स्प्लाईन (गणित): Difference between revisions

From Vigyanwiki
(minor changes)
(minor changes)
Line 1: Line 1:
{{Short description|Mathematical function defined piecewise by polynomials}}
{{Short description|Mathematical function defined piecewise by polynomials}}
{{For|the drafting tool|Flat spline}}
{{For|आलेखन उपकरण|सपाट तख़्ता}}


[[Image:Parametic Cubic Spline.svg|thumb|1/3 और 2/3 पर सिंगल नॉट सी के साथ मिलने वाले तीन घन बहुपदों की एक पट्टी स्थापित करते हैं<sup>2</sup> निरंतरता। अंतराल के दोनों सिरों पर ट्रिपल समुद्री मील सुनिश्चित करते हैं कि वक्र अंत बिंदुओं को प्रक्षेपित करता है]]गणित में, एक तख़्ता एक विशेष कार्य है जिसे [[बहुपद|बहुपदों]] द्वारा टुकड़े-टुकड़े परिभाषित किया जाता है। [[प्रक्षेप|इंटरपोलेटिंग]] समस्याओं में, [[तख़्ता प्रक्षेप|स्पलाइन इंटरपोलेशन]] को अक्सर बहुपद इंटरपोलेशन के लिए पसंद किया जाता है क्योंकि यह समान परिणाम देता है, यहां तक कि निम्न डिग्री बहुपद का उपयोग करते समय भी, उच्च डिग्री के लिए रनगे की घटना से परहेज करते हुए।
[[Image:Parametic Cubic Spline.svg|thumb|1/3 और 2/3 पर सिंगल नॉट सी के साथ मिलने वाले तीन घन बहुपदों की एक पट्टी स्थापित करते हैं<sup>2</sup> निरंतरता। अंतराल के दोनों सिरों पर ट्रिपल समुद्री मील सुनिश्चित करते हैं कि वक्र अंत बिंदुओं को प्रक्षेपित करता है]]गणित में, एक तख़्ता एक विशेष कार्य है जिसे [[बहुपद|बहुपदों]] द्वारा टुकड़े-टुकड़े परिभाषित किया जाता है। [[प्रक्षेप|इंटरपोलेटिंग]] समस्याओं में, [[तख़्ता प्रक्षेप|स्पलाइन इंटरपोलेशन]] को अक्सर बहुपद इंटरपोलेशन के लिए पसंद किया जाता है क्योंकि यह समान परिणाम देता है, यहां तक कि निम्न डिग्री बहुपद का उपयोग करते समय भी, उच्च डिग्री के लिए रनगे की घटना से परहेज करते हुए।
Line 43: Line 43:


यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।
यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।
:<math> S(t) \in C^{n-j_i-j_{i+1}} [t_i = t_{i+1}],</math> कहाँ पे <math>j_i = n - r_i</math>
:<math> S(t) \in C^{n-j_i-j_{i+1}} [t_i = t_{i+1}],</math> जहाँ <math>j_i = n - r_i</math>
यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।
यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।


Line 133: Line 133:
== C2 इंटरपोलिंग क्यूबिक स्पलाइन के लिए सामान्य एक्सप्रेशन ==
== C2 इंटरपोलिंग क्यूबिक स्पलाइन के लिए सामान्य एक्सप्रेशन ==
    
    
Ith सी के लिए सामान्य अभिव्यक्ति<sup>2</sup> सूत्र का उपयोग करके प्राकृतिक स्थिति के साथ एक बिंदु x पर क्यूबिक स्पलाइन को इंटरपोल करते हुए पाया जा सकता है
प्राकृतिक स्थिति के साथ एक बिंदु x पर iवें C2 प्रक्षेपित घन पट्टी के लिए सामान्य अभिव्यक्ति सूत्र का उपयोग करके पाया जा सकता है


:<math>S_i(x)= \frac{z_i(x-t_{i-1})^3}{6h_i} +\frac{z_{i-1}(t_i-x)^3}{6h_i}+\left[ \frac{f(t_i)}{h_i}-\frac{z_ih_i}{6}\right](x-t_{i-1})+\left[ \frac{f(t_{i-1})}{h_i}-\frac{z_{i-1}h_i}{6}\right](t_i-x)</math>
:<math>S_i(x)= \frac{z_i(x-t_{i-1})^3}{6h_i} +\frac{z_{i-1}(t_i-x)^3}{6h_i}+\left[ \frac{f(t_i)}{h_i}-\frac{z_ih_i}{6}\right](x-t_{i-1})+\left[ \frac{f(t_{i-1})}{h_i}-\frac{z_{i-1}h_i}{6}\right](t_i-x)</math>
कहाँ पे
जहाँ
* <math>z_i = f^{\prime\prime}(t_i)</math> iवें गाँठ पर दूसरे अवकलज के मान हैं।
* <math>z_i = f^{\prime\prime}(t_i)</math> iवें गाँठ पर दूसरे अवकलज के मान हैं।
* <math> h_i^{} = t_i-t_{i-1} </math>
* <math> h_i^{} = t_i-t_{i-1} </math>
Line 142: Line 142:


== प्रतिनिधित्व और नाम ==
== प्रतिनिधित्व और नाम ==
किसी दिए गए अंतराल [ए, बी] और उस अंतराल पर दिए गए विस्तारित गाँठ वेक्टर के लिए, डिग्री एन के स्प्लिन एक वेक्टर स्थान बनाते हैं। संक्षेप में इसका मतलब यह है कि किसी दिए गए प्रकार के किसी भी दो स्प्लिन को जोड़ने से उस दिए गए प्रकार के स्पलाइन का उत्पादन होता है, और किसी दिए गए टाइप के स्पलाइन को किसी स्थिरांक से गुणा करने से उस दिए गए प्रकार का स्पलाइन बनता है। का [[हेमल आयाम]]
किसी दिए गए अंतराल के लिए [ए, बी] और उस अंतराल पर दिए गए विस्तारित गाँठ वेक्टर, डिग्री एन के स्प्लिन एक [[सदिश स्थल|वेक्टर स्थान]] बनाते हैं। संक्षेप में इसका मतलब यह है कि किसी दिए गए प्रकार के किसी भी दो स्प्लिन को जोड़ने से उस दिए गए प्रकार के स्पलाइन का उत्पादन होता है, और किसी दिए गए प्रकार के स्पलाइन को किसी भी स्थिरांक से गुणा करने से उस दिए गए प्रकार का एक स्पलाइन बनता है। एक निश्चित प्रकार के सभी स्प्लिन युक्त स्थान का आयाम विस्तारित गाँठ वेक्टर से गिना जा सकता है:
एक निश्चित प्रकार के सभी स्प्लिन वाले स्थान को विस्तारित गाँठ [[सदिश स्थल]] गिना जा सकता है:
:<math>
:<math>
a = t_0
a = t_0
Line 154: Line 153:
j_i \le n+1 ~,~~ i=1,\ldots,k-2.
j_i \le n+1 ~,~~ i=1,\ldots,k-2.
</math>
</math>
आयाम डिग्री और गुणकों के योग के बराबर है
आयाम डिग्री के योग के साथ-साथ गुणकों के बराबर है
:<math>d = n + \sum_{i=1}^{k-2} j_i.</math>
:<math>d = n + \sum_{i=1}^{k-2} j_i.</math>
यदि किसी प्रकार के स्पलाइन पर अतिरिक्त रैखिक स्थितियां लागू होती हैं, तो परिणामी स्पलाइन एक उप-स्पेस में स्थित होगी। उदाहरण के लिए, सभी प्राकृतिक क्यूबिक स्प्लिनों का स्थान, सभी क्यूबिक सी के स्थान का एक उप-स्थान है<sup>2</sup> स्प्लिन।
यदि किसी प्रकार के स्पलाइन पर अतिरिक्त रेखीय शर्तें लागू होती हैं, तो परिणामी स्पलाइन एक उप-स्पेस में होगी। उदाहरण के लिए, सभी प्राकृतिक क्यूबिक स्प्लाइनों का स्थान, सभी क्यूबिक C2 स्प्लाइनों के स्थान का एक उप-स्थान है।


स्प्लिनों का साहित्य विशेष प्रकार के स्प्लिनों के नामों से भरा पड़ा है।
स्प्लिन्स का साहित्य विशेष प्रकार के स्प्लिन्स के नामों से भरा हुआ है। इन नामों को जोड़ा गया है:
इन नामों को जोड़ा गया है:
* उदाहरण के लिए, स्पलाइन का प्रतिनिधित्व करने के लिए किए गए विकल्प:
* [[बी-पट्टी]] का प्रतिनिधित्व करने के लिए किए गए विकल्प, उदाहरण के लिए:
** संपूर्ण स्पलाइन के लिए [[आधार (रैखिक बीजगणित)|आधार]] फ़ंक्शंस का उपयोग करना (हमें [[बी-पट्टी|बी-स्पलाइन]] नाम देना)
** संपूर्ण तख़्ता के लिए [[आधार (रैखिक बीजगणित)]] कार्यों का उपयोग करना (हमें बी-स्पलीन नाम देना)
**प्रत्येक बहुपद टुकड़े का प्रतिनिधित्व करने के लिए पियरे बेज़ियर द्वारा नियोजित [[बर्नस्टीन बहुपद|बर्नस्टीन बहुपदों]] का उपयोग करना (हमें नाम बेज़ियर स्प्लिन देना)
** प्रत्येक बहुपद टुकड़े का प्रतिनिधित्व करने के लिए पियरे बेज़ियर द्वारा नियोजित [[बर्नस्टीन बहुपद]]ों का उपयोग करना (हमें बेज़ियर स्पलाइन (बहुविकल्पी) नाम देना। बेज़ियर स्प्लिन<!--Intentional link to DAB page-->)
* उदाहरण के लिए, विस्तारित गाँठ सदिश बनाने में किए गए विकल्प:
* विस्तारित गाँठ वेक्टर बनाने में किए गए विकल्प, उदाहरण के लिए:
** Cn-1 निरंतरता के लिए सिंगल नॉट्स का उपयोग करना और इन नॉट्स को समान रूप से [, बी] पर रखना (हमें एक समान स्प्लिन देना)
** सी के लिए सिंगल नॉट्स का उपयोग करना<sup>n-1</sup> निरंतरता और इन गांठों को [a,b] पर समान रूप से रखना (हमें 'यूनिफ़ॉर्म स्प्लाइन' देना)
** अंतराल पर बिना किसी प्रतिबंध के गांठों का उपयोग करना (हमें गैर-समान स्प्लिन देना)
** अंतराल पर बिना किसी प्रतिबंध के गांठों का उपयोग करना (हमें 'गैर-वर्दी स्प्लिन' देना)
* स्पलाइन पर लगाई गई कोई विशेष शर्तें, उदाहरण के लिए:
* स्पलाइन पर लगाई गई कोई विशेष शर्तें, उदाहरण के लिए:
** ए और बी पर शून्य सेकंड डेरिवेटिव लागू करना (हमें 'प्राकृतिक विभाजन' देना)
** ए और बी पर शून्य सेकेंड डेरिवेटिव लागू करना (हमें प्राकृतिक विभाजन देना)
** यह आवश्यक है कि दिए गए डेटा मान स्पलाइन पर हों (हमें 'इंटरपोलेटिंग स्प्लिन' दें)
** आवश्यकता है कि दिए गए डेटा मान स्पलाइन पर हों (हमें इंटरपोलेटिंग स्प्लिन दें)
ऊपर दी गई दो या दो से अधिक मुख्य वस्तुओं को संतुष्ट करने वाली एक प्रकार की पट्टी के लिए अक्सर एक विशेष नाम चुना जाता था। उदाहरण के लिए, [[साधु तख़्ता]] एक स्पलाइन है जिसे प्रत्येक व्यक्तिगत बहुपद टुकड़ों का प्रतिनिधित्व करने के लिए हर्मिट बहुपदों का उपयोग करके व्यक्त किया जाता है। इन्हें अक्सर एन = 3 के साथ प्रयोग किया जाता है; वह है, [[क्यूबिक हर्मिट स्पलाइन]] के रूप में। इस डिग्री में उन्हें अतिरिक्त रूप से केवल स्पर्शरेखा-निरंतर चुना जा सकता है (सी<sup>1</sup>); जिसका तात्पर्य है कि सभी आंतरिक गांठें दोहरी हैं। दिए गए डेटा बिंदुओं में ऐसे स्प्लाइन्स को फ़िट करने के लिए कई विधियों का आविष्कार किया गया है; अर्थात्, उन्हें इंटरपोलेटिंग स्प्लाइन बनाने के लिए, और ऐसा करने के लिए प्रशंसनीय स्पर्शरेखा मूल्यों का अनुमान लगाकर ऐसा करना जहां प्रत्येक दो बहुपद टुकड़े मिलते हैं (हमें उपयोग की जाने वाली विधि के आधार पर [[कार्डिनल स्पलाइन]], [[कैटमुल-रोम स्पलाइन]] और [[प्रेमी-Bartels पट्टी]] देते हैं)।
ऊपर दी गई दो या अधिक मुख्य वस्तुओं को संतुष्ट करने वाली एक प्रकार की पट्टी के लिए अक्सर एक विशेष नाम चुना गया था। उदाहरण के लिए, [[साधु तख़्ता|हर्मिट स्पलाइन]] एक स्पलाइन है जिसे प्रत्येक व्यक्तिगत बहुपद टुकड़े का प्रतिनिधित्व करने के लिए हर्मिट बहुपद का उपयोग करके व्यक्त किया जाता है। ये सबसे अधिक बार n = 3 के साथ उपयोग किए जाते हैं; वह है, जैसा कि [[क्यूबिक हर्मिट स्पलाइन]]इस डिग्री में उन्हें अतिरिक्त रूप से केवल स्पर्शरेखा-निरंतर (C1) के लिए चुना जा सकता है; जिसका अर्थ है कि सभी आंतरिक गांठें दोहरी हैं। दिए गए डेटा बिंदुओं में ऐसे स्प्लाइन्स को फिट करने के लिए कई तरीकों का आविष्कार किया गया है; अर्थात्, उन्हें इंटरपोलेटिंग स्प्लाइन बनाने के लिए, और ऐसा करने के लिए प्रशंसनीय स्पर्शरेखा मूल्यों का अनुमान लगाकर ऐसा करना जहां प्रत्येक दो बहुपद टुकड़े मिलते हैं (हमें [[कार्डिनल स्पलाइन]], [[कैटमुल-रोम स्पलाइन]] और [[प्रेमी-Bartels पट्टी|कोचनक-बार्टेल्स स्प्लाइन]], प्रयुक्त विधि के आधार पर)।


प्रत्येक अभ्यावेदन के लिए, मूल्यांकन के कुछ साधन खोजे जाने चाहिए ताकि मांग पर स्पलाइन के मूल्यों का उत्पादन किया जा सके। उन निरूपणों के लिए जो प्रत्येक व्यक्तिगत बहुपद टुकड़े पी को व्यक्त करते हैं<sub>''i''</sub>(टी) के संदर्भ में
प्रत्येक अभ्यावेदन के लिए, मूल्यांकन के कुछ साधन अवश्य खोजे जाने चाहिए ताकि माँग पर स्पलाइन के मूल्यों का उत्पादन किया जा सके। उन निरूपणों के लिए जो डिग्री एन बहुपद के लिए कुछ आधार के संदर्भ में प्रत्येक व्यक्तिगत बहुपद पाई (टी) को व्यक्त करते हैं, यह वैचारिक रूप से सीधा है:
डिग्री एन बहुपद के लिए कुछ आधार, यह वैचारिक रूप से सीधा है:
* तर्क t के दिए गए मान के लिए, वह अंतराल ज्ञात कीजिए जिसमें यह <math>t \in [t_i,t_{i+1}]</math> स्थित है
* तर्क t के दिए गए मान के लिए, वह अंतराल ज्ञात करें जिसमें यह निहित है <math>t \in [t_i,t_{i+1}]</math>
*अंतराल <math>P_0, \ldots, P_{k-2}</math> के लिए चुने गए बहुपद के आधार को देखें
* उस अंतराल के लिए चुने गए बहुपद आधार को देखें <math>P_0, \ldots, P_{k-2}</math>
* प्रत्येक आधार बहुपद का मान t: <math>P_0(t), \ldots, P_{k-2}(t)</math> पर ज्ञात कीजिए
* टी पर प्रत्येक आधार बहुपद का मान ज्ञात कीजिए: <math>P_0(t), \ldots, P_{k-2}(t)</math>
* उन आधार बहुपदों के रैखिक संयोजन के गुणांकों को देखें जो उस अंतराल c0, ..., ck-2 पर पट्टी देते हैं
* उन आधार बहुपदों के रैखिक संयोजन के गुणांकों को देखें जो उस अंतराल सी पर पट्टी देते हैं<sub>0</sub>, ..., सी<sub>''k''-2</sub>
* t पर स्पलाइन का मान प्राप्त करने के लिए आधार बहुपद मानों के उस रैखिक संयोजन को जोड़ें:
* टी पर पट्टी का मान प्राप्त करने के लिए आधार बहुपद मानों के उस रैखिक संयोजन को जोड़ें:
:<math>\sum_{j=0}^{k-2} c_j P_j(t).</math>
:<math>\sum_{j=0}^{k-2} c_j P_j(t).</math>
हालांकि, मूल्यांकन और योग चरणों को अक्सर चतुर तरीके से जोड़ दिया जाता है। उदाहरण के लिए, बर्नस्टीन बहुपद बहुपदों के लिए एक आधार हैं जिनका विशेष पुनरावृत्ति संबंधों का उपयोग करके कुशलतापूर्वक रैखिक संयोजनों में मूल्यांकन किया जा सकता है। यह डी कैस्टेलजौ के एल्गोरिथ्म का सार है, जो बेज़ियर कर्व्स और बेज़ियर स्पलाइन (बहुविकल्पी) में विशेषता है। बेज़ियर स्प्लाइन<!--Intentional link to DAB page-->).
हालांकि, मूल्यांकन और सारांश चरण अक्सर चतुर तरीके से संयुक्त होते हैं। उदाहरण के लिए, बर्नस्टीन बहुपद बहुपदों के लिए एक आधार हैं जिनका विशेष पुनरावृत्ति संबंधों का उपयोग करके रैखिक संयोजनों में कुशलतापूर्वक मूल्यांकन किया जा सकता है। यह डी कैस्टेलजौ के एल्गोरिथम का सार है, जो बेज़ियर कर्व्स और बेज़ियर स्प्लाइन्स में दिखाई देता है)


एक प्रतिनिधित्व के लिए जो आधार विभाजन के एक रैखिक संयोजन के रूप में एक पट्टी को परिभाषित करता है, हालांकि, कुछ अधिक परिष्कृत की आवश्यकता होती है। [[दे बूर अल्गोरिथम]] बी-स्प्लिंस के मूल्यांकन के लिए एक प्रभावी तरीका है।
एक प्रतिनिधित्व के लिए जो आधार स्प्लाइन के एक रैखिक संयोजन के रूप में एक स्पलाइन को परिभाषित करता है, हालांकि, कुछ अधिक परिष्कृत की आवश्यकता है। [[दे बूर अल्गोरिथम|डी बूर एल्गोरिथम]] बी-स्प्लिन के मूल्यांकन के लिए एक कुशल तरीका है।


== इतिहास ==
== इतिहास ==
कंप्यूटर के उपयोग से पहले, संख्यात्मक गणना हाथ से की जाती थी। हालांकि टुकड़े-टुकड़े-परिभाषित कार्यों जैसे [[साइन समारोह]] या स्टेप फ़ंक्शन का उपयोग किया गया था, बहुपदों को आम तौर पर पसंद किया जाता था क्योंकि उनके साथ काम करना आसान था। कम्प्यूटरों के आगमन से स्प्लाइनों का महत्व बढ़ गया है। वे पहले इंटरपोलेशन में बहुपदों के प्रतिस्थापन के रूप में उपयोग किए गए थे, फिर कंप्यूटर ग्राफिक्स में चिकनी और लचीली आकृतियों के निर्माण के लिए एक उपकरण के रूप में।
कंप्यूटर का उपयोग करने से पहले संख्यात्मक गणना हाथ से की जाती थी। हालांकि टुकड़े-टुकड़े परिभाषित कार्यों जैसे [[साइन समारोह]] या चरण फ़ंक्शन का उपयोग किया गया था, बहुपदों को आम तौर पर पसंद किया जाता था क्योंकि उनके साथ काम करना आसान था। कंप्यूटर के आगमन के माध्यम से स्प्लाइन्स को महत्व प्राप्त हुआ है। उन्हें पहले इंटरपोलेशन में बहुपदों के प्रतिस्थापन के रूप में इस्तेमाल किया गया था, फिर कंप्यूटर ग्राफिक्स में चिकनी और लचीली आकृतियों के निर्माण के लिए एक उपकरण के रूप में।


यह आमतौर पर स्वीकार किया जाता है कि स्प्लिन्स का पहला गणितीय संदर्भ [[इसहाक जैकब स्कोनबर्ग]] द्वारा 1946 का पेपर है, जो संभवत: पहला स्थान है जहां स्पलाइन शब्द का उपयोग चिकनी, टुकड़े-टुकड़े बहुपद सन्निकटन के संबंध में किया जाता है। हालाँकि, विचारों की जड़ें विमान और जहाज निर्माण उद्योगों में हैं। (बार्टेल्स एट अल।, 1987) की प्रस्तावना में, [[रॉबिन फॉरेस्ट]] ने लॉफ्टिंग का वर्णन किया है, [[द्वितीय विश्व युद्ध]] के दौरान ब्रिटिश विमान उद्योग में इस्तेमाल की जाने वाली तकनीक, लकड़ी की पतली पट्टियों (जिन्हें फ्लैट स्प्लिन कहा जाता है) को बिंदुओं के माध्यम से हवाई जहाज के लिए टेम्प्लेट बनाने के लिए तैयार किया गया था। एक बड़े डिजाइन के [[मचान]] का फर्श, जहाज-पतवार डिजाइन से उधार ली गई तकनीक। सालों से जहाज डिजाइन के अभ्यास ने छोटे में डिजाइन करने के लिए मॉडल को नियोजित किया था। सफल डिजाइन को फिर ग्राफ पेपर पर प्लॉट किया गया और प्लॉट के प्रमुख बिंदुओं को बड़े ग्राफ पेपर पर पूर्ण आकार में फिर से प्लॉट किया गया। पतली लकड़ी की पट्टियों ने प्रमुख बिंदुओं को चिकने वक्रों में प्रक्षेपित किया। स्ट्रिप्स को असतत बिंदुओं पर आयोजित किया जाएगा (फॉरेस्ट द्वारा बतख कहा जाता है; स्कोनबर्ग कुत्तों या चूहों का इस्तेमाल करते हैं) और इन बिंदुओं के बीच न्यूनतम तनाव ऊर्जा के आकार ग्रहण करेंगे। फॉरेस्ट के अनुसार, इस प्रक्रिया के लिए एक गणितीय मॉडल के लिए एक संभावित प्रेरणा एक पूरे विमान के लिए महत्वपूर्ण डिजाइन घटकों की संभावित हानि थी, अगर मचान को दुश्मन के बम से मारा जाना चाहिए। इसने शंक्वाकार लफ्टिंग को जन्म दिया, जो बत्तखों के बीच वक्र की स्थिति को मॉडल करने के लिए शंक्वाकार वर्गों का उपयोग करता था। 1960 के दशक की शुरुआत में [[बोइंग]] में जे.सी. फर्ग्यूसन और (कुछ समय बाद) मैल्कम साबिन द्वारा किए गए काम के आधार पर कॉनिक लॉफ्टिंग को हम स्प्लिन कहेंगे। [[ब्रिटिश विमान निगम]] में साबिन।
यह आमतौर पर स्वीकार किया जाता है कि स्प्लिन्स का पहला गणितीय संदर्भ [[इसहाक जैकब स्कोनबर्ग|स्कोनबर्ग]] द्वारा 1946 का पेपर है, जो संभवत: पहला स्थान है जहां "स्पलाइन" शब्द का प्रयोग चिकनी, टुकड़ों के अनुसार बहुपद सन्निकटन के संबंध में किया जाता है। हालांकि, विचारों की जड़ें विमान और जहाज निर्माण उद्योग में हैं। (बार्टेल्स एट अल।, 1987) की प्रस्तावना में, [[रॉबिन फॉरेस्ट]] ने "लोफ्टिंग" का वर्णन किया है, जो [[द्वितीय विश्व युद्ध]] के दौरान ब्रिटिश विमान उद्योग में इस्तेमाल की जाने वाली एक तकनीक है, जो पतली लकड़ी की पट्टियों (जिसे "स्प्लिन" कहा जाता है) को बिंदुओं के माध्यम से हवाई जहाज के लिए टेम्पलेट बनाने के लिए उपयोग किया जाता है। एक बड़े डिजाइन के [[मचान]] के तल पर रखी गई, जहाज-पतवार डिजाइन से उधार ली गई एक तकनीक। वर्षों से जहाज डिजाइन के अभ्यास ने छोटे में डिजाइन करने के लिए मॉडल नियोजित किए थे। इसके बाद सफल डिजाइन को ग्राफ पेपर पर प्लॉट किया गया और प्लॉट के मुख्य बिंदुओं को बड़े ग्राफ पेपर पर पूर्ण आकार में फिर से प्लॉट किया गया। लकड़ी की पतली पट्टियों ने प्रमुख बिंदुओं को चिकने वक्रों में प्रक्षेपित किया। स्ट्रिप्स को असतत बिंदुओं (फॉरेस्ट द्वारा "बतख" कहा जाता है; स्कोनबर्ग ने "कुत्तों" या "चूहों" का इस्तेमाल किया) पर रखा जाएगा और इन बिंदुओं के बीच न्यूनतम तनाव ऊर्जा के आकार ग्रहण करेंगे। फॉरेस्ट के अनुसार, इस प्रक्रिया के लिए एक गणितीय मॉडल के लिए एक संभावित प्रेरणा एक पूरे विमान के लिए महत्वपूर्ण डिजाइन घटकों की संभावित हानि थी, अगर मचान दुश्मन के बम से टकरा जाए। इसने "शंकु लफ्टिंग" को जन्म दिया, जो बत्तखों के बीच वक्र की स्थिति को मॉडल करने के लिए शंकु वर्गों का उपयोग करता था। कॉनिक लोफ्टिंग को 1960 के दशक की शुरुआत में [[बोइंग]] में जे.सी. फर्ग्यूसन और (कुछ समय बाद) [[ब्रिटिश विमान निगम|ब्रिटिश एयरक्राफ्ट कॉरपोरेशन]] में एमए सबिन द्वारा काम के आधार पर स्प्लिन कहा जाएगा।


शब्द तख़्ता मूल रूप से एक पूर्व एंग्लियन अंग्रेजी बोली शब्द था।
"स्पलाइन" शब्द मूल रूप से एक पूर्व एंग्लियन बोली शब्द था।


ऐसा लगता है कि ऑटोमोबाइल निकायों के मॉडलिंग के लिए स्प्लिन के उपयोग की कई स्वतंत्र शुरुआत हुई है। Citroën में पॉल डे Casteljau, [[Renault]] में Pierre Bézier, और General Motors Corporation में [[Garrett Birkhoff]], [[Garabedian]], और Carl R. de Boor की ओर से क्रेडिट का दावा किया जाता है (देखें Birkhoff और de Boor, 1965), सभी उसी में होने वाले काम के लिए 1960 के दशक की शुरुआत या 1950 के दशक के अंत में। 1959 में डे कास्टलजाऊ का कम से कम एक पेपर प्रकाशित हुआ था, लेकिन व्यापक रूप से नहीं। [[जनरल मोटर्स कॉर्पोरेशन]] में डी बूर के काम के परिणामस्वरूप 1960 के दशक की शुरुआत में कई पेपर प्रकाशित हुए, जिनमें बी-स्पलाइन पर कुछ मौलिक काम भी शामिल थे।
ऐसा प्रतीत होता है कि ऑटोमोबाइल निकायों के मॉडलिंग के लिए स्प्लिन के उपयोग की कई स्वतंत्र शुरुआत हुई हैं। सीट्रोएन में डी कास्टलजौ, [[Renault|रेनॉल्ट]] में पियरे बेज़ियर, और जनरल मोटर्स में बिरखॉफ, [[Garabedian|गारबेडियन]] और डी बूर की ओर से क्रेडिट का दावा किया जाता है ([[Garrett Birkhoff|बिरखॉफ]] और डी बूर, 1965 देखें), सभी 1960 या 1950 के दशक के अंत में होने वाले काम के लिए। 1959 में डी कास्टलजाऊ का कम से कम एक पेपर प्रकाशित हुआ था, लेकिन व्यापक रूप से नहीं। [[जनरल मोटर्स कॉर्पोरेशन|जनरल मोटर्स]] में डी बूर के काम के परिणामस्वरूप 1960 के दशक की शुरुआत में कई पेपर प्रकाशित हुए, जिनमें बी-स्पलाइन पर कुछ मौलिक कार्य भी शामिल थे।


प्रैट एंड व्हिटनी एयरक्राफ्ट में भी काम किया जा रहा था, जहां (अहल्बर्ग एट अल।, 1967) के दो लेखक - स्प्लिन्स की पहली पुस्तक-लंबाई उपचार - कार्यरत थे, और [[डेविड टेलर मॉडल बेसिन]], फोडोर थेइलहाइमर द्वारा। जनरल मोटर्स कॉर्पोरेशन में काम (बिरखॉफ, 1990) और (यंग, 1997) में अच्छी तरह से विस्तृत है। डेविस (1997) इस सामग्री में से कुछ को सारांशित करता है।
प्रैट एंड व्हिटनी एयरक्राफ्ट में भी काम किया जा रहा था, जहां (अहल्बर्ग एट अल।, 1967) के दो लेखक - स्प्लिन्स की पहली पुस्तक-लंबाई उपचार - कार्यरत थे, और [[डेविड टेलर मॉडल बेसिन]], फियोडोर थिइलहाइमर द्वारा। जनरल मोटर्स में कार्य (बिरखॉफ, 1990) और (यंग, 1997) में अच्छी तरह से विस्तृत है। डेविस (1997) इस सामग्री में से कुछ का सार प्रस्तुत करता है।


==संदर्भ==
==संदर्भ==

Revision as of 10:20, 2 December 2022

1/3 और 2/3 पर सिंगल नॉट सी के साथ मिलने वाले तीन घन बहुपदों की एक पट्टी स्थापित करते हैं2 निरंतरता। अंतराल के दोनों सिरों पर ट्रिपल समुद्री मील सुनिश्चित करते हैं कि वक्र अंत बिंदुओं को प्रक्षेपित करता है

गणित में, एक तख़्ता एक विशेष कार्य है जिसे बहुपदों द्वारा टुकड़े-टुकड़े परिभाषित किया जाता है। इंटरपोलेटिंग समस्याओं में, स्पलाइन इंटरपोलेशन को अक्सर बहुपद इंटरपोलेशन के लिए पसंद किया जाता है क्योंकि यह समान परिणाम देता है, यहां तक कि निम्न डिग्री बहुपद का उपयोग करते समय भी, उच्च डिग्री के लिए रनगे की घटना से परहेज करते हुए।

कंप्यूटर एडेड डिज़ाइन और कंप्यूटर ग्राफिक्स के कंप्यूटर विज्ञान उप-क्षेत्रों में, स्पलाइन शब्द अधिक बार एक टुकड़ावार बहुपद (पैरामीट्रिक) वक्र को संदर्भित करता है। इन उप-क्षेत्रों में स्प्लाइन लोकप्रिय वक्र हैं क्योंकि उनके निर्माण की सादगी, उनकी आसानी और मूल्यांकन की सटीकता, और वक्र फिटिंग और इंटरैक्टिव वक्र डिज़ाइन के माध्यम से अनुमानित जटिल आकार की क्षमता।

स्‍पलाइन शब्‍द लचीले स्‍लाइन उपकरणों से आता है जिसका उपयोग शिपबिल्डर्स और ड्राफ्ट्समैन द्वारा स्‍मूथ शेप बनाने के लिए किया जाता है।

परिचय

"स्पलाइन" शब्द का उपयोग कार्यों की एक विस्तृत श्रेणी को संदर्भित करने के लिए किया जाता है जो डेटा इंटरपोलेशन और/या स्मूथिंग की आवश्यकता वाले अनुप्रयोगों में उपयोग किए जाते हैं। डेटा एक-आयामी या बहु-आयामी हो सकता है। इंटरपोलेशन के लिए स्पलाइन फ़ंक्शंस सामान्य रूप से इंटरपोलेशन बाधाओं के अधीन खुरदरापन के उपयुक्त उपायों (उदाहरण के लिए इंटीग्रल स्क्वायर कर्वेचर) के मिनिमाइज़र के रूप में निर्धारित किए जाते हैं। स्मूथिंग स्प्लिन्स को इंटरपोलेशन स्प्लिन्स के सामान्यीकरण के रूप में देखा जा सकता है जहां फ़ंक्शन देखे गए डेटा और खुरदरापन माप पर औसत स्क्वायर सन्निकटन त्रुटि के भारित संयोजन को कम करने के लिए निर्धारित किए जाते हैं। खुरदुरेपन की माप की कई अर्थपूर्ण परिभाषाओं के लिए, तख़्ता फलन प्रकृति में परिमित आयामी पाए जाते हैं, जो संगणना और निरूपण में उनकी उपयोगिता का प्राथमिक कारण है। इस खंड के बाकी हिस्सों के लिए, हम पूरी तरह से एक-आयामी, बहुपद विभाजन पर ध्यान केंद्रित करते हैं और इस प्रतिबंधित अर्थ में "स्पलाइन" शब्द का उपयोग करते हैं।

परिभाषा

हम अपनी चर्चा को एक चर में बहुपदों तक सीमित रखते हुए शुरू करते हैं। इस मामले में, एक पट्टी एक टुकड़ावार बहुपद समारोह है। यह फ़ंक्शन, इसे एस कहते हैं, एक अंतराल [ए, बी] से मान लेता है और उन्हें वास्तविक संख्याओं के सेट पर मैप करता है,

हम चाहते हैं कि S को टुकड़ों के अनुसार परिभाषित किया जाए। इसे पूरा करने के लिए, अंतराल [ए, बी] को के आदेश से कवर किया जाना चाहिए, उप-अंतरालों को तोड़ना चाहिए,

[a,b] के इन k टुकड़ों में से प्रत्येक पर, हम एक बहुपद को परिभाषित करना चाहते हैं, इसे P कहते हैंi

.

[a,b] के iवें उपअंतराल पर, S को P द्वारा परिभाषित किया गया हैi,

दिए गए k+1 अंक ti को गांठ कहा जाता है। सदिश को तख़्ता के लिए गाँठ सदिश कहा जाता है। यदि गांठों को अंतराल [a,b] में समान रूप से वितरित किया जाता है, तो हम कहते हैं कि तख़्ता एकसमान है, अन्यथा हम कहते हैं कि यह असमान है।

यदि बहुपद के टुकड़े Pi में प्रत्येक की डिग्री अधिक से अधिक n है, तो पट्टी को डिग्री (या ऑर्डर n+1) कहा जाता है।

यदि ती के पड़ोस में है, तो ती पर तख़्ता चिकना कार्य (कम से कम) का कहा जाता है। अर्थात्, ti पर दो बहुपद टुकड़े Pi-1 और Pi क्रम 0 (फ़ंक्शन मान) के व्युत्पन्न से क्रम ri (दूसरे शब्दों में, दो आसन्न बहुपद टुकड़े अधिक से अधिक n - ri की चिकनाई के नुकसान से जुड़ते हैं) के व्युत्पन्न के माध्यम से साझा व्युत्पन्न मान साझा करते हैं।

.

एक सदिश ऐसा है कि पट्टी में के लिए ती पर की चिकनाई होती है, इसे पट्टी के लिए एक चिकनाई वेक्टर कहा जाता है।

एक नॉट वेक्टर , एक डिग्री एन, और के लिए एक स्मूथनेस वेक्टर को देखते हुए, कोई भी डिग्री के सभी स्प्लिन के सेट पर विचार कर सकता है जिसमें नॉट वेक्टर और स्मूथनेस वेक्टर हो। दो कार्यों को जोड़ने (बिंदुवार जोड़) और कार्यों के वास्तविक गुणकों को लेने के संचालन से सुसज्जित, यह सेट एक वास्तविक वेक्टर स्थान बन जाता है। इस तख़्ता स्थान को आमतौर पर से दर्शाया जाता है।

यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।

जहाँ

यह एक गाँठ सदिश की अधिक सामान्य समझ की ओर ले जाता है। किसी भी बिंदु पर निरंतरता के नुकसान को उस बिंदु पर स्थित कई समुद्री मील का परिणाम माना जा सकता है, और एक तख़्ता प्रकार को इसकी डिग्री एन और इसके विस्तारित गाँठ वेक्टर द्वारा पूरी तरह से चित्रित किया जा सकता है।

जहाँ ti को के लिए ji बार दोहराया जाता है।

अंतराल पर पैरामीट्रिक वक्र [ए, बी]

एक तख़्ता वक्र है यदि X और Y दोनों उस अंतराल पर समान विस्तारित गाँठ वाले सदिशों के साथ समान डिग्री के तख़्ता कार्य हैं।

उदाहरण

मान लें कि अंतराल [ए, बी] [0,3] है और उप-अंतराल [0,1], [1,2] और [2,3] हैं। मान लीजिए कि बहुपद के टुकड़े डिग्री 2 के हैं, और [0,1] और [1,2] पर टुकड़े मूल्य और पहले व्युत्पन्न (टी = 1 पर) में शामिल होना चाहिए जबकि [1,2] और [2,3] पर टुकड़े केवल मूल्य (टी = 2 पर) में शामिल हो जाते हैं। यह एक प्रकार की स्पलाइन S(t) को परिभाषित करेगा जिसके लिए

उस प्रकार का सदस्य होगा, और भी

प्रकार का सदस्य होगा। (ध्यान दें: जबकि बहुपद का टुकड़ा 2t द्विघात नहीं है, फिर भी परिणाम को द्विघात तख़्ता कहा जाता है। यह दर्शाता है कि एक पट्टी की डिग्री उसके बहुपद भागों की अधिकतम डिग्री है।) इस प्रकार के स्पलाइन के लिए विस्तारित नॉट वेक्टर (0, 1, 2, 2, 3) होगा।

सरलतम तख़्ता की डिग्री 0 होती है। इसे स्टेप फंक्शन भी कहा जाता है। अगली सबसे साधारण स्लाइन की डिग्री 1 है। इसे लीनियर स्पलाइन भी कहा जाता है। विमान में एक बंद रेखीय तख़्ता (यानी, पहली गाँठ और अंतिम समान हैं) सिर्फ एक बहुभुज है।

एक सामान्य तख़्ता निरंतरता C2 के साथ डिग्री 3 की प्राकृतिक घन रेखा है। "प्राकृतिक" शब्द का अर्थ है कि तख़्ता बहुपदों का दूसरा व्युत्पन्न प्रक्षेप के अंतराल के अंत बिंदुओं पर शून्य के बराबर सेट किया गया है।

यह स्पलाइन को अंतराल के बाहर एक सीधी रेखा होने के लिए मजबूर करता है, जबकि इसकी चिकनाई को बाधित नहीं करता है।

प्राकृतिक क्यूबिक स्प्लिन की गणना के लिए एल्गोरिद्म

क्यूबिक स्प्लाइन फॉर्म के होते हैं
दिए गए निर्देशांक का सेट हम का सेट खोजना चाहते हैं splines के लिये इन्हें संतुष्ट करना चाहिए:

  • .

आइए हम एक क्यूबिक स्पलाइन को 5-ट्यूपल के रूप में परिभाषित करते हैं जहां और , पहले दिखाए गए रूप में गुणांक के अनुरूप हैं और के बराबर है

नेचुरल क्यूबिक स्प्लाइन्स की गणना के लिए एल्गोरिद्म:

इनपुट: के साथ निर्देशांक का सेट

आउटपुट: सेट स्प्लाइन जो n 5-टुपल्स से बना है।

  1. आकार n + 1 और के लिए एक नया सरणी बनाएँ समूह
  2. n आकार की नई सरणियाँ b और d बनाएँ।
  3. आकार n और के लिए नया सरणी h बनाएँ समूह
  4. आकार n और के लिए नया सरणी α बनाएँ समूह .
  5. नई सरणियाँ c, l, μ, और z प्रत्येक आकार बनाएँ .
  6. समूह
  7. के लिये
    1. समूह .
    2. समूह .
    3. समूह .
  8. समूह
  9. के लिये
    1. समूह
    2. समूह
    3. समूह
  10. नया सेट स्प्लाइन बनाएं और इसे आउटपुट_सेट कहें। इसे n splines S से आबाद करें।
  11. के लिये
    1. सेट एसi,a = एi
    2. सेट एसi,b = खi
    3. सेट एसi,c = सीi
    4. सेट एसi,d = घi
    5. सेट एसi,x = एक्सi
  12. आउटपुट आउटपुट_सेट

टिप्पणियाँ

यह पूछा जा सकता है कि एक गाँठ सदिश में n एकाधिक गांठों से अधिक का क्या अर्थ है, क्योंकि इससे निरंतरता बनी रहेगी

इस उच्च बहुतायत के स्थान पर। परिपाटी के अनुसार, ऐसी कोई भी स्थिति दो निकटस्थ बहुपद टुकड़ों के बीच एक साधारण विच्छिन्नता को इंगित करती है। इसका मतलब यह है कि यदि एक विस्तारित गाँठ सदिश में एक गाँठ टी n + 1 बार से अधिक दिखाई देती है, तो इसके सभी उदाहरण (n + 1) वें से अधिक होने पर सभी गुणकों n + के बाद से स्पलाइन के चरित्र को बदले बिना हटाया जा सकता है। 1, n + 2, n + 3, इत्यादि का एक ही अर्थ है। यह आमतौर पर माना जाता है कि किसी भी प्रकार की पट्टी को परिभाषित करने वाले किसी भी गाँठ वेक्टर को इस तरह से चुना गया है।

संख्यात्मक विश्लेषण में उपयोग की जाने वाली डिग्री एन के क्लासिकल स्पलाइन प्रकार में निरंतरता है

जिसका अर्थ है कि प्रत्येक दो आसन्न बहुपद टुकड़े उनके मान में मिलते हैं और प्रत्येक गाँठ पर पहले n - 1 डेरिवेटिव। गणितीय तख़्ता जो चपटी तख़्ता को सबसे नज़दीकी से प्रतिरूपित करता है, एक घन (n = 3), दो बार लगातार भिन्न होने योग्य (C2), प्राकृतिक तख़्ता है, जो इस शास्त्रीय प्रकार का एक तख़्ता है जिसमें समापन बिंदु a और b पर लगाए गए अतिरिक्त शर्तें हैं।

एक अन्य प्रकार की तख़्ता जो ग्राफिक्स में बहुत अधिक उपयोग की जाती है, उदाहरण के लिए एडोब सिस्टम्स से एडोब इलस्ट्रेटर जैसे ड्राइंग प्रोग्राम में, ऐसे टुकड़े होते हैं जो क्यूबिक होते हैं लेकिन निरंतरता केवल अधिकतम होती है

इस तख़्ता प्रकार का उपयोग पोस्टस्क्रिप्ट के साथ-साथ कुछ कंप्यूटर टाइपोग्राफिक फोंट की परिभाषा में भी किया जाता है।

कई कंप्यूटर-एडेड डिज़ाइन सिस्टम जो उच्च-अंत ग्राफिक्स और एनीमेशन के लिए डिज़ाइन किए गए हैं, विस्तारित गाँठ वैक्टर का उपयोग करते हैं, उदाहरण के लिए ऑटोडेस्क माया। कंप्यूटर-एडेड डिजाइन सिस्टम अक्सर एक गैर-समान तर्कसंगत बी-स्पलाइन (एनयूआरबीएस) के रूप में जाने वाली एक तख़्ता की एक विस्तारित अवधारणा का उपयोग करते हैं।

यदि किसी फ़ंक्शन या भौतिक वस्तु से नमूनाकृत डेटा उपलब्ध है, तो तख़्ता इंटरपोलेशन एक तख़्ता बनाने का एक तरीका है जो उस डेटा का अनुमान लगाता है।

C2 इंटरपोलिंग क्यूबिक स्पलाइन के लिए सामान्य एक्सप्रेशन

प्राकृतिक स्थिति के साथ एक बिंदु x पर iवें C2 प्रक्षेपित घन पट्टी के लिए सामान्य अभिव्यक्ति सूत्र का उपयोग करके पाया जा सकता है

जहाँ

  • iवें गाँठ पर दूसरे अवकलज के मान हैं।
  • iवें गाँठ पर फलन के मान हैं।

प्रतिनिधित्व और नाम

किसी दिए गए अंतराल के लिए [ए, बी] और उस अंतराल पर दिए गए विस्तारित गाँठ वेक्टर, डिग्री एन के स्प्लिन एक वेक्टर स्थान बनाते हैं। संक्षेप में इसका मतलब यह है कि किसी दिए गए प्रकार के किसी भी दो स्प्लिन को जोड़ने से उस दिए गए प्रकार के स्पलाइन का उत्पादन होता है, और किसी दिए गए प्रकार के स्पलाइन को किसी भी स्थिरांक से गुणा करने से उस दिए गए प्रकार का एक स्पलाइन बनता है। एक निश्चित प्रकार के सभी स्प्लिन युक्त स्थान का आयाम विस्तारित गाँठ वेक्टर से गिना जा सकता है:

आयाम डिग्री के योग के साथ-साथ गुणकों के बराबर है

यदि किसी प्रकार के स्पलाइन पर अतिरिक्त रेखीय शर्तें लागू होती हैं, तो परिणामी स्पलाइन एक उप-स्पेस में होगी। उदाहरण के लिए, सभी प्राकृतिक क्यूबिक स्प्लाइनों का स्थान, सभी क्यूबिक C2 स्प्लाइनों के स्थान का एक उप-स्थान है।

स्प्लिन्स का साहित्य विशेष प्रकार के स्प्लिन्स के नामों से भरा हुआ है। इन नामों को जोड़ा गया है:

  • उदाहरण के लिए, स्पलाइन का प्रतिनिधित्व करने के लिए किए गए विकल्प:
    • संपूर्ण स्पलाइन के लिए आधार फ़ंक्शंस का उपयोग करना (हमें बी-स्पलाइन नाम देना)
    • प्रत्येक बहुपद टुकड़े का प्रतिनिधित्व करने के लिए पियरे बेज़ियर द्वारा नियोजित बर्नस्टीन बहुपदों का उपयोग करना (हमें नाम बेज़ियर स्प्लिन देना)
  • उदाहरण के लिए, विस्तारित गाँठ सदिश बनाने में किए गए विकल्प:
    • Cn-1 निरंतरता के लिए सिंगल नॉट्स का उपयोग करना और इन नॉट्स को समान रूप से [ए, बी] पर रखना (हमें एक समान स्प्लिन देना)
    • अंतराल पर बिना किसी प्रतिबंध के गांठों का उपयोग करना (हमें गैर-समान स्प्लिन देना)
  • स्पलाइन पर लगाई गई कोई विशेष शर्तें, उदाहरण के लिए:
    • ए और बी पर शून्य सेकेंड डेरिवेटिव लागू करना (हमें प्राकृतिक विभाजन देना)
    • आवश्यकता है कि दिए गए डेटा मान स्पलाइन पर हों (हमें इंटरपोलेटिंग स्प्लिन दें)

ऊपर दी गई दो या अधिक मुख्य वस्तुओं को संतुष्ट करने वाली एक प्रकार की पट्टी के लिए अक्सर एक विशेष नाम चुना गया था। उदाहरण के लिए, हर्मिट स्पलाइन एक स्पलाइन है जिसे प्रत्येक व्यक्तिगत बहुपद टुकड़े का प्रतिनिधित्व करने के लिए हर्मिट बहुपद का उपयोग करके व्यक्त किया जाता है। ये सबसे अधिक बार n = 3 के साथ उपयोग किए जाते हैं; वह है, जैसा कि क्यूबिक हर्मिट स्पलाइन। इस डिग्री में उन्हें अतिरिक्त रूप से केवल स्पर्शरेखा-निरंतर (C1) के लिए चुना जा सकता है; जिसका अर्थ है कि सभी आंतरिक गांठें दोहरी हैं। दिए गए डेटा बिंदुओं में ऐसे स्प्लाइन्स को फिट करने के लिए कई तरीकों का आविष्कार किया गया है; अर्थात्, उन्हें इंटरपोलेटिंग स्प्लाइन बनाने के लिए, और ऐसा करने के लिए प्रशंसनीय स्पर्शरेखा मूल्यों का अनुमान लगाकर ऐसा करना जहां प्रत्येक दो बहुपद टुकड़े मिलते हैं (हमें कार्डिनल स्पलाइन, कैटमुल-रोम स्पलाइन और कोचनक-बार्टेल्स स्प्लाइन, प्रयुक्त विधि के आधार पर)।

प्रत्येक अभ्यावेदन के लिए, मूल्यांकन के कुछ साधन अवश्य खोजे जाने चाहिए ताकि माँग पर स्पलाइन के मूल्यों का उत्पादन किया जा सके। उन निरूपणों के लिए जो डिग्री एन बहुपद के लिए कुछ आधार के संदर्भ में प्रत्येक व्यक्तिगत बहुपद पाई (टी) को व्यक्त करते हैं, यह वैचारिक रूप से सीधा है:

  • तर्क t के दिए गए मान के लिए, वह अंतराल ज्ञात कीजिए जिसमें यह स्थित है
  • अंतराल के लिए चुने गए बहुपद के आधार को देखें
  • प्रत्येक आधार बहुपद का मान t: पर ज्ञात कीजिए
  • उन आधार बहुपदों के रैखिक संयोजन के गुणांकों को देखें जो उस अंतराल c0, ..., ck-2 पर पट्टी देते हैं
  • t पर स्पलाइन का मान प्राप्त करने के लिए आधार बहुपद मानों के उस रैखिक संयोजन को जोड़ें:

हालांकि, मूल्यांकन और सारांश चरण अक्सर चतुर तरीके से संयुक्त होते हैं। उदाहरण के लिए, बर्नस्टीन बहुपद बहुपदों के लिए एक आधार हैं जिनका विशेष पुनरावृत्ति संबंधों का उपयोग करके रैखिक संयोजनों में कुशलतापूर्वक मूल्यांकन किया जा सकता है। यह डी कैस्टेलजौ के एल्गोरिथम का सार है, जो बेज़ियर कर्व्स और बेज़ियर स्प्लाइन्स में दिखाई देता है)।

एक प्रतिनिधित्व के लिए जो आधार स्प्लाइन के एक रैखिक संयोजन के रूप में एक स्पलाइन को परिभाषित करता है, हालांकि, कुछ अधिक परिष्कृत की आवश्यकता है। डी बूर एल्गोरिथम बी-स्प्लिन के मूल्यांकन के लिए एक कुशल तरीका है।

इतिहास

कंप्यूटर का उपयोग करने से पहले संख्यात्मक गणना हाथ से की जाती थी। हालांकि टुकड़े-टुकड़े परिभाषित कार्यों जैसे साइन समारोह या चरण फ़ंक्शन का उपयोग किया गया था, बहुपदों को आम तौर पर पसंद किया जाता था क्योंकि उनके साथ काम करना आसान था। कंप्यूटर के आगमन के माध्यम से स्प्लाइन्स को महत्व प्राप्त हुआ है। उन्हें पहले इंटरपोलेशन में बहुपदों के प्रतिस्थापन के रूप में इस्तेमाल किया गया था, फिर कंप्यूटर ग्राफिक्स में चिकनी और लचीली आकृतियों के निर्माण के लिए एक उपकरण के रूप में।

यह आमतौर पर स्वीकार किया जाता है कि स्प्लिन्स का पहला गणितीय संदर्भ स्कोनबर्ग द्वारा 1946 का पेपर है, जो संभवत: पहला स्थान है जहां "स्पलाइन" शब्द का प्रयोग चिकनी, टुकड़ों के अनुसार बहुपद सन्निकटन के संबंध में किया जाता है। हालांकि, विचारों की जड़ें विमान और जहाज निर्माण उद्योग में हैं। (बार्टेल्स एट अल।, 1987) की प्रस्तावना में, रॉबिन फॉरेस्ट ने "लोफ्टिंग" का वर्णन किया है, जो द्वितीय विश्व युद्ध के दौरान ब्रिटिश विमान उद्योग में इस्तेमाल की जाने वाली एक तकनीक है, जो पतली लकड़ी की पट्टियों (जिसे "स्प्लिन" कहा जाता है) को बिंदुओं के माध्यम से हवाई जहाज के लिए टेम्पलेट बनाने के लिए उपयोग किया जाता है। एक बड़े डिजाइन के मचान के तल पर रखी गई, जहाज-पतवार डिजाइन से उधार ली गई एक तकनीक। वर्षों से जहाज डिजाइन के अभ्यास ने छोटे में डिजाइन करने के लिए मॉडल नियोजित किए थे। इसके बाद सफल डिजाइन को ग्राफ पेपर पर प्लॉट किया गया और प्लॉट के मुख्य बिंदुओं को बड़े ग्राफ पेपर पर पूर्ण आकार में फिर से प्लॉट किया गया। लकड़ी की पतली पट्टियों ने प्रमुख बिंदुओं को चिकने वक्रों में प्रक्षेपित किया। स्ट्रिप्स को असतत बिंदुओं (फॉरेस्ट द्वारा "बतख" कहा जाता है; स्कोनबर्ग ने "कुत्तों" या "चूहों" का इस्तेमाल किया) पर रखा जाएगा और इन बिंदुओं के बीच न्यूनतम तनाव ऊर्जा के आकार ग्रहण करेंगे। फॉरेस्ट के अनुसार, इस प्रक्रिया के लिए एक गणितीय मॉडल के लिए एक संभावित प्रेरणा एक पूरे विमान के लिए महत्वपूर्ण डिजाइन घटकों की संभावित हानि थी, अगर मचान दुश्मन के बम से टकरा जाए। इसने "शंकु लफ्टिंग" को जन्म दिया, जो बत्तखों के बीच वक्र की स्थिति को मॉडल करने के लिए शंकु वर्गों का उपयोग करता था। कॉनिक लोफ्टिंग को 1960 के दशक की शुरुआत में बोइंग में जे.सी. फर्ग्यूसन और (कुछ समय बाद) ब्रिटिश एयरक्राफ्ट कॉरपोरेशन में एमए सबिन द्वारा काम के आधार पर स्प्लिन कहा जाएगा।

"स्पलाइन" शब्द मूल रूप से एक पूर्व एंग्लियन बोली शब्द था।

ऐसा प्रतीत होता है कि ऑटोमोबाइल निकायों के मॉडलिंग के लिए स्प्लिन के उपयोग की कई स्वतंत्र शुरुआत हुई हैं। सीट्रोएन में डी कास्टलजौ, रेनॉल्ट में पियरे बेज़ियर, और जनरल मोटर्स में बिरखॉफ, गारबेडियन और डी बूर की ओर से क्रेडिट का दावा किया जाता है (बिरखॉफ और डी बूर, 1965 देखें), सभी 1960 या 1950 के दशक के अंत में होने वाले काम के लिए। 1959 में डी कास्टलजाऊ का कम से कम एक पेपर प्रकाशित हुआ था, लेकिन व्यापक रूप से नहीं। जनरल मोटर्स में डी बूर के काम के परिणामस्वरूप 1960 के दशक की शुरुआत में कई पेपर प्रकाशित हुए, जिनमें बी-स्पलाइन पर कुछ मौलिक कार्य भी शामिल थे।

प्रैट एंड व्हिटनी एयरक्राफ्ट में भी काम किया जा रहा था, जहां (अहल्बर्ग एट अल।, 1967) के दो लेखक - स्प्लिन्स की पहली पुस्तक-लंबाई उपचार - कार्यरत थे, और डेविड टेलर मॉडल बेसिन, फियोडोर थिइलहाइमर द्वारा। जनरल मोटर्स में कार्य (बिरखॉफ, 1990) और (यंग, 1997) में अच्छी तरह से विस्तृत है। डेविस (1997) इस सामग्री में से कुछ का सार प्रस्तुत करता है।

संदर्भ

  • Ferguson, James C, Multi-variable curve interpolation, J. ACM, vol. 11, no. 2, pp. 221-228, Apr. 1964.
  • Ahlberg, Nielson, and Walsh, The Theory of Splines and Their Applications, 1967.
  • Birkhoff, Fluid dynamics, reactor computations, and surface representation, in: Steve Nash (ed.), A History of Scientific Computation, 1990.
  • Bartels, Beatty, and Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, 1987.
  • Birkhoff and de Boor, Piecewise polynomial interpolation and approximation, in: H. L. Garabedian (ed.), Proc. General Motors Symposium of 1964, pp. 164–190. Elsevier, New York and Amsterdam, 1965.
  • Davis, B-splines and Geometric design, SIAM News, vol. 29, no. 5, 1997.
  • Epperson, History of Splines, NA Digest, vol. 98, no. 26, 1998.
  • Stoer & Bulirsch, Introduction to Numerical Analysis. Springer-Verlag. p. 93-106. ISBN 0387904204
  • Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math., vol. 4, pp. 45–99 and 112–141, 1946.
  • Young, Garrett Birkhoff and applied mathematics, Notices of the AMS, vol. 44, no. 11, pp. 1446–1449, 1997.
  • Chapra, Canale, "Numerical Methods for Engineers" 5th edition.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • समारोह (गणित)
  • एक बहुपद की डिग्री
  • बहुपद प्रक्षेप
  • तकनीकी चित्रकारी
  • खंड अनुसार
  • कंप्यूटर एडेड डिजाइन
  • univariate
  • अलग करना सेट
  • पूर्वी एंग्लियन अंग्रेजी
  • पॉल डी कैस्टेलजौ

बाहरी संबंध

Theory

Excel Function

Online utilities

Computer Code