घन हर्माइट स्पलाइन: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 18:35, 8 December 2022

संख्यात्मक विश्लेषण में, एक घन हर्माइट स्प्लीन या घन हर्माइट अन्तर्वेशक एक स्प्लीन है जहां प्रत्येक स्प्लीन हर्माइट के रूप में निर्दिष्ट तृतीय-कोटि बहुपद है, यह संबंधित डोमेन अंतराल के अंत बिंदुओं पर इसके मूल्यों और प्रथम व्युत्पन्न द्वारा होता है।[1]

घन हर्मिट स्प्लीन का उपयोग सामान्तया दिए गए अर्थ मानों पर निर्दिष्ट संख्यात्मक आंकड़े के अंतःक्षेप के लिए किया जाता है , एक सतत फलन प्राप्त करने के लिए। आंकड़े में प्रत्येक .पर वांछित फलन मान और प्रत्येक पर व्युत्पन्न सम्मिलित होता है(यदि केवल मान प्रदान किए किए जाते हैं, तो उनसे व्युत्पन्न का अनुमान लगाया जाना चाहिए।) हर्मिट सूत्र प्रत्येक अंतराल के लिए अलग से लागू किया जाता है। परिणामी स्प्लीन निरंतर होता है और निरंतर पहला व्युत्पन्न होता है।

घन बहुपद स्प्लीन अन्य तरीकों से निर्दिष्ट किया जा सकता है, बेज़ियर घन सबसे साधारण होते है। चूँकि, ये दो विधियाँ स्प्लीन को एक ही समुच्चय प्रदान करती हैं, और आंकड़े को बेज़ियर और हर्मिट रूपों के बीच आसानी से परिवर्तित किया जा सकता है, इसलिए नामों का सदैव उपयोग किया जाता है जैसे कि वे पर्यायवाची हों।

घन बहुपद स्प्लीन बड़े पैमाने पर अभिकलित्र आलेखिकी और ज्यामितीय प्रतिरूपण में घटता या गति प्रक्षेप वक्र प्राप्त करने के लिए उपयोग किया जाता है जो समतल(ज्यामिति) या त्रि-आयामी क्षेत्र(ज्यामिति) के निर्दिष्ट बिंदुओं से गुजरता है। इन अनुप्रयोगों में, समतल या क्षेत्र के प्रत्येक निर्देशांक को एक अलग मापदंड t के घन स्प्लीन फलन द्वारा अलग से प्रक्षेपित किया जाता है। घन बहुपद विभाजन का उपयोग संरचनात्मक विश्लेषण अनुप्रयोगों में बड़े पैमाने पर किया जाता है, जैसे यूलर-बर्नौली बीम सिद्धांत।

घन स्प्लीन को कई तरीकों से दो या दो से अधिक मापदंड के फलन तक बढ़ाया जा सकता है। द्विघन स्प्लीन(द्विघन अंतःक्षेप ) का उपयोग सदैव एक नियमित आयताकार ग्रिड पर आंकड़े को प्रक्षेपित करने के लिए किया जाता है, जैसे कि अंकीय छवि में पिक्सेल मान या भू-भाग पर ऊंचाई आंकड़े से है। द्विघन सतह पैच, तीन द्विघन स्प्लीन द्वारा परिभाषित, अभिकलित्र आलेखिकी में एक आवश्यक उपकरण हैं।

घन स्प्लीन को सदैव सी स्प्लीन कहा जाता है, खासकर अभिकलित्र आलेखिकी में, हर्मिट स्प्लीन का नाम चार्ल्स हर्मिट के नाम पर रखा गया है।

एक अंतराल पर अंतःक्षेप

इकाई अंतराल(0, 1)

चार हर्मिट आधार फलन करते हैं। प्रत्येक उपअंतराल में इंटरपोलेंट इन चार फलन का एक रैखिक संयोजन है।

इकाई अंतराल पर , एक शुरुआती बिंदु दिया पर और एक समापन बिंदु पर स्पर्शरेखा शुरू करने के साथ पर और स्पर्शरेखा समाप्त पर , बहुपद को परिभाषित किया जाता है

जहां t ∈ [0, 1]।

यादृच्छिक अंतराल पर अंतःक्षेप

प्रक्षेपित करना एक यादृच्छिक अंतराल में को प्रतिचित्र करके किया जाता है चर के एक एफफाइन(कोटि -1) परिवर्तन के माध्यम से सूत्र है।

जहाँ पर , तथा आधार फलनों को संदर्भित करता है, नीचे परिभाषित। ध्यान दें कि स्पर्शरेखा मूल्यों को पर्पटित किया गया है इकाई अंतराल पर समीकरण की तुलना में किया गया है।

विशिष्टता

ऊपर निर्दिष्ट सूत्र दिए गए स्पर्शरेखा वाले दो बिंदुओं के बीच अद्वितीय तृतीय-कोटि बहुपद पथ प्रदान करता है।

तथाकथित है कि दी गई सीमा स्थितियों को संतुष्ट करने वाले दो तृतीय-कोटि बहुपद हैं। परिभाषित करना फिर:

चूंकि दोनों तथा तीसरी कोटि के बहुपद हैं, अधिक से अधिक एक तृतीय-कोटि बहुपद है। इसलिए प्ररूप का होना चाहिए

व्युत्पन्न की गणना देता है

हम यह भी जानते हैं

 

 

 

 

(1)

 

 

 

 

(2)

(1) तथा(2) को एक साथ रखने पर, हम यह निकालते हैं कि , और इसीलिए इस प्रकार


प्रतिनिधित्व

हम प्रक्षेप बहुपद को इस प्रकार लिख सकते हैं

जहाँ पर , , , हर्मिट आधार फलन हैं। इन्हें अलग-अलग तरीकों से लिखा जा सकता है, प्रत्येक तरीके से अलग-अलग गुण प्रकट होते हैं।

विस्तार गुणनखण्ड बर्नस्टीन

विस्तारित स्तंभ उपरोक्त परिभाषा में प्रयुक्त प्रतिनिधित्व को दर्शाता है। गुणनखंडित स्तंभ तुरंत दिखाता है तथा सीमा पर शून्य हैं। हम आगे यह निष्कर्ष निकालते हैं तथा 0 पर बहुलता 2 का एक शून्य है, और, तथा 1 पर ऐसा शून्य है, इस प्रकार उन सीमाओं पर उनका ढलान 0 है। बर्नस्टीन कॉलम क्रम 3 के बर्नस्टीन बहुपदों में हर्मिट आधार फलनों के अपघटन को दर्शाता है

इस संपर्क का उपयोग करके आप चार मानों के संबंध में घन बेजियर वक्रो के संदर्भ में घन हर्मिट अंतःक्षेप को व्यक्त कर सकते हैं और डे कैस्टेल जौ कलन विधि का उपयोग करके हर्मिट अंतःक्षेप करते है, यह दर्शाता है कि एक घन बेज़ियर पैच के मध्य में दो नियंत्रण बिंदु संबंधित बाहरी बिंदुओं पर अंतःक्षेप वक्र की स्पर्शरेखा निर्धारित करते हैं।

हम बहुपद को मानक रूप में भी लिख सकते हैं

जहां नियंत्रण बिंदु और स्पर्शरेखा गुणांक हैं। यह टी के विभिन्न मूल्यों पर बहुपद के कुशल मूल्यांकन की अनुमति देता है क्योंकि निरंतर गुणांक की गणना एक बार की जा सकती है और पुन: उपयोग की जा सकती है।

आंकड़े समुच्चय को इंटरपोल करना

एक आंकड़े समुच्चय , के लिये , प्रत्येक अंतराल पर उपरोक्त प्रक्रिया को लागू करके प्रक्षेपित किया जा सकता है, जहाँ स्पर्शरेखाओं को एक समझदार तरीके से चुना जाता है, जिसका अर्थ है कि अंत बिंदुओं को साझा करने वाले अंतराल के लिए स्पर्शरेखाएँ समान हैं। प्रक्षेपित वक्र में तब टुकड़े के रूप में घन हर्मिट स्प्लीन होती हैं और यह विश्व स्तर पर निरंतर भिन्न होता है .

स्पर्शरेखा का चयन अद्वितीय नहीं है, और कई विकल्प उपलब्ध हैं।

परिमित अंतर

परिमित-अंतर स्पर्शरेखाओं के साथ उदाहरण

सबसे सरल विकल्प तीन-बिंदु अंतर है, जिसके लिए निरंतर अंतराल की लंबाई की आवश्यकता नहीं होती है।

आंतरिक बिंदुओं के लिए , और आंकड़े समुच्चय के अंतिम बिंदुओं पर एक तरफा अंतर है।

कार्डिनल स्प्लीन

कार्डिनल स्प्लीन , जिसे कभी-कभी कैनोनिकल स्प्लीन कहा जाता है,[2] पाया जाता है[3] यदि

स्पर्शरेखाओं की गणना के लिए प्रयोग किया जाता है। मापदंड c एक तनाव मापदंड है जो अंतराल में होना चाहिए [0, 1]. एक स्थिति में, इसे स्पर्शरेखा की लंबाई के रूप में समझा जा सकता है। चयन c = 1 सभी शून्य स्पर्शरेखा उत्पन्न करता है, और c = 0.5 चुनने से कैटमुल-रोम स्प्लीन प्राप्त होती है।

कैटमुल-रोम स्प्लीन

Geometric interpretation of Catmull–Rom cubic interpolation of the black point with uniformly spaced abscissae.[4]

होने के लिए चुने गए स्पर्शरेखाओं के लिए

कैटमुल-रोम स्प्लीन प्राप्त की जाती है, जो कार्डिनल स्प्लीन का एक विशेष कारण है। यह एक समान मापदंड क्षेत्र को ग्रहण करता है।

वक्र का नाम एडविन कैटमुल और राफेल रोम के नाम पर रखा गया है। इस तकनीक का मुख्य लाभ यह है कि बिंदुओं के मूल समुच्चय के साथ बिंदु भी स्प्लीन वक्र के लिए नियंत्रण बिंदु बनाते हैं।[5] वक्र के दोनों सिरों पर दो अतिरिक्त बिंदुओं की आवश्यकता होती है। समान कैटमुल-रोम कार्यान्वयन लूप और स्वप्रतिच्छेद का उत्पादन करता है। कॉर्डल और सेंट्रीपेटल कैटमुल रोम कार्यान्वयन हैं। [6] इस समस्या को हल करें, लेकिन थोड़ी अलग गणना का उपयोग करें।[7] अभिकलित्र आलेखिकी में,कैटमुल-रोम पट्टियों का उपयोग सदैव कुंजी फ़्रेमों के बीच समतल प्रक्षेपित गति प्राप्त करने के लिए किया जाता है। उदाहरण के लिए, असतत कुंजी-फ़्रेम से उत्पन्न अधिकांश कैमरा पथ सजीवता को कैटमुल-रोम पट्टियों का उपयोग करके नियंत्रित किया जाता है। वे मुख्य रूप से गणना करने में अपेक्षाकृत आसान होने साथ लोकप्रिय हैं, यह गारंटी देता है कि प्रत्येक मुख्य फ्रेम की स्थिति बिल्कुल ठीक है, और यह भी गारंटी देता है कि उत्पन्न वक्र के स्पर्शरेखा कई भाँग पर लगातार जारी रहते हैं।

कोचनेक-बार्टेल्स स्प्लीन

आंकड़े बिंदुओं को दिए गए स्पर्शरेखाओं का चयन करने के लिए कोचनेक-बार्टेल्स स्प्लीन एक और सामान्यीकरण है। , तथा , तीन संभावित मापदंडों के साथ तनाव, पूर्वाग्रह और एक निरंतरता मापदंड में है।

मोनोटोन घन अंतःक्षेप

यदि उपरोक्त सूचीबद्ध प्रकारों में से किसी एक घन हर्मिट स्प्लीन का उपयोग एकदिष्ट फलन आंकड़े समुच्चय के अंतःक्षेप के लिए किया जाता है, तो इंटरपोलेटेड फलन एकदिष्ट नहीं होगा, लेकिन स्पर्शरेखाओं को समायोजित करके एक दिष्टता को संरक्षित किया जा सकता है।

अंत बिंदुओं पर मिलान किए गए व्युत्पन्न के साथ यूनिट अंतराल पर अंतःक्षेप

बिंदुओं के एकल निर्देशांक पर विचार करने तथा उन मानों के रूप में जो एक फलन f(x) पूर्णांक निर्देशांकों x = n − 1, n, n + 1 और n + 2 पर लेता है,

इसके अलावा, मान लें कि अंत बिंदुओं पर स्पर्शरेखाओं को आसन्न बिंदुओं के केंद्रित अंतर के रूप में परिभाषित किया गया है।

वास्तविक x के लिए प्रक्षेपित f(x) का मूल्यांकन करने के लिए, पहले x को पूर्णांक भाग n और भिन्नात्मक भाग u में अलग करता है।

जहाँ पर फ़्लोर फलन को दर्शाता है, जो कि एक्स से बड़ा कोई बड़ा पूर्णांक देता है।

फिर कैटमुल-रोम स्प्लीन है[8] :