परिबद्ध समुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== वास्तविक संख्या में परिभाषा == | == वास्तविक संख्या में परिभाषा == | ||
[[File:Illustration of supremum.svg|thumb|upright=1.6|ऊपरी सीमा और उसके सर्वोच्च के साथ एक वास्तविक सेट।]][[वास्तविक संख्या]]ओं के एक | [[File:Illustration of supremum.svg|thumb|upright=1.6|ऊपरी सीमा और उसके सर्वोच्च के साथ एक वास्तविक सेट।]][[वास्तविक संख्या]]ओं के एक समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि वहाँ कुछ वास्तविक संख्या k (जरूरी नहीं कि S में) सम्मिलित हो जैसे कि k ≥ s S में सभी s के लिए। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। नीचे से घिरा हुआ है और 'निचली सीमा' समान रूप से परिभाषित है। | ||
एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक | एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक [[अंतराल (गणित)]] में निहित होता है। | ||
== एक [[मीट्रिक स्थान]] में परिभाषा == | == एक [[मीट्रिक स्थान]] में परिभाषा == |
Revision as of 20:58, 3 December 2022
: परिबद्ध और सीमा अलग-अलग अवधारणाएं हैं; बाद के लिए सीमा (टोपोलॉजी) देखें। विभाजन में एक वृत्त एक सीमाहीन परिबद्ध समुच्चय है, जबकि आधा तल अबाधित है फिर भी एक सीमा है।
गणितीय विश्लेषण और गणित के संबंधित क्षेत्रों में, एक समुच्चय (गणित) को 'परिबद्ध' कहा जाता है, यदि यह एक निश्चित अर्थ में परिमित माप का हो। इसके विपरीत, एक समुच्चय जो परिबद्ध नहीं है, 'अपरिबद्ध' कहलाता है। 'परिबद्ध' शब्द का सामान्य टोपोलॉजिकल स्थान में बिना किसी मेट्रिक_ (गणित) के कोई अर्थ नहीं है।
वास्तविक संख्या में परिभाषा
वास्तविक संख्याओं के एक समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि वहाँ कुछ वास्तविक संख्या k (जरूरी नहीं कि S में) सम्मिलित हो जैसे कि k ≥ s S में सभी s के लिए। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। नीचे से घिरा हुआ है और 'निचली सीमा' समान रूप से परिभाषित है।
एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक अंतराल (गणित) में निहित होता है।
एक मीट्रिक स्थान में परिभाषा
मीट्रिक स्थान (M, d) का एक उपसमुच्चय 'बाध्य' होता है, यदि वहां r > 0 मौजूद हो, जैसे कि S में सभी s और t के लिए, हमारे पास d(s, t) <r है। मेट्रिक स्पेस (M, d) एक बाउंडेड मेट्रिक स्पेस है (या d एक बाउंडेड मेट्रिक है) अगर M खुद के सबसेट के रूप में बाउंड है।
- संपूर्ण सीमाबद्धता का तात्पर्य सीमाबद्धता से है। 'आर' के सबसेट के लिएn दोनों बराबर हैं।
- एक मीट्रिक स्थान कॉम्पैक्ट जगह है यदि और केवल यदि यह पूर्ण मीट्रिक स्थान है और पूरी तरह से घिरा हुआ है।
- यूक्लिडियन अंतरिक्ष 'आर' का एक उपसमुच्चयn संहत है यदि और केवल यदि यह बंद सेट और परिबद्ध है।
सामयिक सदिश स्थानों में परिबद्धता
टोपोलॉजिकल वेक्टर रिक्त स्थान में, बंधे हुए सेटों के लिए एक अलग परिभाषा मौजूद है जिसे कभी-कभी वॉन न्यूमैन बाध्यता कहा जाता है। यदि टोपोलॉजिकल वेक्टर स्पेस की टोपोलॉजी एक मीट्रिक (गणित) से प्रेरित होती है जो सजातीय मीट्रिक है, जैसा कि आदर्श वेक्टर रिक्त स्थान के मानदंड (गणित) से प्रेरित मीट्रिक के मामले में है, तो दो परिभाषाएँ मेल खाती हैं।
क्रम सिद्धांत में परिबद्धता
वास्तविक संख्याओं का एक सेट परिबद्ध होता है यदि और केवल यदि इसकी ऊपरी और निचली सीमा होती है। यह परिभाषा आंशिक रूप से आदेशित सेट के सबसेट के लिए विस्तार योग्य है। ध्यान दें कि सीमा की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।
आंशिक रूप से क्रमित समुच्चय P के एक उपसमुच्चय को 'ऊपर परिबद्ध' कहा जाता है यदि P में एक तत्व k ऐसा है कि S में सभी s के लिए k ≥ s है। तत्व k को S का 'ऊपरी परिबद्ध' कहा जाता है। 'नीचे की सीमा' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)
आंशिक रूप से आदेशित सेट P के एक उपसमुच्चय S को 'बाध्य' कहा जाता है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हों, या समतुल्य हों, यदि यह एक अंतराल (गणित) #अंतराल में क्रम सिद्धांत में समाहित है। ध्यान दें कि यह न केवल समुच्चय S का गुणधर्म है बल्कि P के उपसमुच्चय के रूप में समुच्चय S का भी एक गुण है।
एक 'परिबद्ध पोसेट' P (जो कि, अपने आप में, उपसमुच्चय के रूप में नहीं है) वह है जिसमें सबसे कम तत्व और सबसे बड़ा तत्व है। ध्यान दें कि परिबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और यह कि एक बंधे हुए पॉसेट P का एक उपसमुच्चय S बाइनरी_रिलेशन#Restriction of the order of the order के आदेश के साथ अनिवार्य रूप से एक बंधा हुआ पोसेट नहीं है।
'R' का एक उपसमुच्चय Sn यूक्लिडियन दूरी के संबंध में परिबद्ध है यदि और केवल यदि यह 'R' के उपसमुच्चय के रूप में परिबद्ध हैn उत्पाद क्रम के साथ। हालाँकि, S को 'R' के उपसमुच्चय के रूप में परिबद्ध किया जा सकता हैn शब्दावली क्रम के साथ, लेकिन यूक्लिडियन दूरी के संबंध में नहीं।
क्रमसूचक संख्याओं के एक वर्ग को असीमित कहा जाता है, या कोफिनल (गणित), जब कोई क्रमसूचक दिया जाता है, तो हमेशा उससे अधिक वर्ग का कुछ तत्व होता है। इस प्रकार इस मामले में अनबाउंड का अर्थ अपने आप में अनबाउंड नहीं है बल्कि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।
यह भी देखें
- परिबद्ध कार्य
- स्थानीय सीमा
- आदेश सिद्धांत
- पूरी तरह से बंधा हुआ
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- घेरा
- सेट (गणित)
- आधा विमान
- अंतिम
- कुल सीमा
- वॉन न्यूमैन बाउंडेड
- नॉर्म्ड वेक्टर रिक्त स्थान
- ऊपरी और निचली सीमाएँ
- कोफ़ाइनल (गणित)
- लेक्सिकोग्राफिक ऑर्डर
- परिबद्ध समारोह
संदर्भ
- Bartle, Robert G.; Sherbert, Donald R. (1982). Introduction to Real Analysis. New York: John Wiley & Sons. ISBN 0-471-05944-7.
- Richtmyer, Robert D. (1978). Principles of Advanced Mathematical Physics. New York: Springer. ISBN 0-387-08873-3.