</ref> हालाँकि, < धनात्मक पूर्णांकों, परिमेय संख्याओं और वास्तविक संख्याओं पर एक क्रमिक संबंध है। हर स्वतुल्य संबंध क्रमिक संबंध है: दिए गए के लिए {{mvar|x}}, चुनें {{math|1=''y'' = ''x''}}। | ||
'''विशेषण (जिसे दायां-कुल भी कहा जाता है'''<ref name="kkm" /> | '''विशेषण (जिसे दायां-कुल भी कहा जाता है'''<ref name="kkm" />या पर) | ||
: Y में सभी y के लिए, X में x सम्मिलित है जैसे कि | : Y में सभी y के लिए, X में x सम्मिलित है जैसे कि '''xRy'''। दूसरे शब्दों में, R की परिभाषा का कोडोमेन Y के बराबर है। उदाहरण के लिए, आरेख में हरे और नीले रंग के द्वयाधारी संबंध विशेषण हैं, लेकिन लाल नहीं है (क्योंकि यह किसी वास्तविक संख्या को -1 से संबंधित नहीं करता है), न ही काला वाला (क्योंकि यह किसी भी वास्तविक संख्या को 2 से संबंधित नहीं करता है)। | ||
विशिष्टता और समग्रता गुण (केवल डोमेन X और कोडोमेन Y निर्दिष्ट होने पर परिभाषित किया जा सकता है): | विशिष्टता और समग्रता गुण (केवल डोमेन X और कोडोमेन Y निर्दिष्ट होने पर परिभाषित किया जा सकता है): | ||
Line 168: | Line 167: | ||
: {| class="wikitable sortable" style="text-align:center;" | : {| class="wikitable sortable" style="text-align:center;" | ||
|+ align="top" | | |+ align="top" | गुण द्वारा सजातीय संबंध | ||
|- | |- | ||
! | ! | ||
Line 276: | Line 275: | ||
'''<big>(विषम) संबंधों पर संचालन</big>''' | '''<big>(विषम) संबंधों पर संचालन</big>''' | ||
'''{{em| समुच्च}}''' | |||
: यदि R और S समुच्चय X और Y पर द्विआधारी संबंध हैं तो <span class="texhtml">R ∪ S = {(x, y) | xRy या xSy</span> R और S का{{em| समुच्च संबंध}} है। इस संचालन का पहचान तत्व खाली संबंध है। उदाहरण के लिए, ≤ < और = का मिलन है, और ≥ > और = का मिलन है।:'''{{em| प्रतिच्छेदन}}''' | |||
: यदि R और S समुच्चय X और Y पर द्विआधारी संबंध हैं तो <span class="texhtml">R ∩ S = {(x, y) | xRy और xSy</span> X और Y पर R और S का {{em|प्रतिच्छेदन संबंध}} है । पहचान तत्व सार्वभौमिक संबंध है। उदाहरण के लिए, संबंध 6 से विभाज्य है संबंधों का प्रतिच्छेदन 3 से विभाज्य है और 2 से विभाज्य है।:'''{{em|संयुक्तीकरण}}''' | |||
: यदि R समुच्चय X और Y पर द्वयी संबंध है, और S समुच्चय Y और Z पर द्वयी संबंध है तो <span class="texhtml">S ∘ R = {(x, z)</span> | वहाँ y ∈ Y का अस्तित्व है जैसे कि xRy और ySz<span class="texhtml">}</span> (द्वारा भी निरूपित) {{math|''R''; ''S''}}) X और Z पर R और S का {{em| संयुक्तीकरण संबंध}} है। पहचान तत्व पहचान संबंध है। अंकन में R और S का क्रम {{math|''S'' ∘ ''R''}}, यहाँ प्रयुक्त [[कार्यों की संरचना]] के लिए मानक अंकन क्रम से सहमत है। उदाहरण के लिए, रचना ∘ की जननी है, उपज की जननी है, की नानी है, जबकि रचना ∘ की जननी है, उपज की जननी है। पूर्व मामले के लिए, यदि x, y का माता-पिता है और y, z की माता है, तो x, z का नाना-नानी है।:'''{{em| विपरीत }}''' | |||
: यदि R समुच्चय X और Y पर द्विआधारी संबंध है तो ''R''<sup>T</sup> = {(''y'', ''x'') | ''xRy''} Y और X पर R का विपरीत संबंध है। उदाहरण के लिए, = स्वयं का विपरीत है, जैसा ≠ है, और < और > दूसरे के विपरीत हैं, जैसे ≤ और ≥ हैं। द्विआधारी संबंध इसके विपरीत के बराबर है यदि और केवल यदि यह [[सममित संबंध]] है।:'''{{em|पूरक}}''' | |||
: यदि R समुच्चय X और Y पर एक द्विआधारी संबंध है तो <span class="texhtml">{{overline|''R''}} = {(X, Y) | xRy नहीं </span> (द्वारा भी दर्शाया गया है {{strikethrough|''R''}} या {{math|¬ ''R''}}) X और Y पर R का पूरक संबंध है। उदाहरण के लिए, = और ≠ एक दूसरे के पूरक हैं, जैसे ⊆ और ⊈, ⊇ और ⊉, और ∈ और ∉, और, कुल क्रम के लिए भी < और ≥, और > और ≤ है। विपरीत संबंध का पूरक {{math|''R''<sup>T</sup>}} पूरक का विपरीत है: <math>\overline{R^\mathsf{T}} = \bar{R}^\mathsf{T}.</math> | |||
; {{em|प्रतिबंधात्मक संबंध}}: यदि R समुच्चय X पर द्विआधारी [[सजातीय संबंध]] है और S, X का उपसमुच्चय है <span class="texhtml">R<sub>|''S''</sub> =</span> {(X, Y) | xRy और x ∈ S और y ∈ S} R से S का {{em|{{प्रतिबंधात्मक संबंध}}}} है। व्यंजक <span class="texhtml">R<sub>|''S''</sub> = {(X, Y) | xRy और x ∈ S} R से S का</span><nowiki> {{ बायाँ-प्रतिबंध संबंध} है। व्यंजक </nowiki><span class="texhtml">R<sup>|S</sup> = {(X, Y) | xRy और y ∈ S}</span><nowiki>को R से S का {{ सही-प्रतिबंध संबंध} कहा जाता है।। यदि कोई संबंध स्वतुल्य संबंध, अपरावर्ती, सममित संबंध, </nowiki>[[एंटीसिमेट्रिक संबंध|प्रतिसममित संबंध]], [[असममित संबंध]], [[सकर्मक संबंध|संक्रामी संबंध]], [[सीरियल संबंध|क्रमिक संबंध संबंध]], [[ट्राइकोटॉमी (गणित)|त्रिगुणात्मक (गणित)]], आंशिक क्रम, कुल क्रम, सख्त कमजोर क्रम है, कुल पूर्व आदेश (कमजोर आदेश), या समकक्ष संबंध, तो इसके प्रतिबंध भी हैं। हालांकि, प्रतिबंध का सकर्मक समापन सकर्मक बंद होने के प्रतिबंध का एक उपसमुच्चय है, अर्थात, सामान्य रूप से समान नहीं है। उदाहरण के लिए, "x, y का जनक है" संबंध को महिलाओं तक सीमित करने से संबंध "x, महिला y की मां है" प्राप्त होता है, इसका सकर्मक समापन महिला को उसकी नानी से संबंधित नहीं करता है। दूसरी ओर, "का जनक है" का सकर्मक समापन "का पूर्वज है"; महिलाओं के लिए इसका प्रतिबंध एक महिला को उसकी नानी से जोड़ता है। | |||
; {{em|प्रतिबंधात्मक संबंध}}: यदि R समुच्चय X पर द्विआधारी [[सजातीय संबंध]] है और S, X का उपसमुच्चय है <span class= texhtml >R<sub>|''S''</sub> =</span> {(X, Y) | xRy और x ∈ S और y ∈ S} R से S का {{em|{{प्रतिबंधात्मक संबंध}}}} है। व्यंजक <span class= texhtml >R<sub>|''S''</sub> = {(X, Y) | xRy और x ∈ S} R से S का</span><nowiki> {{ बायाँ-प्रतिबंध संबंध} है। व्यंजक </nowiki><span class= texhtml >R<sup>|S</sup> = {(X, Y) | xRy और y ∈ S}</span><nowiki>को R से S का {{ सही-प्रतिबंध संबंध} कहा जाता है।। यदि कोई संबंध स्वतुल्य संबंध, अपरावर्ती, सममित संबंध, </nowiki>[[एंटीसिमेट्रिक संबंध|प्रतिसममित संबंध]], [[असममित संबंध]], [[सकर्मक संबंध|संक्रामी संबंध]], [[सीरियल संबंध|क्रमिक संबंध संबंध]], [[ट्राइकोटॉमी (गणित)|त्रिगुणात्मक (गणित)]], आंशिक क्रम, कुल क्रम, सख्त कमजोर क्रम है, कुल पूर्व आदेश (कमजोर आदेश), या समकक्ष संबंध, तो इसके प्रतिबंध भी हैं। हालांकि, प्रतिबंध का सकर्मक समापन सकर्मक बंद होने के प्रतिबंध का एक उपसमुच्चय है, अर्थात, सामान्य रूप से समान नहीं है। उदाहरण के लिए, "x, y का जनक है" संबंध को महिलाओं तक सीमित करने से संबंध "x, महिला y की मां है" प्राप्त होता है, इसका सकर्मक समापन महिला को उसकी नानी से संबंधित नहीं करता है। दूसरी ओर, "का जनक है" का सकर्मक समापन "का पूर्वज है"; महिलाओं के लिए इसका प्रतिबंध एक महिला को उसकी नानी से जोड़ता है। | |||
द्वयी संबंध R ओवरसेट X और Y को एक संबंध S ओवर X और Y में निहित कहा जाता है, जिसे <math>R \subseteq S,</math>लिखा जाता है, यदि R, S का उपसमुच्चय है, अर्थात सभी के लिए <math>x \in X</math> तथा <math>y \in Y,</math> अगर xRy, तो xSy। यदि R, S में समाहित है और S, R में समाहित है, तो R और S को बराबर लिखा हुआ R = S कहते हैं। यदि R, S में समाहित है, लेकिन S, R में समाहित नहीं है, तो R, S से छोटा कहा जाता है, लिखित R ⊊ S. उदाहरण के लिए, [[परिमेय संख्या]]ओं पर संबंध > ≥ से छोटा होता है, और संघटन {{math|> ∘ >.}}के बराबर होता है। | द्वयी संबंध R ओवरसेट X और Y को एक संबंध S ओवर X और Y में निहित कहा जाता है, जिसे <math>R \subseteq S,</math>लिखा जाता है, यदि R, S का उपसमुच्चय है, अर्थात सभी के लिए <math>x \in X</math> तथा <math>y \in Y,</math> अगर xRy, तो xSy। यदि R, S में समाहित है और S, R में समाहित है, तो R और S को बराबर लिखा हुआ R = S कहते हैं। यदि R, S में समाहित है, लेकिन S, R में समाहित नहीं है, तो R, S से छोटा कहा जाता है, लिखित R ⊊ S. उदाहरण के लिए, [[परिमेय संख्या]]ओं पर संबंध > ≥ से छोटा होता है, और संघटन {{math|> ∘ >.}}के बराबर होता है। | ||
Line 318: | Line 315: | ||
* [[आदेश सिद्धांत]], आदेश संबंधों के गुणों की जांच करता है | * [[आदेश सिद्धांत]], आदेश संबंधों के गुणों की जांच करता है | ||
{{colend}} | {{colend}} | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{Reflist|group=note}} | {{Reflist|group=note}} | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
== ग्रन्थसूची == | == ग्रन्थसूची == | ||
* {{cite book |last=Codd |first=Edgar Frank |author-link=Edgar F. Codd |date=1990 |title=The Relational Model for Database Management: Version 2 |url=https://codeblab.com/wp-content/uploads/2009/12/rmdb-codd.pdf |location=Boston |publisher=[[Addison-Wesley]] |isbn=978-0201141924}} | * {{cite book |last=Codd |first=Edgar Frank |author-link=Edgar F. Codd |date=1990 |title=The Relational Model for Database Management: Version 2 |url=https://codeblab.com/wp-content/uploads/2009/12/rmdb-codd.pdf |location=Boston |publisher=[[Addison-Wesley]] |isbn=978-0201141924}} | ||
Line 335: | Line 326: | ||
* {{cite book |last=Schmidt |first=Gunther |author-link=Gunther Schmidt |date=2010 |title=Relational Mathematics |url=https://books.google.com/books?id=E4dREBTs5WsC |location=Cambridge |publisher=[[Cambridge University Press]] |isbn=978-0-521-76268-7}} | * {{cite book |last=Schmidt |first=Gunther |author-link=Gunther Schmidt |date=2010 |title=Relational Mathematics |url=https://books.google.com/books?id=E4dREBTs5WsC |location=Cambridge |publisher=[[Cambridge University Press]] |isbn=978-0-521-76268-7}} | ||
{{DEFAULTSORT:Relation}} | {{DEFAULTSORT:Relation}} | ||
[[Category: | [[Category:All articles with unsourced statements|Relation]] | ||
[[Category:Created On 24/11/2022]] | [[Category:Articles with hatnote templates targeting a nonexistent page|Relation]] | ||
[[Category:Articles with short description|Relation]] | |||
[[Category:Articles with unsourced statements from June 2020|Relation]] | |||
[[Category:Articles with unsourced statements from March 2020|Relation]] | |||
[[Category:Articles with unsourced statements from November 2022|Relation]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 24/11/2022|Relation]] | |||
[[Category:Lua-based templates|Relation]] | |||
[[Category:Machine Translated Page|Relation]] | |||
[[Category:Multi-column templates|Relation]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter|Relation]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description|Relation]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category|Relation]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData|Relation]] | |||
[[Category:Templates using under-protected Lua modules|Relation]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गणितीय संबंध| ]] |
Latest revision as of 15:19, 4 December 2022
गणित में, समुच्चय पर दो दिए गए समुच्चय अवयव के बीच संबंध हो सकता है और नहीं भी सकता है। उदाहरण के लिए, "इससे कम है" प्राकृतिक संख्याओं के समुच्चय पर संबंध है, यह धारण करता है उदाहरण 1 और 3 के बीच (1<3 के रूप में दर्शाता है), और इसी तरह 3 और 4 के बीच (3<4 के रूप में चिह्नित), लेकिन न तो 3 और 1 के बीच और न ही 4 और 4 के बीच संबंध है। अन्य उदाहरण के रूप में, "इसकी बहन" संबंध है सभी लोगों के समुच्चय पर, यह धारण करता है उदाहरण मैरी क्यूरी और ब्रोनिस्लावा डुस्का के बीच, और इसी तरह इसके विपरीत। समुच्चय सदस्य "निश्चित डिग्री" के संबंध में नहीं हो सकते हैं, इसलिए उदाहरण "इसमें कुछ समानता है" एक संबंध नहीं हो सकता।
औपचारिक रूप से, समुच्चय X पर संबंध R को X के सदस्यों के क्रमित युग्मों (x, y) के समुच्चय के रूप में देखा जा सकता है।[1]संबंध R, x और y के बीच रखता है यदि (x, y) R का सदस्य है। उदाहरण के लिए, प्राकृतिक संख्याओं पर संबंध "से कम है" अनंत समुच्चय है जिसमें प्राकृतिक संख्याओं जिनमें दोनों (1, 3) और (3, 4), लेकिन न तो (3,1) और न ही (4,4) के जोड़े सम्मिलित हैं। अंकीय प्राकृत संख्याओं के समुच्चय पर संबंध "का गैर-तुच्छ भाजक है" यहाँ दिखाए जाने के लिए पर्याप्त रूप से छोटा है: Rdiv = { (2,4), (2,6), (2,8), (3,6), (3,9), (4,8)},उदाहरण के लिए 2, 8 का गैर-तुच्छ भाजक है, लेकिन इसके विपरीत नहीं, इसलिए (2,8) ∈ Rdiv , लेकिन (8,2) ∈ Rdiv ।
यदि R एक ऐसा संबंध है जो x और y के लिए है तो अक्सर xRy लिखा जाता है। गणित में सबसे आम संबंधों के लिए, विशेष प्रतीकों को पेश किया जाता है, जैसे "<" के लिए "इससे कम है", और "|" के लिए "का गैर-तुच्छ भाजक है", और, सबसे लोकप्रिय "=" के लिए "के बराबर है"। उदाहरण के लिए, "1<3", "1, 3 से कम है", और "(1,3) ∈ Rless" का अर्थ सभी समान है,कुछ लेखक "(1,3) ∈ (<)" भी लिखते हैं।
संबंधों के विभिन्न गुणों की जांच की जाती है। संबंध R स्वतुल्य है यदि xRx सभी x के लिए धारण करता है, और अपरिवर्तनीय है यदि xRx कोई x के लिए धारण नहीं करता है। यह सममित है यदि xRy का अर्थ हमेशा सकता हैहोता है, और असममित यदि सकता है का अर्थ है कि yRx असंभव है। यह संक्रामी है यदि xRy और yRz का अर्थ हमेशा xRz होता है। उदाहरण के लिए, "इससे कम है" अपरिवर्तनीय, असममित और संक्रामी है, लेकिन न तो प्रतिवर्त और न ही सममित, "की बहन है" सममित और संक्रमणीय है, लेकिन न तो प्रतिवर्त (जैसे पियरे क्यूरी खुद की बहन नहीं है) और न ही असममित, जबकि अपरिवर्तनीय होना या न होना परिभाषा का विषय हो सकता है (क्या हर महिला खुद की बहन है?), "पूर्वज है" संक्रामी है, जबकि "माता-पिता" नहीं है। गणितीय प्रमेयों को संबंध गुणों के संयोजन के बारे में जाना जाता है, जैसे "एक संक्रमणीय संबंध अपरिवर्तनीय है, और केवल अगर, यह असममित है"।
विशेष महत्व के संबंध हैं जो गुणों के कुछ संयोजनों को संतुष्ट करते हैं।आंशिक क्रम एक ऐसा संबंध है जो अपरिवर्तनीय, असममित और संक्रमणीय है, तुल्यता संबंध ऐसा संबंध है जो प्रतिवर्त, सममित और संक्रमणीय है,[citation needed] फलन एक ऐसा संबंध है जो सही-अद्वितीय और बाएं-कुल है (नीचे देखें) है।[2]
चूंकि संबंध समुच्चय हैं, इसलिए उन्हें समुच्चय संचालन का उपयोग करके जोड़-तोड़ किया जा सकता है, जिसमें संघ (समुच्चय सिद्धांत), प्रतिच्छेदन, और पूरक (समुच्चय सिद्धांत) सम्मिलित हैं, और समुच्चय के बीजगणित के नियमों को संतुष्ट करते हैं। इसके अलावा, संबंध के विपरीत और संबंधों की संरचना संबंधों के गहन विश्लेषण में उन्हें अवधारणा नामक उपसमुच्चय में विघटित करना और उन्हें पूर्ण नियम में रखना सम्मिलित है।
संबंध की उपरोक्त अवधारणा[note 1] को दो अलग-अलग समुच्चय के सदस्यों के बीच संबंधों को स्वीकार करने के लिए सामान्यीकृत किया गया है (विषम संबंध,जैसे सभी बिंदुओं के समुच्चय के बीच "स्थित" और ज्यामिति में सभी पंक्तियों के बीच), तीन या अधिक के बीच संबंध समुच्चय (समुच्चय संबंध,जैसे "व्यक्ति x समय z पर शहर y में रहता है"), और वर्ग (गणित) के बीच संबंध[note 2](जैसे सभी समुच्चय के वर्ग पर "का एक तत्व है", द्वयाधारी संबंध देखें समुच्चय बनाम वर्ग)।
परिभाषा
दिए गए समुच्चय X और Y, कार्तीय गुणन फल X × Y {(x, y) | के रूप में परिभाषित किया गया है x ∈ X और y ∈ Y}, और इसके अवयवों को क्रमित युग्म कहा जाता है।
समुच्चय X और Y पर द्वयी संबंध R का उपसमुच्चय है X × Y।[1][3] समुच्चय X को 'डोमेन' कहा जाता है[1]या R के प्रस्थान का समुच्चय, और समुच्चय Y को कोडोमेन या R के गंतव्य का समुच्चय कहा जाता है। समुच्चय X और Y के विकल्पों को निर्दिष्ट करने के लिए, कुछ लेखक द्विआधारी संबंध या पत्राचार को आदेशित त्रिगुण के रूप में परिभाषित करते हैं (X, Y, G), जहां G का उपसमुच्चय है X × Y द्वयी संबंध का ग्राफ कहा जाता है। कथन (x, y) ∈ R पढ़ता है कि x, R सकता है infix संकेतन में xRy के रूप में लिखा गया है।[4][5]परिभाषा का डोमेन या सक्रिय डोमेन[1]R का सभी x का ऐसा समुच्चय है कि कम से कम एक y के लिए xRy है। परिभाषा का कोडोमेन, सक्रिय कोडोमेन,[1]छवि (गणित) या R के किसी फलन की श्रेणी सभी y का ऐसा समुच्चय है जो कम से कम एक x के लिए xRy हो। R का क्षेत्र परिभाषा के अपने डोमेन और परिभाषा के कोडोमेन का संघ है।[6][7][8] कब X = Y, एक द्विआधारी संबंध को #सजातीय संबंध (या एंडोरेलेशन) कहा जाता है।[9] अन्यथा यह एक विषम संबंध है।[10][11][12]
द्विआधारी संबंध में, तत्वों का क्रम महत्वपूर्ण होता है,यदि x ≠ y तब yRx, xRy से स्वतंत्र होकर सत्य या असत्य हो सकता है। उदाहरण के लिए, 3 9 को विभाजित करता है, लेकिन 9 3 को विभाजित नहीं करता है।
संबंधों के गुण
सजातीय संबंध के कुछ महत्वपूर्ण गुण R समुच्चय पर X हो सकता है:
- स्वतुल्य संबंध
- सभी के लिए x ∈ X, xRx उदाहरण के लिए, ≥ स्वतुल्य संबंध है लेकिन > नहीं है।
- अपरावर्ती संबंध (या पूर्णतः)
- सभी के लिए x ∈ X, नहीं xRx, उदाहरण के लिए, > अपरावर्ती संबंध है, लेकिन ≥ नहीं है।
पिछले 2 विकल्प संपूर्ण नहीं हैं,उदाहरण के लिए, लाल द्वयाधारी संबंध y = x2 खण्ड में दिया गया है § विशेष प्रकार के द्विआधारी संबंध न तो अपवर्तक है, न ही प्रतिवर्ती है, क्योंकि इसमें युग्म (0, 0), लेकिन नहीं (2, 2), क्रमश है।
- सममित संबंध
- सभी के लिए x, y ∈ X, यदि xRy फिर yRx है। उदाहरण के लिए, रक्त रिश्तेदार एक सममित संबंध है, क्योंकि x का रक्त संबंधी है y केवल अगर y का रक्त संबंधी है x।
- प्रतिसममित
- सभी के लिए x, y ∈ X, यदि xRy तथा yRx है फिर x = y है। उदाहरण के लिए, ≥ प्रतिसममित संबंध है,ऐसा है >, लेकिन निर्वात सत्य (परिभाषा में स्थिति हमेशा गलत होती है)।[13]
- असममित संबंध
- सभी के लिए x, y ∈ X, यदि xRy फ़िर yRx नही। संबंध असममित है यदि और केवल यदि यह प्रतिसममित और अपरिवर्तनीय दोनों है।[14] उदाहरण के लिए, > असममित संबंध है, लेकिन ≥ नहीं है।
फिर से, पिछले 3 विकल्प संपूर्ण होने से बहुत दूर हैं, प्राकृतिक संख्या, संबंध पर उदाहरण के रूप में xRy द्वारा परिभाषित x > 2 न तो सममित है और न ही विषम है, अकेले असममित होने दें।
- संक्रामी संबंध
- सभी के लिए x, y, z ∈ X, यदि xRy तथा yRz फिर xRz। संक्रामी संबंध अपरिवर्तनीय है अगर और केवल अगर यह असममित है।[15] उदाहरण के लिए, "के पूर्वज में" संक्रामी संबंध है, जबकि का जनक नहीं है।
- सघन
- सभी x, y ∈ X के लिए ऐसा है कि xRy, कुछ z ∈ X ऐसे शामिलहैं कि xRz और zRy। इसका उपयोग घने आदेशों में किया जाता है।
- सम्बद्ध संबंध
- सभीx, y ∈ X के लिए, यदि x ≠ y फिर xRy या yRx हैं । इस गुण को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है संबंध (गणित) § (विषम) संबंधों के गुण। § Notes।
- मजबूत सम्बद्ध संबंध
- सभी x, y ∈ X, के लिए xRy या yRx। इस गुण को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है संबंध (गणित) § (विषम) संबंधों के गुण। § Notes।
- त्रिगुणात्मक
- सभी x, y ∈ X के लिए, बिल्कुल एक xRy, yRx या x = y रखती है। उदाहरण के लिए, > त्रिगुणात्मक संबंध है, जबकि प्राकृतिक संख्याओं पर विभाजित संबंध नहीं है।[16]
- सुस्थापित संबंध
- हर गैर-खाली उपसमुच्चय S का X के संबंध में अधिकतम और न्यूनतम तत्व सम्मिलित हैं R। सुस्थापित होने का तात्पर्य अवरोही श्रृंखला की स्थिति से है (अर्थात, कोई अनंत श्रृंखला नहीं है..... xnR...Rx3Rx2Rx1 सम्मिलित हो सकता है)। यदि आश्रित पसंद का स्वयंसिद्ध मान लिया जाए, तो दोनों स्थितियाँ समतुल्य हैं।[17][18]:पूर्व क्रम
- रिश्ता जो स्वतुल्य और संक्रामी है।
- कुल अग्रिम क्रम (भी, रेखीय अग्रिम क्रम या कमजोर क्रम)
- संबंध जो प्रतिवर्त, संक्रामी और जुड़ा हुआ है।
- आंशिक क्रम (क्रम[citation needed] भी)
- संबंध जो प्रतिवर्ती, प्रतिसममित और संक्रामी है।:पूर्णतः आंशिक क्रम (पूर्णतः क्रम[citation needed] भी)
- संबंध जो अपरावर्ती , प्रतिसममित और संक्रामी है।
- कुल क्रम (रैखिक क्रम, सरल क्रम, या श्रृंखला भी )
- संबंध जो प्रतिवर्त, प्रतिसममित, संक्रामी और जुड़ा हुआ है।[19]
- पूर्णतः कुल क्रम (पूर्णतः रैखिक क्रम, पूर्णतः सरल क्रम, या पूर्णतः श्रृंखला भी)
- संबंध जो अप्रतिवर्ती, प्रतिसममित, संक्रामी और जुड़ा हुआ है।
- आंशिक तुल्यता संबंध
- संबंध जो सममित और संक्रामी है।
- तुल्यता संबंध
- संबंध जो स्वतुल्य, सममित और संक्रामी है। यह ऐसा संबंध भी है जो सममित, संक्रामी और क्रमिक है, क्योंकि ये गुण प्रतिवर्तता का संकेत देते हैं।
(विषम) संबंधों के गुण
समुच्चय X और Y पर कुछ महत्वपूर्ण प्रकार के द्वयाधारी संबंध R नीचे सूचीबद्ध हैं।
विशिष्टता गुण:
- अंतःक्षेपक (जिसे वाम-अद्वितीय भी कहा जाता है)[20] सभी के लिए x, z ∈ X और सभी y ∈ Y, यदि xRy तथा zRy फिर x = z। ऐसे संबंध के लिए, {Y} को R की प्राथमिक कुंजी कहा जाता है।[1]उदाहरण के लिए, आरेख में हरे और नीले द्विआधारी संबंध अंतःक्षेपकहैं, लेकिन लाल वाला नहीं है (क्योंकि यह -1 और 1 से 1 दोनों से संबंधित है), न ही काला वाला (क्योंकि यह -1 और 1 से 0 दोनों से संबंधित है) ।
- कार्यात्मक (जिसे सही-अद्वितीय भी कहा जाता है,[20]सही-निश्चित[21] या असंबद्ध)
- [22] सभी के लिए x ∈ X और सभी y, z ∈ Y, यदि xRy तथा xRz फिर y = z। इस तरह के द्वयी संबंध को कहा जाता है partial function। ऐसे संबंध के लिए, {X} कहा जाता है a primary key R का[1]उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कार्यात्मक हैं, लेकिन नीला नहीं है (क्योंकि यह 1 से -1 और 1 दोनों से संबंधित है), और न ही काला वाला (क्योंकि यह 0 से -1 और 1 दोनों से संबंधित है) ।
- एक-से-एक
- अंतःक्षेपक और कार्यात्मक। उदाहरण के लिए, आरेख में हरा द्वयाधारी संबंध एक-से-एक है, लेकिन लाल, नीला और काला नहीं है।
- एक-से-कई
- अंतःक्षेपक और कार्यात्मक नहीं। उदाहरण के लिए, आरेख में नीला द्वयाधारी संबंध एक-से-कई है, लेकिन लाल, हरा और काला नहीं है।
- कई-से-एक
- कार्यात्मक और अंतःक्षेपक नहीं। उदाहरण के लिए, आरेख में लाल द्वयाधारी संबंध कई-से-एक है, लेकिन हरा, नीला और काला नहीं है।
- कई-से-अनेक
- न तो अंतःक्षेपक और न ही फलनक। उदाहरण के लिए, आरेख में काला द्वयाधारी संबंध कई-से-अनेक है, लेकिन लाल, हरा और नीला नहीं है।
संपूर्णता गुण (केवल तभी परिभाषित किया जा सकता है जब डोमेन X और कोडोमेन Y निर्दिष्ट हों):
कुल (बाएं-कुल भी कहा जाता है)
- X में सभी X के लिए Y में ऐसा सम्मिलित है xRy। दूसरे शब्दों में, R की परिभाषा का डोमेन X के बराबर है। यह गुण जुड़ा हुआ संबंध की परिभाषा से खंड द्वयाधारी संबंध गुण में अलग है (जिसे कुछ लेखकों द्वारा कुल भी कहा जाता है)[citation needed]। इस तरह के द्वयी संबंध को बहुविकल्पी फलन कहा जाता है। उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कुल हैं, लेकिन नीला वाला नहीं है (क्योंकि यह -1 को किसी वास्तविक संख्या से संबंधित नहीं करता है), और न ही काला वाला (क्योंकि यह 2 को किसी वास्तविक संख्या से संबंधित नहीं करता है) )।:क्रमिक संबंधl (या बाएं-कुल)
- सभी के लिए x ∈ X, कुछ शामिलहै y ∈ X ऐसा है कि xRy। उदाहरण के लिए, > पूर्णांकों पर एक क्रमिक संबंध है। लेकिन यह धनात्मक पूर्णांकों पर क्रमिक संबंध नहीं है, क्योंकि ऐसा नहीं है y सकारात्मक पूर्णांकों में जैसे कि 1 > y।[23] हालाँकि, < धनात्मक पूर्णांकों, परिमेय संख्याओं और वास्तविक संख्याओं पर एक क्रमिक संबंध है। हर स्वतुल्य संबंध क्रमिक संबंध है: दिए गए के लिए x, चुनें y = x।
विशेषण (जिसे दायां-कुल भी कहा जाता है[20]या पर)
- Y में सभी y के लिए, X में x सम्मिलित है जैसे कि xRy। दूसरे शब्दों में, R की परिभाषा का कोडोमेन Y के बराबर है। उदाहरण के लिए, आरेख में हरे और नीले रंग के द्वयाधारी संबंध विशेषण हैं, लेकिन लाल नहीं है (क्योंकि यह किसी वास्तविक संख्या को -1 से संबंधित नहीं करता है), न ही काला वाला (क्योंकि यह किसी भी वास्तविक संख्या को 2 से संबंधित नहीं करता है)।
विशिष्टता और समग्रता गुण (केवल डोमेन X और कोडोमेन Y निर्दिष्ट होने पर परिभाषित किया जा सकता है):
- फलन
- द्विआधारी संबंध जो कार्यात्मक और कुल है। उदाहरण के लिए, आरेख में लाल और हरे रंग के द्वयाधारी संबंध फलन हैं, लेकिन नीले और काले वाले नहीं हैं।
- अंतःक्षेप
- फलन जो अंतःक्षेपक है। उदाहरण के लिए, आरेख में हरे रंग का द्वयाधारी संबंध एक अंतःक्षेपक है, लेकिन लाल, नीला और काला नहीं है।
- विशेषण
- फलन जो विशेषण है। उदाहरण के लिए, आरेख में हरा द्वयाधारी संबंध अनुमान है, लेकिन लाल, नीला और काला नहीं है।
- द्विअंतथक्षेपण
- फलन जो अंतःक्षेपी और आच्छादक है। उदाहरण के लिए, आरेख में हरा द्वयाधारी संबंध आक्षेप है, लेकिन लाल, नीला और काला नहीं है।
सजातीय संबंधों पर संचालन
यदि R एक समुच्चय X पर सजातीय संबंध है तो निम्नलिखित में से प्रत्येक X पर सजातीय संबंध है:
- स्वतुल्य संवरक
- R= , R के रूप में परिभाषित किया गया है R= = {(x, x) | x ∈ X} ∪ R या R युक्त X पर सबसे छोटा स्वतुल्य संबंध है। यह R वाले सभी स्वतुल्य संबंधों के प्रतिच्छेदन (समुच्चय सिद्धांत) के बराबर साबित हो सकता है।
- स्वतुल्य कमी
- R≠, R के रूप में परिभाषित किया गया है R≠= R \ {(x, x) | x ∈ X} या R में निहित X पर सबसे बड़ा अपरावर्ती संबंध है।
- संक्रामी संवरक
- R+, R युक्त X पर सबसे छोटे संक्रामी संबंध के रूप में परिभाषित किया गया है। इसे R वाले सभी संक्रामी संबंधों के प्रतिच्छेदन के बराबर देखा जा सकता है।
- स्वतुल्य संक्रामी संवरक
- R*, के रूप में परिभाषित किया गया R* = (R+)=, सबसे छोटा पूर्व आदेश जिसमें R है।
- स्वतुल्य संक्रामी सममि संवरक
- R≡, R वाले X पर सबसे छोटे समतुल्य संबंध के रूप में परिभाषित किया गया है।
अनुभाग में परिभाषित सभी संचालन § द्विआधारी संबंधों पर संचालन सजातीय संबंधों पर भी लागू होता है।
गुण द्वारा सजातीय संबंध स्वतुल्यता सममित संक्रामी शृंखला प्रतीक उदहारण निर्देशित ग्राफ → अप्रत्यक्ष ग्राफ Symmetric निर्भरता Reflexive Symmetric टूर्नामेंट Irreflexive Antisymmetric पेकिंग क्रम पूर्व क्रम Reflexive Yes ≤ पसंद कुल अग्रिम क्रम Reflexive Yes Yes ≤ आंशिक क्रम Reflexive Antisymmetric Yes ≤ उपसमुच्चय पूर्णतः आंशिक क्रम Irreflexive Antisymmetric Yes < सख्त उपसमुच्चय कुल क्रम Reflexive Antisymmetric Yes Yes ≤ वर्णानुक्रम पूर्णतः कुल क्रम Irreflexive Antisymmetric Yes Yes < सख्त वर्णमाला क्रम आंशिक तुल्यता संबंध Symmetric Yes तुल्यता संबंध Reflexive Symmetric Yes ∼, ≡ समानता
(विषम) संबंधों पर संचालन
समुच्च
- यदि R और S समुच्चय X और Y पर द्विआधारी संबंध हैं तो R ∪ S = {(x, y) | xRy या xSy R और S का समुच्च संबंध है। इस संचालन का पहचान तत्व खाली संबंध है। उदाहरण के लिए, ≤ < और = का मिलन है, और ≥ > और = का मिलन है।: प्रतिच्छेदन
- यदि R और S समुच्चय X और Y पर द्विआधारी संबंध हैं तो R ∩ S = {(x, y) | xRy और xSy X और Y पर R और S का प्रतिच्छेदन संबंध है । पहचान तत्व सार्वभौमिक संबंध है। उदाहरण के लिए, संबंध 6 से विभाज्य है संबंधों का प्रतिच्छेदन 3 से विभाज्य है और 2 से विभाज्य है।:संयुक्तीकरण
- यदि R समुच्चय X और Y पर द्वयी संबंध है, और S समुच्चय Y और Z पर द्वयी संबंध है तो S ∘ R = {(x, z) | वहाँ y ∈ Y का अस्तित्व है जैसे कि xRy और ySz} (द्वारा भी निरूपित) R; S) X और Z पर R और S का संयुक्तीकरण संबंध है। पहचान तत्व पहचान संबंध है। अंकन में R और S का क्रम S ∘ R, यहाँ प्रयुक्त कार्यों की संरचना के लिए मानक अंकन क्रम से सहमत है। उदाहरण के लिए, रचना ∘ की जननी है, उपज की जननी है, की नानी है, जबकि रचना ∘ की जननी है, उपज की जननी है। पूर्व मामले के लिए, यदि x, y का माता-पिता है और y, z की माता है, तो x, z का नाना-नानी है।: विपरीत
- यदि R समुच्चय X और Y पर द्विआधारी संबंध है तो RT = {(y, x) | xRy} Y और X पर R का विपरीत संबंध है। उदाहरण के लिए, = स्वयं का विपरीत है, जैसा ≠ है, और < और > दूसरे के विपरीत हैं, जैसे ≤ और ≥ हैं। द्विआधारी संबंध इसके विपरीत के बराबर है यदि और केवल यदि यह सममित संबंध है।:पूरक
- यदि R समुच्चय X और Y पर एक द्विआधारी संबंध है तो R = {(X, Y) | xRy नहीं (द्वारा भी दर्शाया गया है
Rया ¬ R) X और Y पर R का पूरक संबंध है। उदाहरण के लिए, = और ≠ एक दूसरे के पूरक हैं, जैसे ⊆ और ⊈, ⊇ और ⊉, और ∈ और ∉, और, कुल क्रम के लिए भी < और ≥, और > और ≤ है। विपरीत संबंध का पूरक RT पूरक का विपरीत है: - प्रतिबंधात्मक संबंध
- यदि R समुच्चय X पर द्विआधारी सजातीय संबंध है और S, X का उपसमुच्चय है R|S = {(X, Y) | xRy और x ∈ S और y ∈ S} R से S का Template:प्रतिबंधात्मक संबंध है। व्यंजक R|S = {(X, Y) | xRy और x ∈ S} R से S का {{ बायाँ-प्रतिबंध संबंध} है। व्यंजक R|S = {(X, Y) | xRy और y ∈ S}को R से S का {{ सही-प्रतिबंध संबंध} कहा जाता है।। यदि कोई संबंध स्वतुल्य संबंध, अपरावर्ती, सममित संबंध, प्रतिसममित संबंध, असममित संबंध, संक्रामी संबंध, क्रमिक संबंध संबंध, त्रिगुणात्मक (गणित), आंशिक क्रम, कुल क्रम, सख्त कमजोर क्रम है, कुल पूर्व आदेश (कमजोर आदेश), या समकक्ष संबंध, तो इसके प्रतिबंध भी हैं। हालांकि, प्रतिबंध का सकर्मक समापन सकर्मक बंद होने के प्रतिबंध का एक उपसमुच्चय है, अर्थात, सामान्य रूप से समान नहीं है। उदाहरण के लिए, "x, y का जनक है" संबंध को महिलाओं तक सीमित करने से संबंध "x, महिला y की मां है" प्राप्त होता है, इसका सकर्मक समापन महिला को उसकी नानी से संबंधित नहीं करता है। दूसरी ओर, "का जनक है" का सकर्मक समापन "का पूर्वज है"; महिलाओं के लिए इसका प्रतिबंध एक महिला को उसकी नानी से जोड़ता है।
द्वयी संबंध R ओवरसेट X और Y को एक संबंध S ओवर X और Y में निहित कहा जाता है, जिसे लिखा जाता है, यदि R, S का उपसमुच्चय है, अर्थात सभी के लिए तथा अगर xRy, तो xSy। यदि R, S में समाहित है और S, R में समाहित है, तो R और S को बराबर लिखा हुआ R = S कहते हैं। यदि R, S में समाहित है, लेकिन S, R में समाहित नहीं है, तो R, S से छोटा कहा जाता है, लिखित R ⊊ S. उदाहरण के लिए, परिमेय संख्याओं पर संबंध > ≥ से छोटा होता है, और संघटन > ∘ >.के बराबर होता है।
उदाहरण
- सख्त आदेश सहित आदेश संबंध:
- तुल्यता संबंध:
- समानता (गणित)
- समानांतर (ज्यामिति) के साथ (एफ़िन रिक्त स्थान के लिए)
- के साथ आपत्ति में है
- समरूपता
- टॉलरेंस संबंध, स्वतुल्य और सममित संबंध:
- निर्भरता संबंध, एक परिमित सहिष्णुता संबंध
- स्वतंत्रता संबंध, कुछ निर्भरता संबंध का पूरक
- रिश्तेदारीसंबंधों की संरचना
यह भी देखें
- सार पुनर्लेखन प्रणाली
- योज्य संबंध, मॉड्यूल के बीच एक बहु-मूल्यवान समरूपता
- संबंधों की श्रेणी, वस्तुओं के रूप में सेट वाली श्रेणी और आकारिकी के रूप में विषम द्विआधारी संबंध
- संगम (शब्द पुनर्लेखन), द्विआधारी संबंधों के कई असामान्य लेकिन मौलिक गुणों पर चर्चा करता है
- पत्राचार (बीजीय ज्यामिति), बीजगणितीय समीकरणों द्वारा परिभाषित एक द्विआधारी संबंध
- हस्स आरेख, एक ग्राफिक का मतलब ऑर्डर संबंध प्रदर्शित करना है
- घटना संरचना, बिंदुओं और रेखाओं के सेट के बीच एक विषम संबंध
- रिश्तेदारों का तर्क, चार्ल्स सैंडर्स पियर्स द्वारा संबंधों का एक सिद्धांत
- आदेश सिद्धांत, आदेश संबंधों के गुणों की जांच करता है
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Codd, Edgar Frank (June 1970). "बड़े साझा डेटा बैंकों के लिए डेटा का एक संबंधपरक मॉडल" (PDF). Communications of the ACM. 13 (6): 377–387. doi:10.1145/362384.362685. S2CID 207549016. Retrieved 2020-04-29.
- ↑ "संबंध परिभाषा - गणित अंतर्दृष्टि". mathinsight.org. Retrieved 2019-12-11.
- ↑ Enderton 1977, Ch 3. pg. 40
- ↑ Ernst Schröder (1895) Algebra und Logic der Relative, via Internet Archive
- ↑ C. I. Lewis (1918) A Survey of Symbolic Logic , pages 269 to 279, via internet Archive
- ↑ Suppes, Patrick (1972) [originally published by D. van Nostrand Company in 1960]. Axiomatic Set Theory. Dover. ISBN 0-486-61630-4.
- ↑ Smullyan, Raymond M.; Fitting, Melvin (2010) [revised and corrected republication of the work originally published in 1996 by Oxford University Press, New York]. Set Theory and the Continuum Problem. Dover. ISBN 978-0-486-47484-7.
- ↑ Levy, Azriel (2002) [republication of the work published by Springer-Verlag, Berlin, Heidelberg and New York in 1979]. Basic Set Theory. Dover. ISBN 0-486-42079-5.
- ↑ M. E. Müller (2012). संबंधपरक ज्ञान की खोज. Cambridge University Press. p. 22. ISBN 978-0-521-19021-3.</रेफरी><ref name="PahlDamrath2001-p496">Peter J. Pahl; Rudolf Damrath (2001). कम्प्यूटेशनल इंजीनियरिंग की गणितीय नींव: एक पुस्तिका. Springer Science & Business Media. p. 496. ISBN 978-3-540-67995-0.
- ↑ Schmidt, Gunther; Ströhlein, Thomas (2012). संबंध और रेखांकन: कंप्यूटर वैज्ञानिकों के लिए असतत गणित. Definition 4.1.1.: Springer Science & Business Media. ISBN 978-3-642-77968-8.
{{cite book}}
: CS1 maint: location (link) - ↑ Christodoulos A. Floudas; Panos M. Pardalos (2008). अनुकूलन का विश्वकोश (2nd ed.). Springer Science & Business Media. pp. 299–300. ISBN 978-0-387-74758-3.
- ↑ Michael Winter (2007). गोगुएन श्रेणियाँ: एल-फ़ज़ी संबंधों के लिए एक स्पष्ट दृष्टिकोण. Springer. pp. x–xi. ISBN 978-1-4020-6164-6.
- ↑ Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006), A Transition to Advanced Mathematics (6th ed.), Brooks/Cole, p. 160, ISBN 0-534-39900-2
- ↑ Nievergelt, Yves (2002), Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, Springer-Verlag, p. 158.
- ↑ Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007). बाइनरी रिलेशंस का सकर्मक क्लोजर I (PDF). Prague: School of Mathematics – Physics Charles University. p. 1. Archived from the original (PDF) on 2013-11-02. Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".
- ↑ Since neither 5 divides 3, nor 3 divides 5, nor 3=5.
- ↑ "अच्छी तरह से स्थापित होने की स्थिति". ProofWiki. Archived from the original on 20 February 2019. Retrieved 20 February 2019.
- ↑ Fraisse, R. (15 December 2000). संबंधों का सिद्धांत, खंड 145 - पहला संस्करण (1st ed.). Elsevier. p. 46. ISBN 9780444505422. Retrieved 20 February 2019.
- ↑ Joseph G. Rosenstein, Linear orderings, Academic Press, 1982, ISBN 0-12-597680-1, p. 4
- ↑ 20.0 20.1 20.2 Kilp, Knauer and Mikhalev: p. 3. The same four definitions appear in the following:
- Peter J. Pahl; Rudolf Damrath (2001). Mathematical Foundations of Computational Engineering: A Handbook. Springer Science & Business Media. p. 506. ISBN 978-3-540-67995-0.
- Eike Best (1996). Semantics of Sequential and Parallel Programs. Prentice Hall. pp. 19–21. ISBN 978-0-13-460643-9.
- Robert-Christoph Riemann (1999). Modelling of Concurrent Systems: Structural and Semantical Methods in the High Level Petri Net Calculus. Herbert Utz Verlag. pp. 21–22. ISBN 978-3-89675-629-9.
- ↑ Mäs, Stephan (2007), "Reasoning on Spatial Semantic Integrity Constraints", Spatial Information Theory: 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4736, Springer, pp. 285–302, doi:10.1007/978-3-540-74788-8_18
- ↑ Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7, Chapt. 5
- ↑ Yao, Y.Y.; Wong, S.K.M. (1995). "विशेषता मानों के बीच संबंधों का उपयोग करते हुए किसी न किसी सेट का सामान्यीकरण" (PDF). Proceedings of the 2nd Annual Joint Conference on Information Sciences: 30–33..
ग्रन्थसूची
- Codd, Edgar Frank (1990). The Relational Model for Database Management: Version 2 (PDF). Boston: Addison-Wesley. ISBN 978-0201141924.
- Enderton, Herbert (1977). Elements of Set Theory. Boston: Academic Press. ISBN 978-0-12-238440-0.
- Kilp, Mati; Knauer, Ulrich; Mikhalev, Alexander (2000). Monoids, Acts and Categories: with Applications to Wreath Products and Graphs. Berlin: De Gruyter. ISBN 978-3-11-015248-7.
- Peirce, Charles Sanders (1873). "Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic". Memoirs of the American Academy of Arts and Sciences. 9 (2): 317–178. doi:10.2307/25058006. hdl:2027/hvd.32044019561034. JSTOR 25058006. Retrieved 2020-05-05.
- Schmidt, Gunther (2010). Relational Mathematics. Cambridge: Cambridge University Press. ISBN 978-0-521-76268-7.