सामान्य स्थिति: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Short description|Concept in algebraic geometry}} | {{Short description|Concept in algebraic geometry}} | ||
{{refimprove|date=May 2014}} | {{refimprove|date=May 2014}} | ||
[[बीजगणितीय ज्यामिति]] और [[कम्प्यूटेशनल ज्यामिति]] में, सामान्य स्थिति बिंदुओं के एक सेट या अन्य ज्यामितीय वस्तुओं के लिए [[सामान्य संपत्ति]] की धारणा है। इसका अर्थ है ''सामान्य | [[बीजगणितीय ज्यामिति]] और [[कम्प्यूटेशनल ज्यामिति]] में, सामान्य स्थिति बिंदुओं के एक सेट या अन्य ज्यामितीय वस्तुओं के लिए [[सामान्य संपत्ति]] की धारणा है। इसका अर्थ है ''सामान्य स्तिथि की'' स्थिति,जो कुछ और विशेष या संयोग स्थितियों के विपरीत संभव है, जिसे विशेष स्थिति कहा जाता है। इसका सटीक अर्थ अलग-अलग समायोजन में अलग-अलग होता है। | ||
उदाहरण के लिए, आम तौर पर, समतल में दो रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं (वे समानांतर या संपाती नहीं हैं)। एक यह भी कहता है कि दो सामान्य रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, जिसे एक [[सामान्य बिंदु]] की धारणा द्वारा औपचारिक रूप दिया जाता है। इसी तरह, समतल में तीन सामान्य बिंदु [[रेखा (ज्यामिति)]] नहीं हैं; यदि तीन बिंदु संरेख हैं (और भी मजबूत, यदि दो मेल खाते हैं), तो यह एक [[अध: पतन (गणित)]] है। | उदाहरण के लिए, आम तौर पर, समतल में दो रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं (वे समानांतर या संपाती नहीं हैं)। एक यह भी कहता है कि दो सामान्य रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, जिसे एक [[सामान्य बिंदु]] की धारणा द्वारा औपचारिक रूप दिया जाता है। इसी तरह, समतल में तीन सामान्य बिंदु [[रेखा (ज्यामिति)]] नहीं हैं; यदि तीन बिंदु संरेख हैं (और भी मजबूत, यदि दो मेल खाते हैं), तो यह एक [[अध: पतन (गणित)]] है। |
Revision as of 11:42, 1 December 2022
This article needs additional citations for verification. (May 2014) (Learn how and when to remove this template message) |
बीजगणितीय ज्यामिति और कम्प्यूटेशनल ज्यामिति में, सामान्य स्थिति बिंदुओं के एक सेट या अन्य ज्यामितीय वस्तुओं के लिए सामान्य संपत्ति की धारणा है। इसका अर्थ है सामान्य स्तिथि की स्थिति,जो कुछ और विशेष या संयोग स्थितियों के विपरीत संभव है, जिसे विशेष स्थिति कहा जाता है। इसका सटीक अर्थ अलग-अलग समायोजन में अलग-अलग होता है।
उदाहरण के लिए, आम तौर पर, समतल में दो रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं (वे समानांतर या संपाती नहीं हैं)। एक यह भी कहता है कि दो सामान्य रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, जिसे एक सामान्य बिंदु की धारणा द्वारा औपचारिक रूप दिया जाता है। इसी तरह, समतल में तीन सामान्य बिंदु रेखा (ज्यामिति) नहीं हैं; यदि तीन बिंदु संरेख हैं (और भी मजबूत, यदि दो मेल खाते हैं), तो यह एक अध: पतन (गणित) है।
यह धारणा गणित और इसके अनुप्रयोगों में महत्वपूर्ण है, क्योंकि पतित मामलों में असाधारण उपचार की आवश्यकता हो सकती है; उदाहरण के लिए, सामान्य प्रमेय बताते समय या उसके सटीक विवरण देते समय, और कंप्यूटर प्रोग्राम लिखते समय (देखें जेनेरिक-केस जटिलता)।
सामान्य रैखिक स्थिति
ए में बिंदुओं का एक सेट d-आयामी संबंध स्थान (d-डायमेंशनल यूक्लिडियन अंतरिक्ष एक सामान्य उदाहरण है) यदि नहीं तो सामान्य रैखिक स्थिति (या सिर्फ सामान्य स्थिति) में है k उनमें से एक में झूठ बोलते हैं (k − 2)-आयामी फ्लैट (ज्यामिति) के लिए k = 2, 3, ..., d + 1. इन स्थितियों में काफी अतिरेक होता है, क्योंकि यदि स्थिति कुछ मूल्य रखती है k0 तो यह भी सभी के लिए धारण करना चाहिए k साथ 2 ≤ k ≤ k0. इस प्रकार, कम से कम युक्त सेट के लिए d + 1 में इंगित करता है d-डायमेंशनल एफ़िन स्पेस सामान्य स्थिति में होने के लिए, यह पर्याप्त है कि किसी भी hyperplane में इससे अधिक न हो d बिंदु - अर्थात बिंदु किसी भी अधिक रैखिक संबंध को संतुष्ट नहीं करते हैं जितना कि उन्हें करना चाहिए।[1] अधिकतम का एक सेट d + 1 सामान्य रेखीय स्थिति में बिंदुओं को भी आत्मीयता से स्वतंत्र कहा जाता है (यह सदिशों की रैखिक स्वतंत्रता का परिशोधन अनुरूप है, या अधिक सटीक रूप से अधिकतम रैंक का), और d + 1 एफ़िन डी-स्पेस में सामान्य रैखिक स्थिति में बिंदु एक एफ़िन आधार हैं। अधिक जानकारी के लिए affine परिवर्तन देखें।
इसी प्रकार, एक एन-आयामी वेक्टर अंतरिक्ष में एन वैक्टर रैखिक रूप से स्वतंत्र होते हैं यदि और केवल तभी वे बिंदु जो प्रक्षेपण स्थान (आयाम के) में परिभाषित होते हैं n − 1) सामान्य रैखिक स्थिति में हैं।
यदि बिंदुओं का एक सेट सामान्य रेखीय स्थिति में नहीं है, तो इसे पतित मामला या पतित विन्यास कहा जाता है, जिसका अर्थ है कि वे एक रेखीय संबंध को संतुष्ट करते हैं जो हमेशा धारण करने की आवश्यकता नहीं होती है।
एक मौलिक अनुप्रयोग यह है कि, समतल में, पाँच बिंदु एक शंकु का निर्धारण करते हैं, जब तक कि बिंदु सामान्य रैखिक स्थिति में हैं (कोई तीन संरेख नहीं हैं)।
अधिक आम तौर पर
इस परिभाषा को आगे सामान्यीकृत किया जा सकता है: बीजगणितीय संबंधों के एक निश्चित वर्ग (जैसे शांकव खंड) के संबंध में सामान्य स्थिति में बिंदुओं के बारे में बात की जा सकती है। बीजगणितीय ज्यामिति में इस तरह की स्थिति का अक्सर सामना करना पड़ता है, जिसमें बिंदुओं को उनके माध्यम से गुजरने वाले वक्रों पर स्वतंत्र शर्तें लगानी चाहिए।
उदाहरण के लिए, पांच बिंदु एक शंकु का निर्धारण करते हैं, लेकिन आम तौर पर छह बिंदु एक शंकु पर नहीं होते हैं, इसलिए शंकु के संबंध में सामान्य स्थिति में होने के लिए यह आवश्यक है कि कोई भी छह बिंदु एक शंकु पर न हो।
द्विनियमित नक्शों के अंतर्गत सामान्य स्थिति को संरक्षित रखा जाता है - यदि छवि बिंदु किसी संबंध को संतुष्ट करते हैं, तो एक द्विनियमित मानचित्र के अंतर्गत इस संबंध को मूल बिंदुओं पर वापस खींचा जा सकता है। गौरतलब है कि वेरोनीज़ नक्शा बायरेगुलर है; जैसा कि वेरोनीज़ मानचित्र के तहत अंक उस बिंदु पर डिग्री डी बहुपद का मूल्यांकन करने के अनुरूप हैं, यह इस धारणा को औपचारिक रूप देता है कि सामान्य स्थिति में बिंदु उनके माध्यम से गुजरने वाली किस्मों पर स्वतंत्र रैखिक स्थिति लागू करते हैं।
सामान्य स्थिति के लिए मूल शर्त यह है कि अंक आवश्यकता से कम डिग्री की उप-किस्मों पर नहीं पड़ते हैं; समतल में दो बिंदु संपाती नहीं होने चाहिए, तीन बिंदु एक रेखा पर नहीं पड़ने चाहिए, छह बिंदु एक शंकु पर नहीं पड़ने चाहिए, दस बिंदु एक घन पर नहीं पड़ने चाहिए, और इसी तरह उच्च डिग्री के लिए।
हालांकि यह पर्याप्त नहीं है। जबकि नौ बिंदु एक घन का निर्धारण करते हैं, नौ बिंदुओं के विन्यास हैं जो घन के संबंध में विशेष हैं, अर्थात् दो घनों का प्रतिच्छेदन। दो क्यूबिक का चौराहा, जो है अंक (बेज़ाउट के प्रमेय द्वारा), विशेष है कि सामान्य स्थिति में नौ अंक एक अद्वितीय घन में समाहित हैं, जबकि यदि वे दो घनों में निहित हैं तो वे वास्तव में एक पेंसिल (गणित) (1-पैरामीटर रैखिक प्रणाली) में समाहित हैं क्यूबिक्स, जिनके समीकरण दो क्यूबिक्स के समीकरणों के प्रक्षेपी रैखिक संयोजन हैं। इस प्रकार बिंदुओं के ऐसे सेट अपेक्षा से अधिक वाले क्यूबिक्स पर एक कम स्थिति लागू करते हैं, और तदनुसार एक अतिरिक्त बाधा को संतुष्ट करते हैं, अर्थात् केली-बचराच प्रमेय कि किसी भी क्यूबिक में आठ बिंदुओं में आवश्यक रूप से नौवां शामिल होता है। अनुरूप बयान उच्च डिग्री के लिए धारण करते हैं।
विमान में या बीजगणितीय वक्र पर बिंदुओं के लिए, सामान्य स्थिति की धारणा 'नियमित विभाजक (बीजीय ज्यामिति)' की धारणा द्वारा बीजगणितीय रूप से सटीक बनाई जाती है, और संबद्ध रेखा के उच्च शेफ कोहोलॉजी समूहों के गायब होने से मापा जाता है। बंडल (औपचारिक रूप से, उलटा शीफ)। जैसा कि शब्दावली दर्शाती है, यह सहज ज्ञान युक्त ज्यामितीय चित्र की तुलना में काफी अधिक तकनीकी है, इसी तरह चौराहे संख्या की औपचारिक परिभाषा के लिए परिष्कृत बीजगणित की आवश्यकता होती है। यह परिभाषा बिंदुओं के सेट के बजाय हाइपरसर्फ्स (कोडिमेंशन 1 सबवेरिटीज़) के उच्च आयामों में सामान्यीकरण करती है, और नियमित विभाजकों को 'सुपरबंडेंट डिवीज़र' के विपरीत माना जाता है, जैसा कि सतहों के लिए रीमैन-रोच प्रमेय में चर्चा की गई है।
ध्यान दें कि सामान्य स्थिति में सभी बिंदु अनुमानित रूप से समतुल्य नहीं होते हैं, जो कि एक बहुत मजबूत स्थिति है; उदाहरण के लिए, रेखा में कोई भी विशिष्ट बिंदु सामान्य स्थिति में हैं, लेकिन प्रक्षेपी परिवर्तन केवल 3-सकर्मक हैं, जिसमें 4 बिंदुओं का क्रॉस अनुपात है।
विभिन्न ज्यामिति
अलग-अलग ज्यामिति ज्यामितीय बाधाओं की अलग-अलग धारणाओं की अनुमति देती हैं। उदाहरण के लिए, एक वृत्त एक अवधारणा है जो यूक्लिडियन ज्यामिति में समझ में आता है, लेकिन रेखीय रेखागणित या प्रक्षेपी ज्यामिति में नहीं, जहां वृत्तों को दीर्घवृत्त से अलग नहीं किया जा सकता है, क्योंकि कोई वृत्त को दीर्घवृत्त तक निचोड़ सकता है। इसी तरह, एक पैराबोला एफाइन ज्योमेट्री में एक अवधारणा है, लेकिन प्रोजेक्टिव ज्योमेट्री में नहीं, जहां एक पैराबोला केवल एक प्रकार का शंकु है। ज्यामिति जो बीजगणितीय ज्यामिति में अत्यधिक उपयोग की जाती है, प्रक्षेपी ज्यामिति है, जिसमें एफ़िन ज्यामिति महत्वपूर्ण लेकिन बहुत कम उपयोग करती है।
इस प्रकार, यूक्लिडियन ज्यामिति में तीन गैर-संरेख बिंदु एक वृत्त का निर्धारण करते हैं (जैसा कि वे त्रिकोण के परिवृत्त को परिभाषित करते हैं), लेकिन सामान्य रूप से चार बिंदु ऐसा नहीं करते हैं (वे केवल चक्रीय चतुर्भुज के लिए ऐसा करते हैं), इसलिए सामान्य स्थिति की धारणा के संबंध में मंडलियां, अर्थात् कोई भी चार बिंदु एक वृत्त पर स्थित नहीं होता है। प्रक्षेपी ज्यामिति में, इसके विपरीत, वृत्त शांकवों से भिन्न नहीं होते हैं, और पाँच बिंदु एक शंकु निर्धारित करते हैं, इसलिए वृत्तों के संबंध में सामान्य स्थिति की कोई प्रक्षेपी धारणा नहीं है।
सामान्य प्रकार
सामान्य स्थिति बिंदुओं के विन्यास की एक संपत्ति है, या अधिक आम तौर पर अन्य उपप्रकार (सामान्य स्थिति में रेखाएं, इसलिए कोई तीन समवर्ती और पसंद नहीं है)। सामान्य स्थिति एक बाहरी धारणा है, जो एक उप-किस्म के रूप में एम्बेडिंग पर निर्भर करती है। अनौपचारिक रूप से, उप-किस्में सामान्य स्थिति में हैं यदि उन्हें दूसरों की तुलना में अधिक सरलता से वर्णित नहीं किया जा सकता है। सामान्य स्थिति का आंतरिक अनुरूप सामान्य प्रकार है, और एक विविधता से मेल खाता है जिसे अन्य की तुलना में सरल बहुपद समीकरणों द्वारा वर्णित नहीं किया जा सकता है। यह विभिन्न प्रकार के कोडैरा आयाम की धारणा द्वारा औपचारिक रूप से तैयार किया गया है, और इस उपाय से प्रक्षेपी रिक्त स्थान सबसे विशेष प्रकार हैं, हालांकि अन्य समान रूप से विशेष हैं, जिसका अर्थ नकारात्मक कोडैरा आयाम है। बीजगणितीय वक्रों के लिए, परिणामी वर्गीकरण है: प्रक्षेपी रेखा, टोरस, उच्च जीनस सतहें (), और इसी तरह के वर्गीकरण उच्च आयामों में होते हैं, विशेष रूप से बीजगणितीय सतहों के एनरिक्स-कोडैरा वर्गीकरण।
अन्य संदर्भ
प्रतिच्छेदन सिद्धांत में, बीजगणितीय ज्यामिति और ज्यामितीय टोपोलॉजी दोनों में, अनुप्रस्थता (गणित) की समान धारणा का उपयोग किया जाता है: सामान्य रूप से उप-किस्मों में अनुप्रस्थ रूप से प्रतिच्छेद होता है, जिसका अर्थ बहुलता 1 के साथ होता है, बजाय स्पर्शरेखा या अन्य, उच्च क्रम के चौराहों के।
विमान में डेलाउने त्रिभुज के लिए सामान्य स्थिति
विमान में वोरोनोई टेसलेशन और डेलाउने त्रिभुजों पर चर्चा करते समय, विमान (गणित) में बिंदु (ज्यामिति) का एक सेट सामान्य स्थिति में कहा जाता है, अगर उनमें से कोई भी चार एक ही सर्कल पर नहीं होते हैं और उनमें से कोई भी तीन संरेख नहीं होते हैं . सामान्य उठाने वाला रूपांतरण जो डेलाउने त्रिभुज को एक उत्तल पतवार के निचले आधे हिस्से से संबंधित करता है (यानी, प्रत्येक बिंदु p को |p| के बराबर एक अतिरिक्त समन्वय देता है।2) समतलीय दृश्य से संबंध दिखाता है: चार बिंदु एक वृत्त पर स्थित होते हैं या उनमें से तीन ठीक उसी समय संरेख होते हैं जब उनके उठाए गए समकक्ष सामान्य रैखिक स्थिति में नहीं होते हैं।
संक्षेप में: विन्यास स्थान
बहुत सार शब्दों में, सामान्य स्थिति एक विन्यास स्थान (गणित) की सामान्य संपत्ति की चर्चा है; इस संदर्भ में एक का मतलब उन गुणों से है जो कॉन्फ़िगरेशन स्पेस के सामान्य बिंदु पर या समकक्ष रूप से ज़ारिस्की-ओपन सेट पर होते हैं।
यह धारणा सामान्य के माप सिद्धांत की धारणा के साथ मेल खाती है, जिसका अर्थ विन्यास स्थान पर लगभग हर जगह है, या समतुल्य है कि यादृच्छिक रूप से चुने गए बिंदु लगभग निश्चित रूप से (संभाव्यता 1 के साथ) सामान्य स्थिति में होंगे।
टिप्पणियाँ
संदर्भ
- Yale, Paul B. (1968), Geometry and Symmetry, Holden-Day