बिर्च और स्विनर्टन-डायर अनुमान: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Clay problem about the set of rational solutions to equations defining an elliptic curve}} | {{Short description|Clay problem about the set of rational solutions to equations defining an elliptic curve}} | ||
गणित में, बिर्च और स्विनर्टन-डियर अनुमान (जिसे अक्सर बिर्च-सविनर्टन-डायर अनुमान कहा जाता है) दीर्घवृत्ताकार वक्र को परिभाषित करने वाले समीकरणों के तर्कसंगत समाधान के सेट का वर्णन करता है। यह [[संख्या सिद्धांत]] के क्षेत्र में व्यापक रूप से सबसे चुनौतीपूर्ण गणितीय समस्याओं में से एक है। इसका नाम गणितज्ञ [[ब्रायन जॉन बिर्च]] और [[पीटर स्विनर्टन-डायर]] के नाम पर रखा गया है, जिन्होंने मशीन गणना की मदद से 1960 के दशक के पहलेार्ध के दौरान अनुमान विकसित किए थे। 2022 तक, अनुमान के केवल विशेष मामले सिद्ध हुए हैं। | [[गणित]] में, '''बिर्च और स्विनर्टन-डियर अनुमान''' (जिसे अक्सर बिर्च-सविनर्टन-डायर अनुमान कहा जाता है) दीर्घवृत्ताकार वक्र को परिभाषित करने वाले समीकरणों के तर्कसंगत समाधान के सेट का वर्णन करता है। यह [[संख्या सिद्धांत]] के क्षेत्र में व्यापक रूप से सबसे चुनौतीपूर्ण गणितीय समस्याओं में से एक है। इसका नाम गणितज्ञ [[ब्रायन जॉन बिर्च]] और [[पीटर स्विनर्टन-डायर]] के नाम पर रखा गया है, जिन्होंने मशीन गणना की मदद से 1960 के दशक के पहलेार्ध के दौरान अनुमान विकसित किए थे। 2022 तक, अनुमान के केवल विशेष मामले सिद्ध हुए हैं। | ||
अनुमान का आधुनिक सूत्रीकरण [[संख्या क्षेत्र]] K पर दीर्घवृत्तीय वक्र E से जुड़े अंकगणितीय डेटा को s = 1 पर E के हासे-विल L- | अनुमान का आधुनिक सूत्रीकरण [[संख्या क्षेत्र]] K पर दीर्घवृत्तीय वक्र E से जुड़े अंकगणितीय डेटा को s = 1 पर E के हासे-विल L-फलन L(E, s) के व्यवहार से संबंधित करता है। अधिक विशेष रूप से, यह अनुमान लगाया गया है कि [[एबेलियन समूह]] E(K) के E के बिंदुओं की रैंक s = 1 पर L(E, s) के शून्य का क्रम है, और L(E, s के [[टेलर विस्तार]] में पहला गैर-शून्य गुणांक ) s = 1 पर अधिक परिष्कृत अंकगणितीय डेटा द्वारा दिया गया है जो E से अधिक K {{harv|Wiles|2006}} से जुड़ा है। | ||
अनुमान को [[मिट्टी गणित संस्थान|क्ले]] [[मिट्टी गणित संस्थान|गणित संस्थान]] द्वारा सूचीबद्ध सात सहस्राब्दी पुरस्कार समस्याओं में से एक के रूप में चुना गया था, जिसने पहले सही प्रमाण के लिए $1,000,000 पुरस्कार की पेशकश की है।<ref>[http://www.claymath.org/millennium-problems/birch-and-swinnerton-dyer-conjecture Birch and Swinnerton-Dyer Conjecture] at Clay Mathematics Institute</ref> | अनुमान को [[मिट्टी गणित संस्थान|क्ले]] [[मिट्टी गणित संस्थान|गणित संस्थान]] द्वारा सूचीबद्ध सात सहस्राब्दी पुरस्कार समस्याओं में से एक के रूप में चुना गया था, जिसने पहले सही प्रमाण के लिए $1,000,000 पुरस्कार की पेशकश की है।<ref>[http://www.claymath.org/millennium-problems/birch-and-swinnerton-dyer-conjecture Birch and Swinnerton-Dyer Conjecture] at Clay Mathematics Institute</ref> | ||
Line 16: | Line 16: | ||
हालांकि मोर्डेल का प्रमेय दर्शाता है कि दीर्घवृत्ताकार वक्र का रैंक हमेशा परिमित होता है, यह प्रत्येक वक्र के रैंक की गणना के लिए प्रभावी विधि नहीं देता है। कुछ दीर्घवृत्तीय वक्रों के रैंक की गणना संख्यात्मक विधियों का उपयोग करके की जा सकती है लेकिन (वर्तमान ज्ञान की स्थिति में) यह अज्ञात है कि ये विधियाँ सभी वक्रों को नियंत्रित करती हैं। | हालांकि मोर्डेल का प्रमेय दर्शाता है कि दीर्घवृत्ताकार वक्र का रैंक हमेशा परिमित होता है, यह प्रत्येक वक्र के रैंक की गणना के लिए प्रभावी विधि नहीं देता है। कुछ दीर्घवृत्तीय वक्रों के रैंक की गणना संख्यात्मक विधियों का उपयोग करके की जा सकती है लेकिन (वर्तमान ज्ञान की स्थिति में) यह अज्ञात है कि ये विधियाँ सभी वक्रों को नियंत्रित करती हैं। | ||
एक L- | एक L-फलन '''''L''(''E'', ''s'')''' दीर्घवृत्तीय वक्र E के लिए परिभाषित किया जा सकता है, प्रत्येक [[अभाज्य संख्या|अभाज्य]] p वक्र मॉड्यूलो पर बिंदुओं की संख्या से एक [[यूलर उत्पाद]] का निर्माण करते है। यह L-फलन, [[रीमैन जीटा फ़ंक्शन|रीमैन जीटा फलन]] और [[डिरिचलेट एल-सीरीज़|डिरिचलेट L-सीरीज़]] के अनुरूप है, जिसे द्विआधारी [[द्विघात रूप]] के लिए परिभाषित किया गया है। यह हसे-विल L-फलनका एक विशेष मामला है। | ||
(E, s) की प्राकृतिक परिभाषा केवल Re(''s'') > 3/2 के साथ मिश्रित तल में s के मानों के लिए अभिसरित होती है। [[हेल्मुट हास]] ने अनुमान लगाया कि ''L''(''E'', ''s'') को पूरे मिश्रित तल में [[विश्लेषणात्मक निरंतरता]] से बढ़ाया जा सकता है। | (E, s) की प्राकृतिक परिभाषा केवल Re(''s'') > 3/2 के साथ मिश्रित तल में s के मानों के लिए अभिसरित होती है। [[हेल्मुट हास]] ने अनुमान लगाया कि ''L''(''E'', ''s'') को पूरे मिश्रित तल में [[विश्लेषणात्मक निरंतरता]] से बढ़ाया जा सकता है। [[जटिल गुणन|मिश्रित गुणन]] के साथ दीर्घवृत्ताकार वक्रों के लिए यह अनुमान पहली बार {{Harvtxt|ड्यूरिंग|1941}} द्वारा सिद्ध किया गया था। बाद में 2001 में [[मॉड्यूलरिटी प्रमेय]] के परिणामस्वरूप, '''Q''' पर सभी अंडाकार वक्रों के लिए यह सच साबित हुआ। | ||
एक सामान्य दीर्घवृत्ताकार वक्र पर तर्कसंगत बिंदुओं का पता लगाना एक कठिन समस्या है। दिए गए अभाज्य p पर बिंदुओं का पता लगाना अवधारणात्मक रूप से सीधा है, क्योंकि जांच करने के लिए केवल सीमित संख्या में संभावनाएं हैं। हालांकि, बड़े समय के लिए यह अभिकलनीयत रूप से गहन है। | एक सामान्य दीर्घवृत्ताकार वक्र पर तर्कसंगत बिंदुओं का पता लगाना एक कठिन समस्या है। दिए गए अभाज्य p पर बिंदुओं का पता लगाना अवधारणात्मक रूप से सीधा है, क्योंकि जांच करने के लिए केवल सीमित संख्या में संभावनाएं हैं। हालांकि, बड़े समय के लिए यह अभिकलनीयत रूप से गहन है। | ||
Line 24: | Line 24: | ||
== इतिहास == | == इतिहास == | ||
1960 के दशक | 1960 के दशक के प्रारंभ में पीटर स्विनर्टन-डियर ने कैम्ब्रिज विश्वविद्यालय कंप्यूटर प्रयोगशाला में [[EDSAC 2]] कंप्यूटर का उपयोग करके मॉडुलो p पर बड़ी संख्या में प्राइम्स p की गणना की, जिनकी रैंक ज्ञात थी। इन संख्यात्मक परिणामों से {{harvtxt|बर्च |स्विनर्टन-डायर|1965}} ने अनुमान लगाया कि रैंक r के साथ वक्र E के लिए Np एक उपगामी नियम का पालन करता है | ||
:<math>\prod_{p\leq x} \frac{N_p}{p} \approx C\log (x)^r \mbox{ as } x \rightarrow \infty </math> | :<math>\prod_{p\leq x} \frac{N_p}{p} \approx C\log (x)^r \mbox{ as } x \rightarrow \infty </math> | ||
Line 31: | Line 31: | ||
प्रारंभ में यह आलेखीय भूखंडों में कुछ कमजोर प्रवृत्तियों पर आधारित था, इससे J. W. S. कैसल्स (बिर्च के Ph.D. सलाहकार ) में संशय के उपाय को प्रेरित किया।<ref>{{citation|title=Visions of Infinity: The Great Mathematical Problems|first=Ian|last=Stewart|author-link=Ian Stewart (mathematician)|publisher=Basic Books|year=2013|isbn=9780465022403|page=253|url=https://books.google.com/books?id=dzdSy3diraUC&pg=PA253|quote=Cassels was highly skeptical at first}}.</ref> समय के साथ संख्यात्मक साक्ष्य क्रमबद्ध है। | प्रारंभ में यह आलेखीय भूखंडों में कुछ कमजोर प्रवृत्तियों पर आधारित था, इससे J. W. S. कैसल्स (बिर्च के Ph.D. सलाहकार ) में संशय के उपाय को प्रेरित किया।<ref>{{citation|title=Visions of Infinity: The Great Mathematical Problems|first=Ian|last=Stewart|author-link=Ian Stewart (mathematician)|publisher=Basic Books|year=2013|isbn=9780465022403|page=253|url=https://books.google.com/books?id=dzdSy3diraUC&pg=PA253|quote=Cassels was highly skeptical at first}}.</ref> समय के साथ संख्यात्मक साक्ष्य क्रमबद्ध है। | ||
इसने बदले में उन्हें s = 1 पर वक्र के L- | इसने बदले में उन्हें s = 1 पर वक्र के L-फलन L(E, s) के व्यवहार के बारे में सामान्य अनुमान लगाने के लिए प्रेरित किया, अर्थात् इस बिंदु पर इसका क्रम r का शून्य होगा। यह समय के लिए एक दूरदर्शी अनुमान था, यह देखते हुए कि L(E, s) की विश्लेषणात्मक निरंतरता केवल जटिल गुणन के साथ वक्र के लिए स्थापित की गई थी, जो संख्यात्मक उदाहरणों का मुख्य स्रोत भी थे। (NB कि L-फलनका [[पारस्परिक (गणित)|पारस्परिक]] दृश्य के कुछ बिंदुओं से अध्ययन की अधिक प्राकृतिक वस्तु है; कभी-कभी इसका मतलब है कि किसी को शून्य के बजाय ध्रुवों पर विचार करना चाहिए।) | ||
बाद में अनुमान को S = 1 पर L- | बाद में अनुमान को S = 1 पर L-फलनके सटीक अग्रणी [[टेलर गुणांक]] की भविष्यवाणी को सम्मिलित करने के लिए विस्तारित किया गया था। यह अनुमानित रूप से दिया गया है<ref>{{cite journal |url=https://people.maths.bris.ac.uk/~matyd/BSD2011/bsd2011-Cremona.pdf |title=बर्च और स्विनर्टन-डायर अनुमान के लिए संख्यात्मक प्रमाण|first=John |last=Cremona |year=2011 |journal=Talk at the BSD 50th Anniversary Conference, May 2011 }}, page 50</ref> | ||
:<math>\frac{L^{(r)}(E,1)}{r!} = \frac{\#\mathrm{Sha}(E)\Omega_E R_E \prod_{p|N}c_p}{(\#E_{\mathrm{Tor}})^2}</math> | :<math>\frac{L^{(r)}(E,1)}{r!} = \frac{\#\mathrm{Sha}(E)\Omega_E R_E \prod_{p|N}c_p}{(\#E_{\mathrm{Tor}})^2}</math> | ||
जहां दाहिनी ओर की मात्रा वक्र के अपरिवर्तनीय हैं, कैसल्स, [[जॉन टेट (गणितज्ञ)]], [[इगोर शफारेविच]] और अन्य {{harv|विल्स|2006}} द्वारा अध्ययन किया गया: | जहां दाहिनी ओर की मात्रा वक्र के अपरिवर्तनीय हैं, कैसल्स, [[जॉन टेट (गणितज्ञ)]], [[इगोर शफारेविच]] और अन्य {{harv|विल्स|2006}} द्वारा अध्ययन किया गया: | ||
Line 45: | Line 45: | ||
<math>R_E</math>, E का नियामक है, जिसे तर्कसंगत बिंदुओं के आधार पर [[विहित ऊंचाई|प्रामाणिक ऊंचाइयों]] के माध्यम से परिभाषित किया गया है, | <math>R_E</math>, E का नियामक है, जिसे तर्कसंगत बिंदुओं के आधार पर [[विहित ऊंचाई|प्रामाणिक ऊंचाइयों]] के माध्यम से परिभाषित किया गया है, | ||
<math>c_p</math> | <math>c_p</math> एक अभाज्य p पर E की [[तमागावा संख्या]] है जो E के कंडक्टर n को विभाजित करता है। यह टेट के एल्गोरिथ्म पर आधारित है। | ||
== वर्तमान स्थिति == | == वर्तमान स्थिति == | ||
Line 55: | Line 55: | ||
#{{harvtxt|कोलावागिन|1989}} ने दिखाया कि एक मॉड्यूलर दीर्घवृत्ताकार वक्र E, जिसके लिए L(E, 1) शून्य नहीं है, उसका रैंक 0 है और मॉड्यूलर दीर्घवृत्ताकार वक्र E जिसके लिए L(E, 1) का s = 1 पर प्रथम-क्रम शून्य है। | #{{harvtxt|कोलावागिन|1989}} ने दिखाया कि एक मॉड्यूलर दीर्घवृत्ताकार वक्र E, जिसके लिए L(E, 1) शून्य नहीं है, उसका रैंक 0 है और मॉड्यूलर दीर्घवृत्ताकार वक्र E जिसके लिए L(E, 1) का s = 1 पर प्रथम-क्रम शून्य है। | ||
# {{harvtxt|रूबिन|1991}} ने दिखाया कि के द्वारा जटिल गुणा के साथ एक काल्पनिक द्विघात क्षेत्र k पर दीर्घवृत्ताकार वक्र के लिए परिभाषित किया गया है, अगर दीर्घवृत्ताकार वक्र की L-श्रृंखला s = 1 पर शून्य नहीं था, तो टेट-शफारीविच समूह के पी-भाग ने बिर्च और स्विनर्टन-डियर अनुमान, सभी अभाज्य p > 7 के लिए भविष्यवाणी की थी। | # {{harvtxt|रूबिन|1991}} ने दिखाया कि के द्वारा जटिल गुणा के साथ एक काल्पनिक द्विघात क्षेत्र k पर दीर्घवृत्ताकार वक्र के लिए परिभाषित किया गया है, अगर दीर्घवृत्ताकार वक्र की L-श्रृंखला s = 1 पर शून्य नहीं था, तो टेट-शफारीविच समूह के पी-भाग ने बिर्च और स्विनर्टन-डियर अनुमान, सभी अभाज्य p > 7 के लिए भविष्यवाणी की थी। | ||
# {{harvtxt|Breuil|Conrad|Diamond|Taylor|2001}}, {{harvtxt|विल्स|1995}} के विस्तार कार्य ने साबित किया कि सभी दीर्घवृत्ताकार वक्र तर्कसंगत संख्याओं पर परिभाषित हैं, जो परिणाम #2 और #3 को सभी दीर्घवृत्तिक वक्रों पर विस्तार देते हैं, और दर्शाते हैं कि '''Q''' पर सभी दीर्घवृक्ष वक्रों के l- | # {{harvtxt|Breuil|Conrad|Diamond|Taylor|2001}}, {{harvtxt|विल्स|1995}} के विस्तार कार्य ने साबित किया कि सभी दीर्घवृत्ताकार वक्र तर्कसंगत संख्याओं पर परिभाषित हैं, जो परिणाम #2 और #3 को सभी दीर्घवृत्तिक वक्रों पर विस्तार देते हैं, और दर्शाते हैं कि '''Q''' पर सभी दीर्घवृक्ष वक्रों के l-फलन को s = 1 पर परिभाषित किया गया है। | ||
# {{harvtxt|भार्गव|शंकर|2015}} ने साबित किया कि Q पर दीर्घवृत्त वक्र के मोर्डेल-विल समूह का औसत रैंक 7/6 से ऊपर है। इसे {{harvtxt|नेव|2009}} और डोकचित्सर (2010) के p-पैरिटी प्रमेय के साथ जोड़कर और {{harvtxt|स्किनर|अर्बन|2014}} द्वारा GL(2) के लिए इवासावा सिद्धांत के मुख्य अनुमान के प्रमाण के साथ, वे निष्कर्ष निकालते हैं कि एक सकारात्मक अनुपात Q के ऊपर दीर्घवृत्तीय वक्रों की विश्लेषणात्मक रैंक शून्य है, और इसलिए, {{harvtxt|कोलिवागिन|1989}} द्वारा, बर्च और स्विनर्टन-डायर अनुमान को स्वीकृत करते हैं। | # {{harvtxt|भार्गव|शंकर|2015}} ने साबित किया कि Q पर दीर्घवृत्त वक्र के मोर्डेल-विल समूह का औसत रैंक 7/6 से ऊपर है। इसे {{harvtxt|नेव|2009}} और डोकचित्सर (2010) के p-पैरिटी प्रमेय के साथ जोड़कर और {{harvtxt|स्किनर|अर्बन|2014}} द्वारा GL(2) के लिए इवासावा सिद्धांत के मुख्य अनुमान के प्रमाण के साथ, वे निष्कर्ष निकालते हैं कि एक सकारात्मक अनुपात Q के ऊपर दीर्घवृत्तीय वक्रों की विश्लेषणात्मक रैंक शून्य है, और इसलिए, {{harvtxt|कोलिवागिन|1989}} द्वारा, बर्च और स्विनर्टन-डायर अनुमान को स्वीकृत करते हैं। | ||
वर्तमान में 1 से अधिक रैंक वाले वक्रों को | वर्तमान में 1 से अधिक रैंक वाले वक्रों को सम्मिलित करने वाले कोई प्रमाण नहीं हैं। | ||
अनुमान की वास्त्विकता के लिए व्यापक संख्यात्मक प्रमाण हैं।<ref>{{cite journal |url=https://people.maths.bris.ac.uk/~matyd/BSD2011/bsd2011-Cremona.pdf |title=बर्च और स्विनर्टन-डायर अनुमान के लिए संख्यात्मक प्रमाण|first=John |last=Cremona |year=2011 |journal=Talk at the BSD 50th Anniversary Conference, May 2011 }}</ref> | अनुमान की वास्त्विकता के लिए व्यापक संख्यात्मक प्रमाण हैं।<ref>{{cite journal |url=https://people.maths.bris.ac.uk/~matyd/BSD2011/bsd2011-Cremona.pdf |title=बर्च और स्विनर्टन-डायर अनुमान के लिए संख्यात्मक प्रमाण|first=John |last=Cremona |year=2011 |journal=Talk at the BSD 50th Anniversary Conference, May 2011 }}</ref> | ||
Line 64: | Line 64: | ||
== परिणाम == | == परिणाम == | ||
[[रीमैन परिकल्पना]] की तरह, इस अनुमान के कई परिणाम हैं, जिनमें निम्नलिखित दो | [[रीमैन परिकल्पना]] की तरह, इस अनुमान के कई परिणाम हैं, जिनमें निम्नलिखित दो सम्मिलित हैं: | ||
* मान लीजिए कि n एक विषम वर्ग रहित पूर्णांक है। बर्च और स्विनर्टन-डायर अनुमान को मानते हुए, n तर्कसंगत पार्श्व लंबाई (एक सर्वांगसम संख्या) के साथ समकोण त्रिभुज का क्षेत्रफल है यदि और केवल यदि पूर्णांकों (x, y, z) के त्रिक की संख्या 2''x''<sup>2</sup> + ''y''<sup>2</sup> + 8''z''<sup>2</sup> = ''n'' को पूरा करती है, 2''x''<sup>2</sup> + ''y''<sup>2</sup> + 32''z''<sup>2</sup> = ''n'' त्रिकों की संख्या का दुगुना है। टनल की प्रमेय {{harv|टनल|1983}},के कारण यह कथन, इस तथ्य से संबंधित है कि n एक सर्वांगसम संख्या है यदि और केवल यदि अण्डाकार वक्र ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''n''<sup>2</sup>''x'' में अनंत क्रम का एक परिमेय बिंदु है (इस प्रकार, बिर्च और स्विनर्टन के तहत -डायर अनुमान, इसका L- | * मान लीजिए कि n एक विषम वर्ग रहित पूर्णांक है। बर्च और स्विनर्टन-डायर अनुमान को मानते हुए, n तर्कसंगत पार्श्व लंबाई (एक सर्वांगसम संख्या) के साथ समकोण त्रिभुज का क्षेत्रफल है यदि और केवल यदि पूर्णांकों (x, y, z) के त्रिक की संख्या 2''x''<sup>2</sup> + ''y''<sup>2</sup> + 8''z''<sup>2</sup> = ''n'' को पूरा करती है, 2''x''<sup>2</sup> + ''y''<sup>2</sup> + 32''z''<sup>2</sup> = ''n'' त्रिकों की संख्या का दुगुना है। टनल की प्रमेय {{harv|टनल|1983}},के कारण यह कथन, इस तथ्य से संबंधित है कि n एक सर्वांगसम संख्या है यदि और केवल यदि अण्डाकार वक्र ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''n''<sup>2</sup>''x'' में अनंत क्रम का एक परिमेय बिंदु है (इस प्रकार, बिर्च और स्विनर्टन के तहत -डायर अनुमान, इसका L-फलन 1 पर शून्य है)। इस कथन में रुचि यह है कि स्थिति को आसानी से सत्यापित किया जा सकता है।<ref>{{Cite book | ||
| last = Koblitz |first=Neal | author-link = Neal Koblitz | | last = Koblitz |first=Neal | author-link = Neal Koblitz | ||
| year = 1993 | edition=2nd | | year = 1993 | edition=2nd | ||
Line 133: | Line 133: | ||
{{Authority control}} | {{Authority control}} | ||
{{DEFAULTSORT:Birch And Swinnerton-Dyer Conjecture}} | {{DEFAULTSORT:Birch And Swinnerton-Dyer Conjecture}} | ||
[[Category:AC with 0 elements|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category: | [[Category:Articles with short description|Birch And Swinnerton-Dyer Conjecture]] | ||
[[Category:Created On 25/11/2022]] | [[Category:CS1 français-language sources (fr)|Birch And Swinnerton-Dyer Conjecture]] | ||
[[Category:CS1 maint|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:CS1 Ελληνικά-language sources (el)|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Created On 25/11/2022|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Interwiki link templates| ]] | |||
[[Category:Lua-based templates|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Machine Translated Page|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Pages with script errors|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Short description with empty Wikidata description|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Sidebars with styles needing conversion|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Templates that are not mobile friendly|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Templates using under-protected Lua modules|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:अनुमान|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:कैम्ब्रिज कंप्यूटर प्रयोगशाला विश्वविद्यालय|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:जीटा और एल-फ़ंक्शंस|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:डायोफैंटाइन ज्यामिति|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:मिलेनियम पुरस्कार समस्याएं|Birch And Swinnerton-Dyer Conjecture]] | |||
[[Category:संख्या सिद्धांत|Birch And Swinnerton-Dyer Conjecture]] |
Latest revision as of 15:07, 6 December 2022
गणित में, बिर्च और स्विनर्टन-डियर अनुमान (जिसे अक्सर बिर्च-सविनर्टन-डायर अनुमान कहा जाता है) दीर्घवृत्ताकार वक्र को परिभाषित करने वाले समीकरणों के तर्कसंगत समाधान के सेट का वर्णन करता है। यह संख्या सिद्धांत के क्षेत्र में व्यापक रूप से सबसे चुनौतीपूर्ण गणितीय समस्याओं में से एक है। इसका नाम गणितज्ञ ब्रायन जॉन बिर्च और पीटर स्विनर्टन-डायर के नाम पर रखा गया है, जिन्होंने मशीन गणना की मदद से 1960 के दशक के पहलेार्ध के दौरान अनुमान विकसित किए थे। 2022 तक, अनुमान के केवल विशेष मामले सिद्ध हुए हैं।
अनुमान का आधुनिक सूत्रीकरण संख्या क्षेत्र K पर दीर्घवृत्तीय वक्र E से जुड़े अंकगणितीय डेटा को s = 1 पर E के हासे-विल L-फलन L(E, s) के व्यवहार से संबंधित करता है। अधिक विशेष रूप से, यह अनुमान लगाया गया है कि एबेलियन समूह E(K) के E के बिंदुओं की रैंक s = 1 पर L(E, s) के शून्य का क्रम है, और L(E, s के टेलर विस्तार में पहला गैर-शून्य गुणांक ) s = 1 पर अधिक परिष्कृत अंकगणितीय डेटा द्वारा दिया गया है जो E से अधिक K (Wiles 2006) से जुड़ा है।
अनुमान को क्ले गणित संस्थान द्वारा सूचीबद्ध सात सहस्राब्दी पुरस्कार समस्याओं में से एक के रूप में चुना गया था, जिसने पहले सही प्रमाण के लिए $1,000,000 पुरस्कार की पेशकश की है।[1]
पृष्ठभूमि
मोर्डेल (1922) ने मोर्डेल के प्रमेय को सिद्ध किया: दीर्घवृत्त वक्र पर परिमेय बिंदुओं के समूह का एक परिमित आधार होता है। इसका मतलब यह है कि किसी भी अंडाकार वक्र के लिए वक्र पर तर्कसंगत बिंदुओं का परिमित उपसमुच्चय होता है, जिससे आगे के सभी तर्कसंगत बिंदु उत्पन्न हो सकते हैं।
यदि किसी वक्र पर तर्कसंगत बिंदुओं की संख्या अनंत है तो किसी परिमित आधार में किसी बिंदु पर अनंत क्रम होना चाहिए। अनंत क्रम के साथ स्वतंत्र आधार बिंदुओं की संख्या को वक्र का क्रम कहा जाता है, और यह दीर्घवृत्तीय वक्र का एक महत्वपूर्ण अपरिवर्तनीय गुण है।
यदि एक दीर्घवृत्ताकार वक्र का क्रम 0 है, तो वक्र में केवल परिमित संख्या में परिमेय बिंदु होते हैं। दूसरी ओर, यदि वक्र का क्रम 0 से अधिक है, तो वक्र में अनंत संख्या में तर्कसंगत बिंदु होते हैं।
हालांकि मोर्डेल का प्रमेय दर्शाता है कि दीर्घवृत्ताकार वक्र का रैंक हमेशा परिमित होता है, यह प्रत्येक वक्र के रैंक की गणना के लिए प्रभावी विधि नहीं देता है। कुछ दीर्घवृत्तीय वक्रों के रैंक की गणना संख्यात्मक विधियों का उपयोग करके की जा सकती है लेकिन (वर्तमान ज्ञान की स्थिति में) यह अज्ञात है कि ये विधियाँ सभी वक्रों को नियंत्रित करती हैं।
एक L-फलन L(E, s) दीर्घवृत्तीय वक्र E के लिए परिभाषित किया जा सकता है, प्रत्येक अभाज्य p वक्र मॉड्यूलो पर बिंदुओं की संख्या से एक यूलर उत्पाद का निर्माण करते है। यह L-फलन, रीमैन जीटा फलन और डिरिचलेट L-सीरीज़ के अनुरूप है, जिसे द्विआधारी द्विघात रूप के लिए परिभाषित किया गया है। यह हसे-विल L-फलनका एक विशेष मामला है।
(E, s) की प्राकृतिक परिभाषा केवल Re(s) > 3/2 के साथ मिश्रित तल में s के मानों के लिए अभिसरित होती है। हेल्मुट हास ने अनुमान लगाया कि L(E, s) को पूरे मिश्रित तल में विश्लेषणात्मक निरंतरता से बढ़ाया जा सकता है। मिश्रित गुणन के साथ दीर्घवृत्ताकार वक्रों के लिए यह अनुमान पहली बार ड्यूरिंग (1941) द्वारा सिद्ध किया गया था। बाद में 2001 में मॉड्यूलरिटी प्रमेय के परिणामस्वरूप, Q पर सभी अंडाकार वक्रों के लिए यह सच साबित हुआ।
एक सामान्य दीर्घवृत्ताकार वक्र पर तर्कसंगत बिंदुओं का पता लगाना एक कठिन समस्या है। दिए गए अभाज्य p पर बिंदुओं का पता लगाना अवधारणात्मक रूप से सीधा है, क्योंकि जांच करने के लिए केवल सीमित संख्या में संभावनाएं हैं। हालांकि, बड़े समय के लिए यह अभिकलनीयत रूप से गहन है।
इतिहास
1960 के दशक के प्रारंभ में पीटर स्विनर्टन-डियर ने कैम्ब्रिज विश्वविद्यालय कंप्यूटर प्रयोगशाला में EDSAC 2 कंप्यूटर का उपयोग करके मॉडुलो p पर बड़ी संख्या में प्राइम्स p की गणना की, जिनकी रैंक ज्ञात थी। इन संख्यात्मक परिणामों से बर्च & स्विनर्टन-डायर (1965) ने अनुमान लगाया कि रैंक r के साथ वक्र E के लिए Np एक उपगामी नियम का पालन करता है
जहां C स्थिर है।
प्रारंभ में यह आलेखीय भूखंडों में कुछ कमजोर प्रवृत्तियों पर आधारित था, इससे J. W. S. कैसल्स (बिर्च के Ph.D. सलाहकार ) में संशय के उपाय को प्रेरित किया।[2] समय के साथ संख्यात्मक साक्ष्य क्रमबद्ध है।
इसने बदले में उन्हें s = 1 पर वक्र के L-फलन L(E, s) के व्यवहार के बारे में सामान्य अनुमान लगाने के लिए प्रेरित किया, अर्थात् इस बिंदु पर इसका क्रम r का शून्य होगा। यह समय के लिए एक दूरदर्शी अनुमान था, यह देखते हुए कि L(E, s) की विश्लेषणात्मक निरंतरता केवल जटिल गुणन के साथ वक्र के लिए स्थापित की गई थी, जो संख्यात्मक उदाहरणों का मुख्य स्रोत भी थे। (NB कि L-फलनका पारस्परिक दृश्य के कुछ बिंदुओं से अध्ययन की अधिक प्राकृतिक वस्तु है; कभी-कभी इसका मतलब है कि किसी को शून्य के बजाय ध्रुवों पर विचार करना चाहिए।)
बाद में अनुमान को S = 1 पर L-फलनके सटीक अग्रणी टेलर गुणांक की भविष्यवाणी को सम्मिलित करने के लिए विस्तारित किया गया था। यह अनुमानित रूप से दिया गया है[3]
जहां दाहिनी ओर की मात्रा वक्र के अपरिवर्तनीय हैं, कैसल्स, जॉन टेट (गणितज्ञ), इगोर शफारेविच और अन्य (विल्स 2006) द्वारा अध्ययन किया गया:
आघूर्ण बल समूह का क्रम है,
टेट-शफारेविच समूह का क्रम है,
E के जुड़े घटकों की संख्या से गुणा की वास्तविक अवधि है।
, E का नियामक है, जिसे तर्कसंगत बिंदुओं के आधार पर प्रामाणिक ऊंचाइयों के माध्यम से परिभाषित किया गया है,
एक अभाज्य p पर E की तमागावा संख्या है जो E के कंडक्टर n को विभाजित करता है। यह टेट के एल्गोरिथ्म पर आधारित है।
वर्तमान स्थिति
बिर्च और स्विनर्टन-डायर अनुमान केवल विशेष मामलों में ही सिद्ध हुए हैं:
- कोट्स & विल्स (1977) ने साबित किया कि यदि E वर्ग संख्या 1, F = K या Q के काल्पनिक द्विघात क्षेत्र K द्वारा जटिल गुणन के साथ संख्या क्षेत्र F पर वक्र है, और L(E, 1) 0 नहीं है तो E (F) एक परिमित समूह है। इसे उस मामले तक बढ़ा दिया गया था जहां F, Arthaud (1978) द्वारा K का कोई परिमित एबेलियन विस्तार है।
- ग्रॉस & ज़ैगियर (1986) ने दिखाया कि यदि एक मॉड्यूलर दीर्घवृत्ताकार वक्र का प्रथम क्रम शून्य होता है तो यह अनंत क्रम का परिमेय बिंदु होता है; ग्रॉस-ज़ैगियर प्रमेय देखें।
- कोलावागिन (1989) ने दिखाया कि एक मॉड्यूलर दीर्घवृत्ताकार वक्र E, जिसके लिए L(E, 1) शून्य नहीं है, उसका रैंक 0 है और मॉड्यूलर दीर्घवृत्ताकार वक्र E जिसके लिए L(E, 1) का s = 1 पर प्रथम-क्रम शून्य है।
- रूबिन (1991) ने दिखाया कि के द्वारा जटिल गुणा के साथ एक काल्पनिक द्विघात क्षेत्र k पर दीर्घवृत्ताकार वक्र के लिए परिभाषित किया गया है, अगर दीर्घवृत्ताकार वक्र की L-श्रृंखला s = 1 पर शून्य नहीं था, तो टेट-शफारीविच समूह के पी-भाग ने बिर्च और स्विनर्टन-डियर अनुमान, सभी अभाज्य p > 7 के लिए भविष्यवाणी की थी।
- Breuil et al. (2001), विल्स (1995) के विस्तार कार्य ने साबित किया कि सभी दीर्घवृत्ताकार वक्र तर्कसंगत संख्याओं पर परिभाषित हैं, जो परिणाम #2 और #3 को सभी दीर्घवृत्तिक वक्रों पर विस्तार देते हैं, और दर्शाते हैं कि Q पर सभी दीर्घवृक्ष वक्रों के l-फलन को s = 1 पर परिभाषित किया गया है।
- भार्गव & शंकर (2015) ने साबित किया कि Q पर दीर्घवृत्त वक्र के मोर्डेल-विल समूह का औसत रैंक 7/6 से ऊपर है। इसे नेव (2009) और डोकचित्सर (2010) के p-पैरिटी प्रमेय के साथ जोड़कर और स्किनर & अर्बन (2014) द्वारा GL(2) के लिए इवासावा सिद्धांत के मुख्य अनुमान के प्रमाण के साथ, वे निष्कर्ष निकालते हैं कि एक सकारात्मक अनुपात Q के ऊपर दीर्घवृत्तीय वक्रों की विश्लेषणात्मक रैंक शून्य है, और इसलिए, कोलिवागिन (1989) द्वारा, बर्च और स्विनर्टन-डायर अनुमान को स्वीकृत करते हैं।
वर्तमान में 1 से अधिक रैंक वाले वक्रों को सम्मिलित करने वाले कोई प्रमाण नहीं हैं।
अनुमान की वास्त्विकता के लिए व्यापक संख्यात्मक प्रमाण हैं।[4]
परिणाम
रीमैन परिकल्पना की तरह, इस अनुमान के कई परिणाम हैं, जिनमें निम्नलिखित दो सम्मिलित हैं:
- मान लीजिए कि n एक विषम वर्ग रहित पूर्णांक है। बर्च और स्विनर्टन-डायर अनुमान को मानते हुए, n तर्कसंगत पार्श्व लंबाई (एक सर्वांगसम संख्या) के साथ समकोण त्रिभुज का क्षेत्रफल है यदि और केवल यदि पूर्णांकों (x, y, z) के त्रिक की संख्या 2x2 + y2 + 8z2 = n को पूरा करती है, 2x2 + y2 + 32z2 = n त्रिकों की संख्या का दुगुना है। टनल की प्रमेय (टनल 1983) ,के कारण यह कथन, इस तथ्य से संबंधित है कि n एक सर्वांगसम संख्या है यदि और केवल यदि अण्डाकार वक्र y2 = x3 − n2x में अनंत क्रम का एक परिमेय बिंदु है (इस प्रकार, बिर्च और स्विनर्टन के तहत -डायर अनुमान, इसका L-फलन 1 पर शून्य है)। इस कथन में रुचि यह है कि स्थिति को आसानी से सत्यापित किया जा सकता है।[5]
- एक अलग दिशा में, कुछ विश्लेषणात्मक तरीके L-फ़ंक्शंस के वर्ग की महत्वपूर्ण पट्टी के केंद्र में शून्य के क्रम के आकलन की अनुमति देते हैं। BSD के अनुमान को स्वीकार करते हुए, ये अनुमान दीर्घवृत्ताकार वक्र के वर्ग के बारे में जानकारी के अनुरूप हैं। उदाहरण के लिए: मान लीजिए सामान्यीकृत रीमैन परिकल्पना और BSD अनुमान, y2 = x3 + ax+ b द्वारा दिए गए वक्रों का औसत रैंक 2 से छोटा है।[6]
टिप्पणियाँ
- ↑ Birch and Swinnerton-Dyer Conjecture at Clay Mathematics Institute
- ↑ Stewart, Ian (2013), Visions of Infinity: The Great Mathematical Problems, Basic Books, p. 253, ISBN 9780465022403,
Cassels was highly skeptical at first
. - ↑ Cremona, John (2011). "बर्च और स्विनर्टन-डायर अनुमान के लिए संख्यात्मक प्रमाण" (PDF). Talk at the BSD 50th Anniversary Conference, May 2011., page 50
- ↑ Cremona, John (2011). "बर्च और स्विनर्टन-डायर अनुमान के लिए संख्यात्मक प्रमाण" (PDF). Talk at the BSD 50th Anniversary Conference, May 2011.
- ↑ Koblitz, Neal (1993). अण्डाकार वक्रों और मॉड्यूलर रूपों का परिचय. Graduate Texts in Mathematics. Vol. 97 (2nd ed.). Springer-Verlag. ISBN 0-387-97966-2.
- ↑ Heath-Brown, D. R. (2004). "अण्डाकार वक्रों की औसत विश्लेषणात्मक रैंक". Duke Mathematical Journal. 122 (3): 591–623. arXiv:math/0305114. doi:10.1215/S0012-7094-04-12235-3. MR 2057019. S2CID 15216987.
संदर्भ
- Arthaud, Nicole (1978). "On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication". Compositio Mathematica. 37 (2): 209–232. MR 0504632.
- Bhargava, Manjul; Shankar, Arul (2015). "Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0". Annals of Mathematics. 181 (2): 587–621. arXiv:1007.0052. doi:10.4007/annals.2015.181.2.4. S2CID 1456959.
- Birch, Bryan; Swinnerton-Dyer, Peter (1965). "Notes on Elliptic Curves (II)". J. Reine Angew. Math. 165 (218): 79–108. doi:10.1515/crll.1965.218.79. S2CID 122531425.
- Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001). "On the Modularity of Elliptic Curves over Q: Wild 3-Adic Exercises". Journal of the American Mathematical Society. 14 (4): 843–939. doi:10.1090/S0894-0347-01-00370-8.
- Coates, J.H.; Greenberg, R.; Ribet, K.A.; Rubin, K. (1999). Arithmetic Theory of Elliptic Curves. Lecture Notes in Mathematics. Vol. 1716. Springer-Verlag. ISBN 3-540-66546-3.
- Coates, J.; Wiles, A. (1977). "On the conjecture of Birch and Swinnerton-Dyer". Inventiones Mathematicae. 39 (3): 223–251. Bibcode:1977InMat..39..223C. doi:10.1007/BF01402975. S2CID 189832636. Zbl 0359.14009.
- Deuring, Max (1941). "Die Typen der Multiplikatorenringe elliptischer Funktionenkörper". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 14 (1): 197–272. doi:10.1007/BF02940746. S2CID 124821516.
- Dokchitser, Tim; Dokchitser, Vladimir (2010). "On the Birch–Swinnerton-Dyer quotients modulo squares". Annals of Mathematics. 172 (1): 567–596. arXiv:math/0610290. doi:10.4007/annals.2010.172.567. MR 2680426. S2CID 9479748.
- Gross, Benedict H.; Zagier, Don B. (1986). "Heegner points and derivatives of L-series". Inventiones Mathematicae. 84 (2): 225–320. Bibcode:1986InMat..84..225G. doi:10.1007/BF01388809. MR 0833192. S2CID 125716869.
- Kolyvagin, Victor (1989). "Finiteness of E(Q) and X(E, Q) for a class of Weil curves". Math. USSR Izv. 32 (3): 523–541. Bibcode:1989IzMat..32..523K. doi:10.1070/im1989v032n03abeh000779.
- Mordell, Louis (1922). "On the rational solutions of the indeterminate equations of the third and fourth degrees". Proc. Camb. Phil. Soc. 21: 179–192.
- Nekovář, Jan (2009). "On the parity of ranks of Selmer groups IV". Compositio Mathematica. 145 (6): 1351–1359. doi:10.1112/S0010437X09003959.
- Rubin, Karl (1991). "The 'main conjectures' of Iwasawa theory for imaginary quadratic fields". Inventiones Mathematicae. 103 (1): 25–68. Bibcode:1991InMat.103...25R. doi:10.1007/BF01239508. S2CID 120179735. Zbl 0737.11030.
- Skinner, Christopher; Urban, Éric (2014). "The Iwasawa main conjectures for GL2". Inventiones Mathematicae. 195 (1): 1–277. Bibcode:2014InMat.195....1S. doi:10.1007/s00222-013-0448-1. S2CID 120848645.
- Tunnell, Jerrold B. (1983). "A classical Diophantine problem and modular forms of weight 3/2" (PDF). Inventiones Mathematicae. 72 (2): 323–334. Bibcode:1983InMat..72..323T. doi:10.1007/BF01389327. hdl:10338.dmlcz/137483. S2CID 121099824. Zbl 0515.10013.
- Wiles, Andrew (1995). "Modular elliptic curves and Fermat's last theorem". Annals of Mathematics. Second Series. 141 (3): 443–551. doi:10.2307/2118559. ISSN 0003-486X. JSTOR 2118559. MR 1333035.
- Wiles, Andrew (2006). "The Birch and Swinnerton-Dyer conjecture" (PDF). In Carlson, James; Jaffe, Arthur; Wiles, Andrew (eds.). The Millennium prize problems. American Mathematical Society. pp. 31–44. ISBN 978-0-8218-3679-8. MR 2238272.
बाहरी संबंध
- Weisstein, Eric W. "Swinnerton-Dyer Conjecture". MathWorld.
- "Birch and Swinnerton-Dyer Conjecture". PlanetMath.
- The Birch and Swinnerton-Dyer Conjecture: An Interview with Professor Henri Darmon by Agnes F. Beaudry
- What is the Birch and Swinnerton-Dyer Conjecture? lecture by Manjul Bhargava (september 2016) given during the Clay Research Conference held at the University of Oxford