घन हर्माइट स्पलाइन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Cubic function used for interpolation}} | {{short description|Cubic function used for interpolation}} | ||
{{not to be confused|Hermite polynomial}} | {{not to be confused|Hermite polynomial}} | ||
[[संख्यात्मक विश्लेषण]] में, एक घन हर्माइट पट्टी या घन हर्माइट इंटेरपोलेटर एक पट्टी है जहां प्रत्येक पट्टी [[हर्माइट के रूप]] में निर्दिष्ट तृतीय-कोटि बहुपद है, यह संबंधित डोमेन अंतराल के अंत बिंदुओं पर इसके मूल्यों और | [[संख्यात्मक विश्लेषण]] में, एक घन हर्माइट पट्टी या घन हर्माइट इंटेरपोलेटर एक पट्टी है जहां प्रत्येक पट्टी [[हर्माइट के रूप]] में निर्दिष्ट तृतीय-कोटि बहुपद है, यह संबंधित डोमेन अंतराल के अंत बिंदुओं पर इसके मूल्यों और प्रथम व्युत्पन्न द्वारा होता है।<ref name=kreyszig> | ||
{{cite book | {{cite book | ||
| title = Advanced Engineering Mathematics | | title = Advanced Engineering Mathematics | ||
Line 14: | Line 14: | ||
घन हर्मिट पट्टी का उपयोग सामान्तया दिए गए अर्थ मानों पर निर्दिष्ट संख्यात्मक आंकड़े के इंटरपोलेशन के लिए किया जाता है <math>x_1,x_2,\ldots,x_n</math>, एक सतत फलन प्राप्त करने के लिए। आंकड़े में प्रत्येक <math>x_k</math>.पर वांछित फलन मान और प्रत्येक पर व्युत्पन्न सम्मिलित होता है (यदि केवल मान प्रदान किए किए जाते हैं, तो उनसे व्युत्पन्न का अनुमान लगाया जाना चाहिए।) हर्मिट सूत्र प्रत्येक अंतराल <math>(x_k, x_{k+1})</math> के लिए अलग से लागू किया जाता है। परिणामी पट्टी निरंतर होता है और निरंतर पहला व्युत्पन्न होता है। | घन हर्मिट पट्टी का उपयोग सामान्तया दिए गए अर्थ मानों पर निर्दिष्ट संख्यात्मक आंकड़े के इंटरपोलेशन के लिए किया जाता है <math>x_1,x_2,\ldots,x_n</math>, एक सतत फलन प्राप्त करने के लिए। आंकड़े में प्रत्येक <math>x_k</math>.पर वांछित फलन मान और प्रत्येक पर व्युत्पन्न सम्मिलित होता है (यदि केवल मान प्रदान किए किए जाते हैं, तो उनसे व्युत्पन्न का अनुमान लगाया जाना चाहिए।) हर्मिट सूत्र प्रत्येक अंतराल <math>(x_k, x_{k+1})</math> के लिए अलग से लागू किया जाता है। परिणामी पट्टी निरंतर होता है और निरंतर पहला व्युत्पन्न होता है। | ||
घन बहुपद पट्टी अन्य तरीकों से निर्दिष्ट किया जा सकता है, बेज़ियर घन सबसे आम होते है। चूँकि, ये दो विधियाँ पट्टी को एक ही समुच्चय प्रदान करती हैं, और आंकड़े | घन बहुपद पट्टी अन्य तरीकों से निर्दिष्ट किया जा सकता है, बेज़ियर घन सबसे आम होते है। चूँकि, ये दो विधियाँ पट्टी को एक ही समुच्चय प्रदान करती हैं, और आंकड़े को बेज़ियर और हर्मिट रूपों के बीच आसानी से परिवर्तित किया जा सकता है, इसलिए नामों का सदैव उपयोग किया जाता है जैसे कि वे पर्यायवाची हों। | ||
घन बहुपद पट्टी बड़े पैमाने पर अभिकलित्र आलेखिकी और ज्यामितीय मॉडलिंग में घटता या गति प्रक्षेप वक्र प्राप्त करने के लिए उपयोग किया जाता है जो समतल (ज्यामिति) या त्रि-आयामी क्षेत्र (ज्यामिति) के निर्दिष्ट बिंदुओं से गुजरता है। इन अनुप्रयोगों में, समतल या क्षेत्र के प्रत्येक निर्देशांक को एक अलग मापदंड t के घन पट्टी फलन द्वारा अलग से प्रक्षेपित किया जाता है। घन | घन बहुपद पट्टी बड़े पैमाने पर अभिकलित्र आलेखिकी और ज्यामितीय मॉडलिंग में घटता या गति प्रक्षेप वक्र प्राप्त करने के लिए उपयोग किया जाता है जो समतल (ज्यामिति) या त्रि-आयामी क्षेत्र (ज्यामिति) के निर्दिष्ट बिंदुओं से गुजरता है। इन अनुप्रयोगों में, समतल या क्षेत्र के प्रत्येक निर्देशांक को एक अलग मापदंड t के घन पट्टी फलन द्वारा अलग से प्रक्षेपित किया जाता है। घन बहुपद विभाजन का उपयोग संरचनात्मक विश्लेषण अनुप्रयोगों में बड़े पैमाने पर किया जाता है, जैसे यूलर-बर्नौली बीम सिद्धांत। | ||
घन पट्टी को कई तरीकों से दो या दो से अधिक मापदंड के फलन तक बढ़ाया जा सकता है। द्विघन पट्टी ( द्विघन इंटरपोलेशन) का उपयोग सदैव एक नियमित आयताकार ग्रिड पर आंकड़े | घन पट्टी को कई तरीकों से दो या दो से अधिक मापदंड के फलन तक बढ़ाया जा सकता है। द्विघन पट्टी ( द्विघन इंटरपोलेशन) का उपयोग सदैव एक नियमित आयताकार ग्रिड पर आंकड़े को प्रक्षेपित करने के लिए किया जाता है, जैसे कि अंकीय छवि में पिक्सेल मान या भू-भाग पर ऊंचाई आंकड़े से है। द्विघन सतह पैच, तीन द्विघन पट्टी द्वारा परिभाषित, अभिकलित्र आलेखिकी में एक आवश्यक उपकरण हैं। | ||
घन पट्टी को सदैव सी पट्टी कहा जाता है, खासकर अभिकलित्र आलेखिकी में। हर्मिट पट्टी का नाम चार्ल्स हर्मिट के नाम पर रखा गया है। | घन पट्टी को सदैव सी पट्टी कहा जाता है, खासकर अभिकलित्र आलेखिकी में। हर्मिट पट्टी का नाम चार्ल्स हर्मिट के नाम पर रखा गया है। | ||
Line 25: | Line 25: | ||
=== इकाई अंतराल (0, 1) === | === इकाई अंतराल (0, 1) === | ||
[[File:HermiteBasis.svg|thumb|300px|right|चार हर्मिट आधार | [[File:HermiteBasis.svg|thumb|300px|right|चार हर्मिट आधार फलन करते हैं। प्रत्येक उपअंतराल में इंटरपोलेंट इन चार फलन का एक रैखिक संयोजन है।]]इकाई अंतराल पर <math>(0,1)</math>, एक शुरुआती बिंदु दिया <math>\boldsymbol{p}_0</math> पर <math>t = 0</math> और एक समापन बिंदु <math>\boldsymbol{p}_1</math> पर <math>t = 1</math> स्पर्शरेखा शुरू करने के साथ <math>\boldsymbol{m}_0</math> पर <math>t = 0</math> और स्पर्शरेखा समाप्त <math>\boldsymbol{m}_1</math> पर <math>t = 1</math>, बहुपद को परिभाषित किया जाता है | ||
: <math>\boldsymbol{p}(t) = (2t^3 - 3t^2 + 1)\boldsymbol{p}_0 + (t^3 - 2t^2 + t)\boldsymbol{m}_0 + (-2t^3 + 3t^2)\boldsymbol{p}_1 + (t^3 - t^2)\boldsymbol{m}_1,</math> | : <math>\boldsymbol{p}(t) = (2t^3 - 3t^2 + 1)\boldsymbol{p}_0 + (t^3 - 2t^2 + t)\boldsymbol{m}_0 + (-2t^3 + 3t^2)\boldsymbol{p}_1 + (t^3 - t^2)\boldsymbol{m}_1,</math> | ||
जहां टी ∈ [0, 1]। | जहां टी ∈ [0, 1]। | ||
=== | === यादृच्छिक अंतराल पर इंटरपोलेशन === | ||
प्रक्षेपित करना <math>x</math> एक | प्रक्षेपित करना <math>x</math> एक यादृच्छिक अंतराल में <math>(x_k, x_{k+1})</math> को प्रतिचित्र करके किया जाता है <math>[0, 1]</math> चर के एक एफफाइन (कोटि -1) परिवर्तन के माध्यम से सूत्र है। | ||
: <math>\boldsymbol{p}(x) = h_{00}(t)\boldsymbol{p}_k + h_{10}(t)(x_{k+1} - x_k)\boldsymbol{m}_k + h_{01}(t)\boldsymbol{p}_{k+1} + h_{11}(t)(x_{k+1} - x_k)\boldsymbol{m}_{k+1},</math> | : <math>\boldsymbol{p}(x) = h_{00}(t)\boldsymbol{p}_k + h_{10}(t)(x_{k+1} - x_k)\boldsymbol{m}_k + h_{01}(t)\boldsymbol{p}_{k+1} + h_{11}(t)(x_{k+1} - x_k)\boldsymbol{m}_{k+1},</math> | ||
जहाँ पे <math>t = (x - x_k)/(x_{k+1} - x_k)</math>, तथा <math>h</math> आधार फलनों को संदर्भित करता है, नीचे परिभाषित। ध्यान दें कि स्पर्शरेखा मूल्यों को पर्पटित किया गया है <math>x_{k+1} - x_k</math> इकाई अंतराल पर समीकरण की तुलना में किया गया है। | |||
=== विशिष्टता === | === विशिष्टता === | ||
ऊपर निर्दिष्ट सूत्र दिए गए स्पर्शरेखा वाले दो बिंदुओं के बीच अद्वितीय तृतीय-कोटि | ऊपर निर्दिष्ट सूत्र दिए गए स्पर्शरेखा वाले दो बिंदुओं के बीच अद्वितीय तृतीय-कोटि बहुपद पथ प्रदान करता है। | ||
सबूत। होने देना <math>P, Q</math> दी गई सीमा स्थितियों को संतुष्ट करने वाले दो | सबूत। होने देना <math>P, Q</math> दी गई सीमा स्थितियों को संतुष्ट करने वाले दो तृतीय-कोटि बहुपद हैं। परिभाषित करना <math>R = Q - P,</math> फिर: | ||
: <math>R(0) = Q(0)-P(0) = 0,</math> | : <math>R(0) = Q(0)-P(0) = 0,</math> | ||
: <math>R(1) = Q(1) - P(1) = 0.</math> | : <math>R(1) = Q(1) - P(1) = 0.</math> | ||
चूंकि दोनों <math>Q</math> तथा <math>P</math> तीसरी कोटि | चूंकि दोनों <math>Q</math> तथा <math>P</math> तीसरी कोटि के बहुपद हैं, <math>R</math> अधिक से अधिक एक तृतीय-कोटि बहुपद है। इसलिए <math>R</math> प्ररूप का होना चाहिए | ||
: <math>R(x) = ax(x - 1)(x - r).</math> | : <math>R(x) = ax(x - 1)(x - r).</math> | ||
व्युत्पन्न की गणना देता है | व्युत्पन्न की गणना देता है | ||
Line 52: | Line 52: | ||
{{NumBlk|:|<math>R'(1) = 0 = a(1 - r).</math>|{{EquationRef|2}}}} | {{NumBlk|:|<math>R'(1) = 0 = a(1 - r).</math>|{{EquationRef|2}}}} | ||
({{EquationNote|1}}) तथा ({{EquationNote|2}}) को एक साथ रखने पर, हम यह निकालते हैं कि <math>a = 0</math>, और इसीलिए <math>R = 0,</math> इस प्रकार <math>P = Q.</math> | |||
Line 59: | Line 59: | ||
हम प्रक्षेप बहुपद को इस प्रकार लिख सकते हैं | हम प्रक्षेप बहुपद को इस प्रकार लिख सकते हैं | ||
: <math>\boldsymbol{p}(t) = h_{00}(t)\boldsymbol{p}_0 + h_{10}(t)(x_{k+1}-x_k)\boldsymbol{m}_0 + h_{01}(t)\boldsymbol{p}_1 + h_{11}(t)(x_{k+1}-x_k)\boldsymbol{m}_1</math> | : <math>\boldsymbol{p}(t) = h_{00}(t)\boldsymbol{p}_0 + h_{10}(t)(x_{k+1}-x_k)\boldsymbol{m}_0 + h_{01}(t)\boldsymbol{p}_1 + h_{11}(t)(x_{k+1}-x_k)\boldsymbol{m}_1</math> | ||
जहाँ पे <math>h_{00}</math>, <math>h_{10}</math>, <math>h_{01}</math>, <math>h_{11}</math> हर्मिट आधार फलन हैं। इन्हें अलग-अलग तरीकों से लिखा जा सकता है, प्रत्येक तरीके से अलग-अलग गुण प्रकट होते हैं। | |||
इन्हें अलग-अलग तरीकों से लिखा जा सकता है, प्रत्येक तरीके से अलग-अलग गुण प्रकट होते | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 89: | Line 88: | ||
| <math>-\frac{1}{3} \cdot B_2(t)</math> | | <math>-\frac{1}{3} \cdot B_2(t)</math> | ||
|} | |} | ||
विस्तारित स्तंभ उपरोक्त परिभाषा में प्रयुक्त प्रतिनिधित्व को दर्शाता है। | विस्तारित स्तंभ उपरोक्त परिभाषा में प्रयुक्त प्रतिनिधित्व को दर्शाता है। गुणनखंडित स्तंभ तुरंत दिखाता है <math>h_{10}</math> तथा <math>h_{11}</math> सीमा पर शून्य हैं। हम आगे यह निष्कर्ष निकालते हैं <math>h_{01}</math> तथा <math>h_{11}</math> 0 पर बहुलता 2 का एक शून्य है, और, <math>h_{00}</math> तथा <math>h_{10}</math> 1 पर ऐसा शून्य है, इस प्रकार उन सीमाओं पर उनका ढलान 0 है। बर्नस्टीन कॉलम क्रम 3 के बर्नस्टीन बहुपदों में हर्मिट आधार फलनों के अपघटन को दर्शाता है | ||
गुणनखंडित स्तंभ तुरंत दिखाता है <math>h_{10}</math> तथा <math>h_{11}</math> सीमा पर शून्य हैं। | |||
बर्नस्टीन कॉलम क्रम 3 के बर्नस्टीन बहुपदों में हर्मिट आधार | |||
: <math>B_k(t) = \binom{3}{k} \cdot t^k \cdot (1 - t)^{3-k}.</math> | : <math>B_k(t) = \binom{3}{k} \cdot t^k \cdot (1 - t)^{3-k}.</math> | ||
इस | इस संपर्क का उपयोग करके आप चार मानों के संबंध में घन बेजियर वक्रो के संदर्भ में घन हर्मिट इंटरपोलेशन को व्यक्त कर सकते हैं <math>\boldsymbol{p}_0, \boldsymbol{p}_0 + \frac{\boldsymbol{m}_0}{3}, \boldsymbol{p}_1 - \frac{\boldsymbol{m}_1}{3}, \boldsymbol{p}_1</math> और डे कैस्टेलजौ कलन विधि का उपयोग करके हर्मिट इंटरपोलेशन करते है, यह दर्शाता है कि एक घन बेज़ियर पैच के मध्य में दो नियंत्रण बिंदु संबंधित बाहरी बिंदुओं पर इंटरपोलेशन वक्र की स्पर्शरेखा निर्धारित करते हैं। | ||
यह दर्शाता है कि एक | |||
हम बहुपद को मानक रूप में भी लिख सकते हैं | हम बहुपद को मानक रूप में भी लिख सकते हैं | ||
Line 103: | Line 97: | ||
जहां नियंत्रण बिंदु और स्पर्शरेखा गुणांक हैं। यह टी के विभिन्न मूल्यों पर बहुपद के कुशल मूल्यांकन की अनुमति देता है क्योंकि निरंतर गुणांक की गणना एक बार की जा सकती है और पुन: उपयोग की जा सकती है। | जहां नियंत्रण बिंदु और स्पर्शरेखा गुणांक हैं। यह टी के विभिन्न मूल्यों पर बहुपद के कुशल मूल्यांकन की अनुमति देता है क्योंकि निरंतर गुणांक की गणना एक बार की जा सकती है और पुन: उपयोग की जा सकती है। | ||
== आंकड़े | == आंकड़े समुच्चय को इंटरपोल करना == | ||
एक आंकड़े | एक आंकड़े समुच्चय , <math>(x_k,\boldsymbol{p}_k)</math> के लिये <math>k=1,\ldots,n</math>, प्रत्येक अंतराल पर उपरोक्त प्रक्रिया को लागू करके प्रक्षेपित किया जा सकता है, जहाँ स्पर्शरेखाओं को एक समझदार तरीके से चुना जाता है, जिसका अर्थ है कि अंत बिंदुओं को साझा करने वाले अंतराल के लिए स्पर्शरेखाएँ समान हैं। प्रक्षेपित वक्र में तब टुकड़े के रूप में घन हर्मिट पट्टी होती हैं और यह विश्व स्तर पर निरंतर भिन्न होता है <math>(x_1, x_n)</math>. | ||
स्पर्शरेखा का चयन अद्वितीय नहीं है, और कई विकल्प उपलब्ध हैं। | |||
=== परिमित अंतर === | === परिमित अंतर === | ||
[[File:Finite difference spline example.png|thumb|परिमित-अंतर स्पर्शरेखाओं के साथ उदाहरण]]सबसे सरल विकल्प तीन-बिंदु अंतर है, जिसके लिए निरंतर अंतराल की लंबाई की आवश्यकता नहीं होती | [[File:Finite difference spline example.png|thumb|परिमित-अंतर स्पर्शरेखाओं के साथ उदाहरण]]सबसे सरल विकल्प तीन-बिंदु अंतर है, जिसके लिए निरंतर अंतराल की लंबाई की आवश्यकता नहीं होती है।<!-- See talk page --> | ||
: <math>\boldsymbol{m}_k = \frac{1}{2} \left(\frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_k}{x_{k+1} - x_k} + \frac{\boldsymbol{p}_k - \boldsymbol{p}_{k-1}}{x_k - x_{k-1}}\right)</math> | : <math>\boldsymbol{m}_k = \frac{1}{2} \left(\frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_k}{x_{k+1} - x_k} + \frac{\boldsymbol{p}_k - \boldsymbol{p}_{k-1}}{x_k - x_{k-1}}\right)</math> | ||
आंतरिक बिंदुओं के लिए <math>k = 2, \dots, n - 1</math>, और आंकड़े | आंतरिक बिंदुओं के लिए <math>k = 2, \dots, n - 1</math>, और आंकड़े समुच्चय के अंतिम बिंदुओं पर एक तरफा अंतर है। | ||
=== कार्डिनल पट्टी === <!-- Redirect "Cardinal spline" points directly to this section --> | === कार्डिनल पट्टी === <!-- Redirect "Cardinal spline" points directly to this section --> | ||
कार्डिनल पट्टी , जिसे कभी-कभी कैनोनिकल पट्टी कहा जाता है,<ref>{{cite web |last=Petzold |first=Charles |author-link=Charles Petzold |url=http://www.charlespetzold.com/blog/2009/01/Canonical-Splines-in-WPF-and-Silverlight.html |title=डब्ल्यूपीएफ और सिल्वरलाइट में कैननिकल स्प्लिन|date=2009}}</ref> पाया जाता है<ref>{{cite web |url=http://msdn2.microsoft.com/en-us/library/ms536358.aspx |title=कार्डिनल स्प्लिन्स|website=Microsoft Developer Network |access-date=2018-05-27}}</ref> यदि | |||
: <math>\boldsymbol{m}_k = (1 - c) \frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_{k-1}}{x_{k+1} - x_{k-1}}</math> | : <math>\boldsymbol{m}_k = (1 - c) \frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_{k-1}}{x_{k+1} - x_{k-1}}</math> | ||
स्पर्शरेखाओं की गणना के लिए प्रयोग किया जाता है। | स्पर्शरेखाओं की गणना के लिए प्रयोग किया जाता है। मापदंड {{mvar|c}} एक तनाव मापदंड है जो अंतराल में होना चाहिए {{math|[0, 1]}}. एक स्थिति में, इसे स्पर्शरेखा की लंबाई के रूप में समझा जा सकता है। चयन {{math|1=''c'' = 1}} सभी शून्य स्पर्शरेखा उत्पन्न करता है, और {{math|1=''c'' = 0.5}} चुनने से कैटमुल-रोम पट्टी प्राप्त होती है। | ||
=== कैटमुल-रोम पट्टी === <!-- Redirect "Catmull-Rom spline" points directly to this section --> | === कैटमुल-रोम पट्टी === <!-- Redirect "Catmull-Rom spline" points directly to this section --> | ||
{{cubic_interpolation_visualisation.svg}} | {{cubic_interpolation_visualisation.svg}} | ||
{{seealso| | {{seealso|सेंट्रिपेटल कैटमुल-रोम पट्टी}} | ||
होने के लिए चुने गए स्पर्शरेखाओं के लिए | होने के लिए चुने गए स्पर्शरेखाओं के लिए | ||
: <math>\boldsymbol{m}_k = \frac{1}{2} \frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_{k-1}}{x_{k+1} - x_{k-1}}</math> | : <math>\boldsymbol{m}_k = \frac{1}{2} \frac{\boldsymbol{p}_{k+1} - \boldsymbol{p}_{k-1}}{x_{k+1} - x_{k-1}}</math> | ||
कैटमुल-रोम पट्टी | कैटमुल-रोम पट्टी प्राप्त की जाती है, जो कार्डिनल पट्टी का एक विशेष कारण है। यह एक समान मापदंड क्षेत्र को ग्रहण करता है। | ||
वक्र का नाम एडविन कैटमुल और राफेल रोम के नाम पर रखा गया है। इस तकनीक का मुख्य लाभ यह है कि बिंदुओं के मूल समुच्चय के साथ बिंदु भी पट्टी वक्र के लिए नियंत्रण बिंदु बनाते हैं।<ref>{{citation |last1=Catmull |first1=Edwin |author1-link=Edwin Catmull |last2=Rom |first2=Raphael |author2-link=Raphael Rom |chapter=A class of local interpolating splines |editor1-first=R. E. |editor1-last=Barnhill |editor2-first=R. F. |editor2-last=Riesenfeld |title=Computer Aided Geometric Design |publisher=Academic Press |location=New York |year=1974 |pages=317–326}}</ref> वक्र के दोनों सिरों पर दो अतिरिक्त बिंदुओं की आवश्यकता होती है। समान कैटमुल-रोम कार्यान्वयन लूप और स्वप्रतिच्छेद का उत्पादन करता है। कॉर्डल और सेंट्रीपेटल कैटमुल रोम कार्यान्वयन हैं। <ref>N. Dyn, M. S. Floater, and K. Hormann. Four-point curve subdivision based on iterated chordal and centripetal parameterizations. Computer Aided Geometric Design, 26(3):279–286, 2009.</ref> इस समस्या को हल करें, लेकिन थोड़ी अलग गणना का उपयोग करें।<ref>P. J. Barry and R. N. Goldman. A recursive evaluation algorithm for a class of Catmull-Rom splines. SIGGRAPH Computer Graphics, 22(4):199–204, 1988.</ref> अभिकलित्र आलेखिकी में,कैटमुल-रोम पट्टियों का उपयोग सदैव कुंजी '''फ़्रेमों''' के बीच समतल प्रक्षेपित गति प्राप्त करने के लिए किया जाता है। उदाहरण के लिए, असतत कुंजी-फ़्रेम से उत्पन्न अधिकांश कैमरा पथ सजीवता को कैटमुल-रोम पट्टियों का उपयोग करके नियंत्रित किया जाता है। वे मुख्य रूप से गणना करने में अपेक्षाकृत आसान होने साथ लोकप्रिय हैं, यह गारंटी देता है कि प्रत्येक मुख्य फ्रेम की स्थिति बिल्कुल ठीक है, और यह भी गारंटी देता है कि उत्पन्न वक्र के स्पर्शरेखा कई भाँग पर लगातार जारी रहते हैं। | |||
=== कोचनेक-बार्टेल्स पट्टी === | |||
{{main|कोचनेक-बार्टेल्स पट्टी}} | |||
आंकड़े बिंदुओं को दिए गए स्पर्शरेखाओं का चयन करने के लिए कोचनेक-बार्टेल्स पट्टी एक और सामान्यीकरण है। <math>\boldsymbol{p}_{k-1}</math>, <math>\boldsymbol{p}_k</math> तथा <math>\boldsymbol{p}_{k+1}</math>, तीन संभावित मापदंडों के साथ तनाव, पूर्वाग्रह और एक निरंतरता मापदंड में है। | |||
=== | === मोनोटोन घन इंटरपोलेशन === | ||
{{main| | {{main|मोनोटोन घन इंटरपोलेशन }} | ||
यदि उपरोक्त सूचीबद्ध प्रकारों में से किसी एक घन हर्मिट पट्टी का उपयोग एकदिष्ट फलन आंकड़े समुच्चय के इंटरपोलेशन के लिए किया जाता है, तो इंटरपोलेटेड फलन एकदिष्ट नहीं होगा, लेकिन स्पर्शरेखाओं को समायोजित करके एक दिष्टता को संरक्षित किया जा सकता है। | |||
यदि उपरोक्त सूचीबद्ध प्रकारों में से किसी एक | |||
== | ===== अंत बिंदुओं पर मिलान किए गए व्युत्पन्न के साथ यूनिट अंतराल पर इंटरपोलेशन ===== | ||
बिंदुओं के एकल निर्देशांक पर विचार | बिंदुओं के एकल निर्देशांक पर विचार करने <math>\boldsymbol{p}_{n-1}, \boldsymbol{p}_n, \boldsymbol{p}_{n+1}</math> तथा <math>\boldsymbol{p}_{n+2}</math> उन मानों के रूप में जो एक फलन f(x) पूर्णांक निर्देशांकों x = n − 1, n, n + 1 और n + 2 पर लेता है, | ||
: <math>p_n = f(n) \quad \forall n \in \mathbb{Z}.</math> | : <math>p_n = f(n) \quad \forall n \in \mathbb{Z}.</math> | ||
इसके अलावा, मान लें कि अंत बिंदुओं पर स्पर्शरेखाओं को आसन्न बिंदुओं के केंद्रित अंतर के रूप में परिभाषित किया गया | इसके अलावा, मान लें कि अंत बिंदुओं पर स्पर्शरेखाओं को आसन्न बिंदुओं के केंद्रित अंतर के रूप में परिभाषित किया गया है। | ||
: <math>m_n = \frac{f(n + 1) - f(n - 1)}{2} = \frac{p_{n+1} - p_{n-1}}{2} \quad \forall n \in \mathbb{Z}.</math> | : <math>m_n = \frac{f(n + 1) - f(n - 1)}{2} = \frac{p_{n+1} - p_{n-1}}{2} \quad \forall n \in \mathbb{Z}.</math> | ||
वास्तविक x के लिए प्रक्षेपित f(x) का मूल्यांकन करने के लिए, पहले x को पूर्णांक भाग n और भिन्नात्मक भाग u में अलग | वास्तविक x के लिए प्रक्षेपित f(x) का मूल्यांकन करने के लिए, पहले x को पूर्णांक भाग n और भिन्नात्मक भाग u में अलग करता है। | ||
: <math>x = n + u,</math> | : <math>x = n + u,</math> | ||
Line 149: | Line 145: | ||
: <math>u = x - n = x - \lfloor x \rfloor,</math> | : <math>u = x - n = x - \lfloor x \rfloor,</math> | ||
: <math>0 \le u < 1,</math> | : <math>0 \le u < 1,</math> | ||
जहाँ पे <math>\lfloor x \rfloor</math> फ़्लोर फलन को दर्शाता है, जो कि एक्स से बड़ा कोई बड़ा पूर्णांक देता है। | |||
फिर कैटमुल-रोम पट्टी | फिर कैटमुल-रोम पट्टी है<ref>[https://arxiv.org/abs/0905.3564 Two hierarchies of spline interpolations. Practical algorithms for multivariate higher order splines].</ref> : <math>\begin{align} | ||
f(x) = f(n + u) &= \text{CINT}_u(p_{n-1}, p_n, p_{n+1}, p_{n+2}) \\ | f(x) = f(n + u) &= \text{CINT}_u(p_{n-1}, p_n, p_{n+1}, p_{n+2}) \\ | ||
&= | &= | ||
Line 204: | Line 200: | ||
&= \tfrac12 \Big(\big((-p_{n-1} + 3p_n - 3p_{n+1} + p_{n+2}) u + (2p_{n-1} - 5p_n + 4p_{n+1} - p_{n+2})\big)u + (-p_{n-1} + p_{n+1})\Big)u + p_n, | &= \tfrac12 \Big(\big((-p_{n-1} + 3p_n - 3p_{n+1} + p_{n+2}) u + (2p_{n-1} - 5p_n + 4p_{n+1} - p_{n+2})\big)u + (-p_{n-1} + p_{n+1})\Big)u + p_n, | ||
\end{align}</math> | \end{align}</math> | ||
कहाँ पे <math>\mathrm{T}</math> मैट्रिक्स स्थानान्तरण को दर्शाता है। नीचे की समानता हॉर्नर की विधि के अनुप्रयोग को दर्शा रही है। | कहाँ पे <math>\mathrm{T}</math> मैट्रिक्स | ||
जहाँ T आव्यूह स्थानान्तरण को दर्शाता है। नीचे की समानता हॉर्नर की विधि के अनुप्रयोग को दर्शा रही है। | |||
यह लेखन | यह लेखन ट्राइघन इंटरपोलेशन के लिए प्रासंगिक है, जहां एक अनुकूलीकरण के लिए संगणन की आवश्यकता होती है, सीआईएनटी<sub>''u''</sub> सोलह बार एक ही यू और अलग पी के साथ होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* बाइबिक इंटरपोलेशन, दो आयामों का सामान्यीकरण | * बाइबिक इंटरपोलेशन, दो आयामों का सामान्यीकरण | ||
* | * ट्राइघन इंटरपोलेशन, तीन आयामों का सामान्यीकरण | ||
* हर्मिट इंटरपोलेशन | * हर्मिट इंटरपोलेशन | ||
* | * बहुभिन्न रूपी प्रक्षेप | ||
* | * पट्टी प्रक्षेप | ||
* असतत | * असतत पट्टी प्रक्षेप | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 20:52, 4 December 2022
संख्यात्मक विश्लेषण में, एक घन हर्माइट पट्टी या घन हर्माइट इंटेरपोलेटर एक पट्टी है जहां प्रत्येक पट्टी हर्माइट के रूप में निर्दिष्ट तृतीय-कोटि बहुपद है, यह संबंधित डोमेन अंतराल के अंत बिंदुओं पर इसके मूल्यों और प्रथम व्युत्पन्न द्वारा होता है।[1]
घन हर्मिट पट्टी का उपयोग सामान्तया दिए गए अर्थ मानों पर निर्दिष्ट संख्यात्मक आंकड़े के इंटरपोलेशन के लिए किया जाता है , एक सतत फलन प्राप्त करने के लिए। आंकड़े में प्रत्येक .पर वांछित फलन मान और प्रत्येक पर व्युत्पन्न सम्मिलित होता है (यदि केवल मान प्रदान किए किए जाते हैं, तो उनसे व्युत्पन्न का अनुमान लगाया जाना चाहिए।) हर्मिट सूत्र प्रत्येक अंतराल के लिए अलग से लागू किया जाता है। परिणामी पट्टी निरंतर होता है और निरंतर पहला व्युत्पन्न होता है।
घन बहुपद पट्टी अन्य तरीकों से निर्दिष्ट किया जा सकता है, बेज़ियर घन सबसे आम होते है। चूँकि, ये दो विधियाँ पट्टी को एक ही समुच्चय प्रदान करती हैं, और आंकड़े को बेज़ियर और हर्मिट रूपों के बीच आसानी से परिवर्तित किया जा सकता है, इसलिए नामों का सदैव उपयोग किया जाता है जैसे कि वे पर्यायवाची हों।
घन बहुपद पट्टी बड़े पैमाने पर अभिकलित्र आलेखिकी और ज्यामितीय मॉडलिंग में घटता या गति प्रक्षेप वक्र प्राप्त करने के लिए उपयोग किया जाता है जो समतल (ज्यामिति) या त्रि-आयामी क्षेत्र (ज्यामिति) के निर्दिष्ट बिंदुओं से गुजरता है। इन अनुप्रयोगों में, समतल या क्षेत्र के प्रत्येक निर्देशांक को एक अलग मापदंड t के घन पट्टी फलन द्वारा अलग से प्रक्षेपित किया जाता है। घन बहुपद विभाजन का उपयोग संरचनात्मक विश्लेषण अनुप्रयोगों में बड़े पैमाने पर किया जाता है, जैसे यूलर-बर्नौली बीम सिद्धांत।
घन पट्टी को कई तरीकों से दो या दो से अधिक मापदंड के फलन तक बढ़ाया जा सकता है। द्विघन पट्टी ( द्विघन इंटरपोलेशन) का उपयोग सदैव एक नियमित आयताकार ग्रिड पर आंकड़े को प्रक्षेपित करने के लिए किया जाता है, जैसे कि अंकीय छवि में पिक्सेल मान या भू-भाग पर ऊंचाई आंकड़े से है। द्विघन सतह पैच, तीन द्विघन पट्टी द्वारा परिभाषित, अभिकलित्र आलेखिकी में एक आवश्यक उपकरण हैं।
घन पट्टी को सदैव सी पट्टी कहा जाता है, खासकर अभिकलित्र आलेखिकी में। हर्मिट पट्टी का नाम चार्ल्स हर्मिट के नाम पर रखा गया है।
एक अंतराल पर इंटरपोलेशन
इकाई अंतराल (0, 1)
इकाई अंतराल पर , एक शुरुआती बिंदु दिया पर और एक समापन बिंदु पर स्पर्शरेखा शुरू करने के साथ पर और स्पर्शरेखा समाप्त पर , बहुपद को परिभाषित किया जाता है
जहां टी ∈ [0, 1]।
यादृच्छिक अंतराल पर इंटरपोलेशन
प्रक्षेपित करना एक यादृच्छिक अंतराल में को प्रतिचित्र करके किया जाता है चर के एक एफफाइन (कोटि -1) परिवर्तन के माध्यम से सूत्र है।
जहाँ पे , तथा आधार फलनों को संदर्भित करता है, नीचे परिभाषित। ध्यान दें कि स्पर्शरेखा मूल्यों को पर्पटित किया गया है इकाई अंतराल पर समीकरण की तुलना में किया गया है।
विशिष्टता
ऊपर निर्दिष्ट सूत्र दिए गए स्पर्शरेखा वाले दो बिंदुओं के बीच अद्वितीय तृतीय-कोटि बहुपद पथ प्रदान करता है।
सबूत। होने देना दी गई सीमा स्थितियों को संतुष्ट करने वाले दो तृतीय-कोटि बहुपद हैं। परिभाषित करना फिर:
चूंकि दोनों तथा तीसरी कोटि के बहुपद हैं, अधिक से अधिक एक तृतीय-कोटि बहुपद है। इसलिए प्ररूप का होना चाहिए
व्युत्पन्न की गणना देता है
हम यह भी जानते हैं
-
(1)
-
(2)
(1) तथा (2) को एक साथ रखने पर, हम यह निकालते हैं कि , और इसीलिए इस प्रकार
प्रतिनिधित्व
हम प्रक्षेप बहुपद को इस प्रकार लिख सकते हैं
जहाँ पे , , , हर्मिट आधार फलन हैं। इन्हें अलग-अलग तरीकों से लिखा जा सकता है, प्रत्येक तरीके से अलग-अलग गुण प्रकट होते हैं।
expanded | factorized | Bernstein | |
---|---|---|---|
विस्तारित स्तंभ उपरोक्त परिभाषा में प्रयुक्त प्रतिनिधित्व को दर्शाता है। गुणनखंडित स्तंभ तुरंत दिखाता है तथा सीमा पर शून्य हैं। हम आगे यह निष्कर्ष निकालते हैं तथा 0 पर बहुलता 2 का एक शून्य है, और, तथा 1 पर ऐसा शून्य है, इस प्रकार उन सीमाओं पर उनका ढलान 0 है। बर्नस्टीन कॉलम क्रम 3 के बर्नस्टीन बहुपदों में हर्मिट आधार फलनों के अपघटन को दर्शाता है
इस संपर्क का उपयोग करके आप चार मानों के संबंध में घन बेजियर वक्रो के संदर्भ में घन हर्मिट इंटरपोलेशन को व्यक्त कर सकते हैं और डे कैस्टेलजौ कलन विधि का उपयोग करके हर्मिट इंटरपोलेशन करते है, यह दर्शाता है कि एक घन बेज़ियर पैच के मध्य में दो नियंत्रण बिंदु संबंधित बाहरी बिंदुओं पर इंटरपोलेशन वक्र की स्पर्शरेखा निर्धारित करते हैं।
हम बहुपद को मानक रूप में भी लिख सकते हैं
जहां नियंत्रण बिंदु और स्पर्शरेखा गुणांक हैं। यह टी के विभिन्न मूल्यों पर बहुपद के कुशल मूल्यांकन की अनुमति देता है क्योंकि निरंतर गुणांक की गणना एक बार की जा सकती है और पुन: उपयोग की जा सकती है।
आंकड़े समुच्चय को इंटरपोल करना
एक आंकड़े समुच्चय , के लिये , प्रत्येक अंतराल पर उपरोक्त प्रक्रिया को लागू करके प्रक्षेपित किया जा सकता है, जहाँ स्पर्शरेखाओं को एक समझदार तरीके से चुना जाता है, जिसका अर्थ है कि अंत बिंदुओं को साझा करने वाले अंतराल के लिए स्पर्शरेखाएँ समान हैं। प्रक्षेपित वक्र में तब टुकड़े के रूप में घन हर्मिट पट्टी होती हैं और यह विश्व स्तर पर निरंतर भिन्न होता है .
स्पर्शरेखा का चयन अद्वितीय नहीं है, और कई विकल्प उपलब्ध हैं।
परिमित अंतर
सबसे सरल विकल्प तीन-बिंदु अंतर है, जिसके लिए निरंतर अंतराल की लंबाई की आवश्यकता नहीं होती है।
आंतरिक बिंदुओं के लिए , और आंकड़े समुच्चय के अंतिम बिंदुओं पर एक तरफा अंतर है।
कार्डिनल पट्टी
कार्डिनल पट्टी , जिसे कभी-कभी कैनोनिकल पट्टी कहा जाता है,[2] पाया जाता है[3] यदि
स्पर्शरेखाओं की गणना के लिए प्रयोग किया जाता है। मापदंड c एक तनाव मापदंड है जो अंतराल में होना चाहिए [0, 1]. एक स्थिति में, इसे स्पर्शरेखा की लंबाई के रूप में समझा जा सकता है। चयन c = 1 सभी शून्य स्पर्शरेखा उत्पन्न करता है, और c = 0.5 चुनने से कैटमुल-रोम पट्टी प्राप्त होती है।
कैटमुल-रोम पट्टी
होने के लिए चुने गए स्पर्शरेखाओं के लिए
कैटमुल-रोम पट्टी प्राप्त की जाती है, जो कार्डिनल पट्टी का एक विशेष कारण है। यह एक समान मापदंड क्षेत्र को ग्रहण करता है।
वक्र का नाम एडविन कैटमुल और राफेल रोम के नाम पर रखा गया है। इस तकनीक का मुख्य लाभ यह है कि बिंदुओं के मूल समुच्चय के साथ बिंदु भी पट्टी वक्र के लिए नियंत्रण बिंदु बनाते हैं।[5] वक्र के दोनों सिरों पर दो अतिरिक्त बिंदुओं की आवश्यकता होती है। समान कैटमुल-रोम कार्यान्वयन लूप और स्वप्रतिच्छेद का उत्पादन करता है। कॉर्डल और सेंट्रीपेटल कैटमुल रोम कार्यान्वयन हैं। [6] इस समस्या को हल करें, लेकिन थोड़ी अलग गणना का उपयोग करें।[7] अभिकलित्र आलेखिकी में,कैटमुल-रोम पट्टियों का उपयोग सदैव कुंजी फ़्रेमों के बीच समतल प्रक्षेपित गति प्राप्त करने के लिए किया जाता है। उदाहरण के लिए, असतत कुंजी-फ़्रेम से उत्पन्न अधिकांश कैमरा पथ सजीवता को कैटमुल-रोम पट्टियों का उपयोग करके नियंत्रित किया जाता है। वे मुख्य रूप से गणना करने में अपेक्षाकृत आसान होने साथ लोकप्रिय हैं, यह गारंटी देता है कि प्रत्येक मुख्य फ्रेम की स्थिति बिल्कुल ठीक है, और यह भी गारंटी देता है कि उत्पन्न वक्र के स्पर्शरेखा कई भाँग पर लगातार जारी रहते हैं।
कोचनेक-बार्टेल्स पट्टी
आंकड़े बिंदुओं को दिए गए स्पर्शरेखाओं का चयन करने के लिए कोचनेक-बार्टेल्स पट्टी एक और सामान्यीकरण है। , तथा , तीन संभावित मापदंडों के साथ तनाव, पूर्वाग्रह और एक निरंतरता मापदंड में है।
मोनोटोन घन इंटरपोलेशन
यदि उपरोक्त सूचीबद्ध प्रकारों में से किसी एक घन हर्मिट पट्टी का उपयोग एकदिष्ट फलन आंकड़े समुच्चय के इंटरपोलेशन के लिए किया जाता है, तो इंटरपोलेटेड फलन एकदिष्ट नहीं होगा, लेकिन स्पर्शरेखाओं को समायोजित करके एक दिष्टता को संरक्षित किया जा सकता है।
अंत बिंदुओं पर मिलान किए गए व्युत्पन्न के साथ यूनिट अंतराल पर इंटरपोलेशन
बिंदुओं के एकल निर्देशांक पर विचार करने तथा उन मानों के रूप में जो एक फलन f(x) पूर्णांक निर्देशांकों x = n − 1, n, n + 1 और n + 2 पर लेता है,
इसके अलावा, मान लें कि अंत बिंदुओं पर स्पर्शरेखाओं को आसन्न बिंदुओं के केंद्रित अंतर के रूप में परिभाषित किया गया है।
वास्तविक x के लिए प्रक्षेपित f(x) का मूल्यांकन करने के लिए, पहले x को पूर्णांक भाग n और भिन्नात्मक भाग u में अलग करता है।
जहाँ पे फ़्लोर फलन को दर्शाता है, जो कि एक्स से बड़ा कोई बड़ा पूर्णांक देता है।
फिर कैटमुल-रोम पट्टी है[8] : कहाँ पे मैट्रिक्स
जहाँ T आव्यूह स्थानान्तरण को दर्शाता है। नीचे की समानता हॉर्नर की विधि के अनुप्रयोग को दर्शा रही है।
यह लेखन ट्राइघन इंटरपोलेशन के लिए प्रासंगिक है, जहां एक अनुकूलीकरण के लिए संगणन की आवश्यकता होती है, सीआईएनटीu सोलह बार एक ही यू और अलग पी के साथ होता है।
यह भी देखें
- बाइबिक इंटरपोलेशन, दो आयामों का सामान्यीकरण
- ट्राइघन इंटरपोलेशन, तीन आयामों का सामान्यीकरण
- हर्मिट इंटरपोलेशन
- बहुभिन्न रूपी प्रक्षेप
- पट्टी प्रक्षेप
- असतत पट्टी प्रक्षेप
संदर्भ
- ↑ Erwin Kreyszig (2005). Advanced Engineering Mathematics (9 ed.). Wiley. p. 816. ISBN 9780471488859.
- ↑ Petzold, Charles (2009). "डब्ल्यूपीएफ और सिल्वरलाइट में कैननिकल स्प्लिन".
- ↑ "कार्डिनल स्प्लिन्स". Microsoft Developer Network. Retrieved 2018-05-27.
- ↑ Cubic interpolation is not unique: this model using a Catmull-Rom spline and Lagrange basis polynomials passes through all four points. Note: If the black point is left of the yellow point, the yellow horizontal distance is negative; if the black point is on the right of the green point, the green horizontal distance is negative.
- ↑ Catmull, Edwin; Rom, Raphael (1974), "A class of local interpolating splines", in Barnhill, R. E.; Riesenfeld, R. F. (eds.), Computer Aided Geometric Design, New York: Academic Press, pp. 317–326
- ↑ N. Dyn, M. S. Floater, and K. Hormann. Four-point curve subdivision based on iterated chordal and centripetal parameterizations. Computer Aided Geometric Design, 26(3):279–286, 2009.
- ↑ P. J. Barry and R. N. Goldman. A recursive evaluation algorithm for a class of Catmull-Rom splines. SIGGRAPH Computer Graphics, 22(4):199–204, 1988.
- ↑ Two hierarchies of spline interpolations. Practical algorithms for multivariate higher order splines.
इस पेज में लापता आंतरिक लिंक की सूची
बाहरी संबंध
- Spline Curves, Prof. Donald H. House Clemson University
- Multi-dimensional Hermite Interpolation and Approximation, Prof. Chandrajit Bajaj, Purdue University
- Introduction to Catmull–Rom Splines, MVPs.org
- Interpolating Cardinal and Catmull–Rom splines
- Interpolation methods: linear, cosine, cubic and hermite (with C sources)
- Common Spline Equations