प्रक्षेपीय रेखा: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Refimprove|date=December 2009}}गणित में, एक प्रक्षेपी रेखा, मोटे तौर पर बोल रही है, एक सामान्य [[रेखा (ज्यामिति)]] का विस्तार एक बिंदु से होता है जिसे अनंत पर एक बिंदु कहा जाता है। विशेष मामलों के परिणामी विलोपन द्वारा ज्यामिति के कई प्रमेयों के कथन और प्रमाण को सरल किया जाता है; उदाहरण के लिए, एक प्रक्षेपी तल में दो अलग-अलग प्रक्षेपी रेखाएँ बिल्कुल एक बिंदु पर मिलती हैं (कोई "समानांतर" स्थिति नहीं है)।
{{Refimprove|date=December 2009}}गणित में, एक प्रक्षेपी रेखा, मुख्य रूप से कथित है कि, सामान्य [[रेखा (ज्यामिति)|रेखा(ज्यामिति)]] का विस्तार एक बिंदु से होता है जिसे अनंत पर एक बिंदु कहा जाता है। विशेष परिस्थिति के परिणामी विलोपन द्वारा ज्यामिति के कई प्रमेयों के कथन और प्रमाण को सरल किया जाता है; उदाहरण के लिए, एक प्रक्षेपी तल में दो अलग-अलग प्रक्षेपी रेखाएँ बिल्कुल एक बिंदु पर मिलती हैं(कोई "समानांतर" स्थिति नहीं है)।


प्रक्षेपी रेखा को औपचारिक रूप से परिभाषित करने के लिए कई समतुल्य तरीके हैं; सबसे आम में से एक [[क्षेत्र (गणित)]] K पर एक प्रक्षेपी रेखा को परिभाषित करना है, जिसे व्यापक रूप से P1 (K) के रूप में निरूपित किया जाता है, एक द्वि-आयामी K-वेक्टर स्थान के एक-आयामी उप-स्थान के सेट के रूप में। यह परिभाषा प्रक्षेपी स्थान की सामान्य परिभाषा का एक विशेष उदाहरण है।
प्रक्षेपी रेखा को औपचारिक रूप से परिभाषित करने के लिए कई समतुल्य तरीके हैं; सबसे सामान्य में से एक [[क्षेत्र (गणित)|क्षेत्र(गणित)]] K पर एक प्रक्षेपी रेखा को परिभाषित करना है, जिसे व्यापक रूप से P1(K) के रूप में निरूपित किया जाता है, तथा दूसरा द्वि-आयामी K-सदिश स्थान के एक-आयामी उप-स्थान के सेट के रूप में प्रयुक्त होता है। यह परिभाषा प्रक्षेपी स्थान की सामान्य परिभाषा का एक विशेष उदाहरण है।


[[वास्तविक संख्या]] पर प्रक्षेपी रेखा कई गुना है; विवरण के लिए वास्तविक प्रक्षेपी रेखा देखें।
[[वास्तविक संख्या]] पर प्रक्षेपी रेखा कई गुना है; विवरण के लिए वास्तविक प्रक्षेपी रेखा देखें।


== सजातीय निर्देशांक ==
== सजातीय निर्देशांक ==
प्रोजेक्टिव लाइन पी 1 (K) में एक मनमानी बिंदु समरूप निर्देशांक के समतुल्य वर्ग द्वारा दर्शाया जा सकता है, जो एक जोड़ी का रूप लेता है।
प्रक्षेपीय रेखा पी 1(K) में एक स्वछंद बिंदु समरूप निर्देशांक के समतुल्य वर्ग द्वारा दर्शाया जा सकता है, जो एक युग्म का रूप लेता है।
:<math>[x_1 : x_2]</math>
:<math>[x_1 : x_2]</math>
K के तत्वों की संख्या जो दोनों शून्य नहीं हैं। ऐसे दो जोड़े [[तुल्यता संबंध]] हैं यदि वे एक समग्र अशून्य कारक λ द्वारा भिन्न होते हैं:
K के तत्वों की संख्या जो दोनों शून्य नहीं हैं। ऐसे दो युग्म [[तुल्यता संबंध]] हैं यदि वे एक समग्र अशून्य कारक λ द्वारा भिन्न होते हैं:
:<math>[x_1 : x_2] \sim [\lambda x_1 : \lambda x_2].</math>
:<math>[x_1 : x_2] \sim [\lambda x_1 : \lambda x_2].</math>




== अनंत पर एक बिंदु द्वारा विस्तारित रेखा ==
== अनंत पर एक बिंदु द्वारा विस्तारित रेखा ==
प्रक्षेपी रेखा को अनंत पर एक बिंदु द्वारा विस्तारित रेखा K से पहचाना जा सकता है। अधिक सही रूप से, रेखा K की पहचान P1(K) के उपसमुच्चय से की जा सकती है
प्रक्षेपी रेखा को अनंत पर एक बिंदु द्वारा विस्तारित रेखा K से पहचाना जा सकता है। सही रूप से, रेखा K की पहचान P1(K) के उपसमुच्चय से की जा सकती है
:<math>\left\{[x : 1] \in \mathbf P^1(K) \mid x \in K\right\}.</math>
:<math>\left\{[x : 1] \in \mathbf P^1(K) \mid x \in K\right\}.</math>
यह उपसमुच्चय P1(K) में एक को छोड़कर सभी बिंदुओं को शामिल करता है, जिसे अनंत पर बिंदु कहा जाता है:
यह उपसमुच्चय P1(K) में एक को छोड़कर सभी बिंदुओं को सम्मिलित करता है, जिसे अनंत पर बिंदु कहा जाता है:
:<math>\infty = [1 : 0].</math>
:<math>\infty = [1 : 0].</math>
यह सूत्र द्वारा K से P1(K) तक अंकगणित का विस्तार करने की अनुमति देता है।
यह सूत्र द्वारा K से P1(K) तक अंकगणित का विस्तार करने की अनुमति देता है।
Line 21: Line 21:
:<math>x\cdot \infty = \infty \quad \text{if}\quad x\not= 0</math>
:<math>x\cdot \infty = \infty \quad \text{if}\quad x\not= 0</math>
:<math>x+ \infty = \infty \quad \text{if}\quad x\not= \infty</math>
:<math>x+ \infty = \infty \quad \text{if}\quad x\not= \infty</math>
सजातीय निर्देशांक के संदर्भ में इस अंकगणित का अनुवाद करने पर, जब [0 : 0] नहीं होता है:
सजातीय निर्देशांक के संदर्भ में इस अंकगणित का अनुवाद करने पर, जब [0:0] नहीं होता है:
:<math>[x_1 : x_2] + [y_1 : y_2] = [(x_1 y_2 + y_1 x_2) : x_2 y_2],</math>
:<math>[x_1 : x_2] + [y_1 : y_2] = [(x_1 y_2 + y_1 x_2) : x_2 y_2],</math>
:<math>[x_1 : x_2] \cdot [y_1 : y_2] = [x_1 y_1 : x_2 y_2],</math>
:<math>[x_1 : x_2] \cdot [y_1 : y_2] = [x_1 y_1 : x_2 y_2],</math>
Line 30: Line 30:


=== वास्तविक प्रक्षेपी रेखा ===
=== वास्तविक प्रक्षेपी रेखा ===
{{Main|real projective line}}
{{Main|वास्तविक प्रक्षेपण रेखा}}
 
वास्तविक संख्याओं पर प्रक्षेपी रेखा वास्तविक प्रक्षेपी रेखा कहलाती है। इसे अनंत ∞ पर एक आदर्श बिंदु के साथ मिलकर रेखा K के रूप में भी सोचा जा सकता है; बिंदु K के दोनों सिरों से जुड़कर एक बंद लूप या सांस्थितिक वृत्त का निर्माण करता है।
वास्तविक संख्याओं पर प्रक्षेपी रेखा वास्तविक प्रक्षेपी रेखा कहलाती है। इसे अनंत ∞ पर एक आदर्श बिंदु के साथ मिलकर रेखा K के रूप में भी सोचा जा सकता है; बिंदु K के दोनों सिरों से जुड़कर एक बंद लूप या सांस्थितिक वृत्त का निर्माण करता है।


[[यूनिट सर्कल]] R2 में बिंदुओं को प्रोजेक्ट करके एक उदाहरण प्राप्त किया जाता है और फिर [[बिल्कुल विपरीत]] बिंदुओं की पहचान की जाती है। [[समूह सिद्धांत]] के संदर्भ में हम [[उपसमूह]] {{nowrap|{1, −1}.}}द्वारा भागफल ले सकते हैं।
[[यूनिट सर्कल|इकाई वृत्त]] R2 में बिंदुओं को योजनाबद्ध करके एक उदाहरण प्राप्त किया जाता है और फिर [[बिल्कुल विपरीत]] बिंदुओं की पहचान की जाती है। [[समूह सिद्धांत]] के संदर्भ में हम [[उपसमूह]]{{nowrap|{1, −1}.}}द्वारा भागफल ले सकते हैं।
[[विस्तारित वास्तविक संख्या रेखा]] की तुलना करें, जो ∞ और −∞ के बीच अंतर करती है।
[[विस्तारित वास्तविक संख्या रेखा]] की तुलना करें, जो ∞ और −∞ के बीच अंतर करती है।


=== जटिल प्रक्षेपी रेखा: [[रीमैन क्षेत्र]] ===
=== जटिल प्रक्षेपी रेखा: [[रीमैन क्षेत्र]] ===
अनंत पर एक बिंदु को जटिल तल में जोड़ने से एक ऐसा स्थान बनता है जो स्थलीय रूप से एक गोला है। इसलिए जटिल प्रक्षेपी रेखा को रीमैन क्षेत्र (या कभी-कभी गॉस क्षेत्र) के रूप में भी जाना जाता है। [[कॉम्पैक्ट रीमैन सतह]] का सबसे सरल उदाहरण के रूप में, यह [[जटिल विश्लेषण]], [[बीजगणितीय ज्यामिति]] और [[जटिल कई गुना]] सिद्धांत में निरंतर उपयोग में है।
अनंत पर एक बिंदु को जटिल तल में जोड़ने से एक ऐसा स्थान बनता है जो स्थलीय रूप से एक गोला है। इसलिए जटिल प्रक्षेपी रेखा को रीमैन क्षेत्र(या कभी-कभी गॉस क्षेत्र) के रूप में भी जाना जाता है। [[कॉम्पैक्ट रीमैन सतह]] का सबसे सरल उदाहरण के रूप में, यह [[जटिल विश्लेषण]], [[बीजगणितीय ज्यामिति]] और [[जटिल कई गुना]] सिद्धांत में निरंतर उपयोग में है।


=== एक [[परिमित क्षेत्र]] के लिए ===
=== एक [[परिमित क्षेत्र]] के लिए ===


Q तत्वों के एक परिमित क्षेत्र Fq पर प्रक्षेपी रेखा में q + 1 बिंदु होते हैं। अन्य सभी मामलों में यह अन्य प्रकार के क्षेत्रों पर परिभाषित प्रक्षेपी रेखाओं से अलग नहीं है। सजातीय निर्देशांक [x : y] के संदर्भ में, इन बिंदुओं में से q का रूप है:
Q तत्वों के एक परिमित क्षेत्र Fq पर प्रक्षेपी रेखा में q + 1 बिंदु होते हैं। अन्य सभी परिस्थिति में यह अन्य प्रकार के क्षेत्रों पर परिभाषित प्रक्षेपी रेखाओं से अलग नहीं है। सजातीय निर्देशांक [x:y] के संदर्भ में, इन बिंदुओं में से q का रूप है:
:{{math|[''a'' : 1]}} प्रत्येक के लिए {{mvar|''a''}} में {{mvar|''F''<sub>''q''</sub>}},
:{{math|[''a'' : 1]}} प्रत्येक के लिए {{mvar|''a''}} में {{mvar|''F''<sub>''q''</sub>}},


और अनंत पर शेष बिंदु [1 : 0] के रूप में प्रदर्शित किया जा सकता है।
और अनंत पर शेष बिंदु [1:0] के रूप में प्रदर्शित किया जा सकता है।


== समरूपता समूह ==
== समरूपता समूह ==
व्यापक रूप से, K में गुणांक वाले [[होमोग्राफी]] का समूह प्रक्षेपी रेखा P1(K) पर कार्य करता है।<sup>1</sup> यह समूह क्रिया सकर्मक है, इसलिए P1(K) समूह के लिए एक सजातीय स्थान है, जिसे अक्सर इन परिवर्तनों की अनुमानित प्रकृति पर जोर देने के लिए PGL2(K) लिखा जाता है। ट्रांज़िटिविटी का कहना है कि एक होमोग्राफी मौजूद है जो किसी बिंदु क्यू को किसी अन्य बिंदु आर में बदल देगी। पी 1 (के) पर अनंतता पर बिंदु इसलिए निर्देशांक की पसंद का एक आर्टिफैक्ट है: सजातीय निर्देशांक:
व्यापक रूप से, K में गुणांक वाले [[होमोग्राफी]] का समूह प्रक्षेपी रेखा P1(K) पर कार्य करता है।<sup>1</sup> यह समूह क्रिया सकर्मक है, इसलिए P1(K) समूह के लिए एक सजातीय स्थान है, जिसे प्रायः इन परिवर्तनों की अनुमानित प्रकृति पर जोर देने के लिए PGL2(K) लिखा जाता है। सकर्मकता का कहना है कि एक होमोग्राफी मौजूद है जो किसी बिंदु क्यू को किसी अन्य बिंदु R में बदल देगी। P1(के) पर अनंतता पर बिंदु इसलिए निर्देशांक की पसंद का एक आर्टिफैक्ट है: सजातीय निर्देशांक:


:<math>[X : Y] \sim [\lambda X : \lambda Y]</math>
:<math>[X : Y] \sim [\lambda X : \lambda Y]</math>
इसमें स्थित एक गैर-शून्य बिंदु {{nowrap|(''X'', ''Y'')}} द्वारा एक-आयामी उप-स्थान व्यक्त करें, लेकिन प्रक्षेप्य रेखा की समरूपता बिंदु ∞ = [1: 0] को किसी अन्य में स्थानांतरित कर सकती है, और यह किसी भी तरह से अलग नहीं है।
इसमें स्थित एक गैर-शून्य बिंदु {{nowrap|(''X'', ''Y'')}} द्वारा एक-आयामी उप-स्थान व्यक्त करें, लेकिन प्रक्षेप्य रेखा की समरूपता बिंदु ∞ =[1: 0] को किसी अन्य में स्थानांतरित कर सकती है, और यह किसी भी तरह से अलग नहीं है।


इसमें कुछ रूपांतरण किसी भी दिए गए अलग-अलग बिंदु क्यूई को i = 1, 2, 3 के लिए अलग-अलग बिंदुओं (ट्रिपल ट्रांज़िटिविटी) के किसी अन्य 3-ट्यूपल री में ले जा सकते हैं। विशिष्टता की यह मात्रा PGL2(K) के तीन आयामों का 'उपयोग' करती है; दूसरे शब्दों में, समूह क्रिया तीव्र रूप से 3-सकर्मक होती है। इसका संगणनात्मक पहलू क्रॉस-अनुपात है। वास्तव में, एक सामान्यीकृत आक्षेप सत्य है: एक तीव्र 3-संक्रमणीय समूह क्रिया हमेशा (आइसोमोर्फिक) एक प्रक्षेपी रेखा पर PGL2(K) क्रिया का एक सामान्यीकृत रूप है, "फ़ील्ड" को "केटी-फ़ील्ड" से प्रतिस्थापित करती है (प्रतिलोम को सामान्यीकृत करती है) एक कमजोर प्रकार के समावेशन के लिए), और "पीजीएल" प्रक्षेपी रैखिक मानचित्रों के एक समान सामान्यीकरण द्वारा।<ref>[https://mathoverflow.net/q/66865 Action of PGL(2) on Projective Space] – see comment and cited paper.</ref>
इसमें कुछ रूपांतरण किसी भी दिए गए अलग-अलग बिंदु Q<sub>i</sub> को i = 1, 2, 3 के लिए अलग-अलग बिंदुओं(ट्रिपल सकर्मकता) के किसी अन्य 3-ट्यूपल R में ले जा सकते हैं। विशिष्टता की यह मात्रा PGL2(K) के तीन आयामों का 'उपयोग' करती है; दूसरे शब्दों में, समूह क्रिया तीव्र रूप से 3-सकर्मक होती है। इसका संगणनात्मक पहलू क्रॉस-अनुपात है। वास्तव में, एक सामान्यीकृत आक्षेप सत्य है: एक तीव्र 3-संक्रमणीय समूह क्रिया हमेशा(आइसोमोर्फिक) एक प्रक्षेपी रेखा पर PGL2(K) क्रिया का एक सामान्यीकृत रूप है, "फ़ील्ड" को "केटी-फ़ील्ड" से प्रतिस्थापित करती है(प्रतिलोम को सामान्यीकृत करती है) एक कमजोर प्रकार के समावेशन के लिए), और "पीजीएल" प्रक्षेपी रैखिक मानचित्रों के एक समान सामान्यीकरण द्वारा।<ref>[https://mathoverflow.net/q/66865 Action of PGL(2) on Projective Space] – see comment and cited paper.</ref>






== [[बीजगणितीय वक्र]] के रूप में ==
== [[बीजगणितीय वक्र]] के रूप में ==
प्रक्षेपी रेखा एक बीजगणितीय वक्र का एक मौलिक उदाहरण है। बीजगणितीय ज्यामिति के दृष्टिकोण से, P1(K) [[जीनस (गणित)]] 0 का एक गैर-एकवचन वक्र है। यदि K[[बीजगणितीय रूप से बंद]] है, तो यह K पर अद्वितीय ऐसा वक्र है, जो परिमेय तुल्यता तक है। सामान्य तौर पर जीनस 0 का एक (गैर-एकवचन) वक्र तर्कसंगत रूप से K से एक शांकव C के समतुल्य होता है, जो स्वयं द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है और यदि केवल C में K पर परिभाषित बिंदु हो; ज्यामितीय रूप से इस तरह के एक बिंदु पी को मूल के रूप में उपयोग किया जा सकता है ताकि स्पष्ट द्विवार्षिक समानता हो सके।
प्रक्षेपी रेखा एक बीजगणितीय वक्र का एक मौलिक उदाहरण है। बीजगणितीय ज्यामिति के दृष्टिकोण से, P1(K) [[जीनस (गणित)|जीनस(गणित)]] 0 का एक गैर-एकवचन वक्र है। यदि K [[बीजगणितीय रूप से बंद]] है, तो यह K पर अद्वितीय ऐसा वक्र है, जो परिमेय तुल्यता तक है। सामान्य तौर पर जीनस 0 का एक(गैर-एकवचन) वक्र तर्कसंगत रूप से K से एक शांकव C के समतुल्य होता है, जो स्वयं द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है और यदि केवल C में K पर परिभाषित बिंदु हो; ज्यामितीय रूप से इस तरह के एक बिंदु पी को मूल के रूप में उपयोग किया जा सकता है ताकि स्पष्ट द्विवार्षिक समानता हो सके।


प्रक्षेपी रेखा का [[एक बीजगणितीय विविधता का कार्य क्षेत्र]], K पर [[तर्कसंगत कार्य]]ों का का क्षेत्र K(T) है, एक अनिश्चित T में। K(T) के क्षेत्र automorphisms K(T) ऊपर चर्चा किए गए समूह PGL2(K) हैं।
प्रक्षेपी रेखा का [[एक बीजगणितीय विविधता का कार्य क्षेत्र]], K पर [[तर्कसंगत कार्य]] का क्षेत्र K(T) है, एक अनिश्चित T में, K(T) के क्षेत्र स्वसमाकृतिकता K(T) चर्चा किए गए समूह PGL2(K) हैं।


किसी एकल बिंदु के अलावा [[बीजगणितीय किस्म]] V ओवर K के किसी भी फ़ंक्शन फ़ील्ड K(V) में K(T) के साथ एक सबफ़ील्ड आइसोमॉर्फिक है। [[द्विभाजित ज्यामिति]] के दृष्टिकोण से, इसका अर्थ है कि V से P1(K) तक एक परिमेय मानचित्र होगा, जो स्थिर नहीं है। छवि केवल P1 (K) के बहुत से बिंदुओं को छोड़ देगी, और एक विशिष्ट बिंदु P की व्युत्क्रम छवि का आयाम मंद V - 1 होगा। यह बीजगणितीय ज्यामिति में उन विधियों की शुरुआत है जो आयाम पर आगमनात्मक हैं। तर्कसंगत मानचित्र जटिल विश्लेषण के [[मेरोमॉर्फिक फ़ंक्शन]] के अनुरूप भूमिका निभाते हैं, और वास्तव में कॉम्पैक्ट रीमैन सतहों के मामले में दो अवधारणाएं मेल खाती हैं।
किसी एकल बिंदु के अलावा [[बीजगणितीय किस्म]] V ओवर K के किसी भी फलन फ़ील्ड K(V) में K(T) के साथ एक सबफ़ील्ड आइसोमॉर्फिक है। [[द्विभाजित ज्यामिति]] के दृष्टिकोण से, इसका अर्थ है कि V से P1(K) तक एक परिमेय मानचित्र होगा, जो स्थिर नहीं है। इमेज केवल P1(K) के बहुत से बिंदुओं को त्याग देगी, और एक विशिष्ट बिंदु P की व्युत्क्रम इमेज का आयाम मंद V - 1 होगा। यह बीजगणितीय ज्यामिति में उन विधियों की शुरुआत है जो आयाम पर आगमनात्मक हैं। तर्कसंगत मानचित्र जटिल विश्लेषण के [[मेरोमॉर्फिक फ़ंक्शन|मेरोमॉर्फिक फलन]] के अनुरूप भूमिका निभाते हैं, और वास्तव में कॉम्पैक्ट रीमैन सतहों के मामले में दो अवधारणाएं समानता रखती हैं।


यदि V को अब आयाम 1 के रूप में लिया जाता है, तो हमें P1(K) पर 'ओवर' प्रस्तुत एक विशिष्ट बीजगणितीय वक्र C का चित्र मिलता है। मान लें कि सी गैर-एकवचन है (जो कि के (सी) से शुरू होने वाली सामान्यता का कोई नुकसान नहीं है), यह दिखाया जा सकता है कि सी से पी 1 (के) के लिए इस तरह के तर्कसंगत मानचित्र वास्तव में हर जगह परिभाषित होंगे। (यदि विलक्षणताएं हैं तो ऐसा नहीं है, उदाहरण के लिए एक [[दोहरा बिंदु]] जहां एक वक्र स्वयं को पार करता है, तर्कसंगत मानचित्र के बाद एक अनिश्चित परिणाम दे सकता है।) यह एक तस्वीर देता है जिसमें मुख्य ज्यामितीय विशेषता शाखा है।
यदि V को अब आयाम 1 के रूप में लिया जाता है, तो हमें P1(K) पर 'ओवर' प्रस्तुत एक विशिष्ट बीजगणितीय वक्र C का चित्र मिलता है। मान लें कि सी गैर-एकवचन है(जो कि K(C) से शुरू होने वाली सामान्यता का कोई नुकसान नहीं है), यह दिखाया जा सकता है कि C से P1(K) के लिए इस तरह के तर्कसंगत मानचित्र वास्तव में हर जगह परिभाषित होंगे।(यदि विलक्षणताएं हैं तो ऐसा नहीं है, उदाहरण के लिए एक [[दोहरा बिंदु]] जहां एक वक्र स्वयं को पार करता है, तर्कसंगत मानचित्र के बाद एक अनिश्चित परिणाम दे सकता है।) यह एक तस्वीर देता है जिसमें मुख्य ज्यामितीय विशेषता शाखा है।


कई वक्र, उदाहरण के लिए [[हाइपरेलिप्टिक वक्र]], प्रक्षेपी रेखा के [[शाखायुक्त आवरण]] के रूप में, अमूर्त रूप से प्रस्तुत किए जा सकते हैं। रिमेंन-हर्वित्ज़ सूत्र के अनुसार, जीनस तब केवल शाखा के प्रकार पर निर्भर करता है।
कई वक्र, उदाहरण के लिए [[हाइपरेलिप्टिक वक्र]], प्रक्षेपी रेखा के [[शाखायुक्त आवरण]] के रूप में, अमूर्त रूप से प्रस्तुत किए जा सकते हैं। रिमेंन-हर्वित्ज़ सूत्र के अनुसार, जीनस केवल शाखा के प्रकार पर निर्भर करता है।


एक परिमेय वक्र एक ऐसा वक्र है जो द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है (तर्कसंगत विविधता देखें); इसका जीनस 0 है। प्रक्षेपी स्थान Pn में एक परिमेय[[तर्कसंगत सामान्य वक्र]]एक परिमेय वक्र है जो किसी उचित रेखीय उपस्थान में स्थित नहीं है; यह ज्ञात है कि केवल एक उदाहरण है (प्रक्षेपी तुल्यता तक),<ref>{{citation|title=Algebraic Geometry: A First Course|volume=133|series=Graduate Texts in Mathematics|first=Joe|last=Harris|publisher=Springer|year=1992|isbn=9780387977164|url=https://books.google.com/books?id=_XxZdhbtf1sC&pg=PA10}}.</ref> सजातीय निर्देशांक में पैरामीट्रिक रूप से दिया गया:
एक परिमेय वक्र एक ऐसा वक्र है जो द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है(तर्कसंगत विविधता देखें); इसका जीनस 0 है। प्रक्षेपी स्थान Pn में एक परिमेय [[तर्कसंगत सामान्य वक्र]] एक परिमेय वक्र है जो किसी उचित रेखीय उपस्थान में स्थित नहीं है; यह ज्ञात है कि केवल एक उदाहरण है(प्रक्षेपी तुल्यता तक),<ref>{{citation|title=Algebraic Geometry: A First Course|volume=133|series=Graduate Texts in Mathematics|first=Joe|last=Harris|publisher=Springer|year=1992|isbn=9780387977164|url=https://books.google.com/books?id=_XxZdhbtf1sC&pg=PA10}}.</ref> सजातीय निर्देशांक में पैरामीट्रिक रूप से दिया गया:


: [1 : टी : टी<sup>2</sup> : ... : टी<sup>एन</sup>]।
: [1: t: t<sup>2</sup>: ...: tn]।


पहले रोचक मामले के लिए [[मुड़ घन]] देखें।
पहले रोचक मामले के लिए [[मुड़ घन|वक्र घन]] देखें।


== यह भी देखें ==
== यह भी देखें ==
Line 77: Line 78:
* क्रॉस-अनुपात
* क्रॉस-अनुपात
* मोबियस परिवर्तन
* मोबियस परिवर्तन
* [[रिंग के ऊपर प्रोजेक्टिव लाइन]]
* [[रिंग के ऊपर प्रोजेक्टिव लाइन|रिंग के ऊपर प्रक्षेपीय रेखा]]
* [[अनुमानित रूप से विस्तारित वास्तविक रेखा]]
* [[अनुमानित रूप से विस्तारित वास्तविक रेखा]]
* [[प्रोजेक्टिव रेंज]]
* [[प्रोजेक्टिव रेंज|प्रक्षेपीय रेंज]]
 
 
==इस पेज में लापता आंतरिक लिंक की सूची==
 
*अंक शास्त्र
*प्रक्षेपी विमान
*प्रक्षेपण स्थान
*रैखिक उपस्थान
*सदिश स्थल
*विविध
*वास्तविक प्रक्षेपण रेखा
*सजातीय निर्देशांक
*तुल्यता वर्ग
*अनंत पर बिंदु
*भागफल स्थान (टोपोलॉजी)
*जटिल विमान
*वृत्त
*गुणक
*समूह क्रिया (गणित)
*सजातीय स्थान
*अलग (गणित)
*पार अनुपात
*गैर विलक्षण
*शंकुधर
*तर्कसंगत समानता
*फील्ड ऑटोमोर्फिज्म
*तर्कसंगत नक्शा
*रमीकरण (गणित)
*तर्कसंगत किस्म
*द्विपदीय समानता
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
Line 115: Line 86:
{{Algebraic curves navbox}}
{{Algebraic curves navbox}}


{{DEFAULTSORT:Projective Line}}[[Category: बीजगणितीय वक्र]]
{{DEFAULTSORT:Projective Line}}
[[Category:प्रक्षेपी ज्यामिति]]
 


[[Category: Machine Translated Page]]
[[Category:All articles needing additional references|Projective Line]]
[[Category:Created On 25/11/2022]]
[[Category:Articles needing additional references from December 2009|Projective Line]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Projective Line]]
[[Category:Collapse templates|Projective Line]]
[[Category:Created On 25/11/2022|Projective Line]]
[[Category:Machine Translated Page|Projective Line]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Projective Line]]
[[Category:Pages with script errors|Projective Line]]
[[Category:Sidebars with styles needing conversion|Projective Line]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats|Projective Line]]
[[Category:Templates that are not mobile friendly|Projective Line]]
[[Category:Templates using TemplateData|Projective Line]]
[[Category:Wikipedia metatemplates|Projective Line]]
[[Category:प्रक्षेपी ज्यामिति|Projective Line]]
[[Category:बीजगणितीय वक्र|Projective Line]]

Latest revision as of 13:57, 9 December 2022

गणित में, एक प्रक्षेपी रेखा, मुख्य रूप से कथित है कि, सामान्य रेखा(ज्यामिति) का विस्तार एक बिंदु से होता है जिसे अनंत पर एक बिंदु कहा जाता है। विशेष परिस्थिति के परिणामी विलोपन द्वारा ज्यामिति के कई प्रमेयों के कथन और प्रमाण को सरल किया जाता है; उदाहरण के लिए, एक प्रक्षेपी तल में दो अलग-अलग प्रक्षेपी रेखाएँ बिल्कुल एक बिंदु पर मिलती हैं(कोई "समानांतर" स्थिति नहीं है)।

प्रक्षेपी रेखा को औपचारिक रूप से परिभाषित करने के लिए कई समतुल्य तरीके हैं; सबसे सामान्य में से एक क्षेत्र(गणित) K पर एक प्रक्षेपी रेखा को परिभाषित करना है, जिसे व्यापक रूप से P1(K) के रूप में निरूपित किया जाता है, तथा दूसरा द्वि-आयामी K-सदिश स्थान के एक-आयामी उप-स्थान के सेट के रूप में प्रयुक्त होता है। यह परिभाषा प्रक्षेपी स्थान की सामान्य परिभाषा का एक विशेष उदाहरण है।

वास्तविक संख्या पर प्रक्षेपी रेखा कई गुना है; विवरण के लिए वास्तविक प्रक्षेपी रेखा देखें।

सजातीय निर्देशांक

प्रक्षेपीय रेखा पी 1(K) में एक स्वछंद बिंदु समरूप निर्देशांक के समतुल्य वर्ग द्वारा दर्शाया जा सकता है, जो एक युग्म का रूप लेता है।

K के तत्वों की संख्या जो दोनों शून्य नहीं हैं। ऐसे दो युग्म तुल्यता संबंध हैं यदि वे एक समग्र अशून्य कारक λ द्वारा भिन्न होते हैं:


अनंत पर एक बिंदु द्वारा विस्तारित रेखा

प्रक्षेपी रेखा को अनंत पर एक बिंदु द्वारा विस्तारित रेखा K से पहचाना जा सकता है। सही रूप से, रेखा K की पहचान P1(K) के उपसमुच्चय से की जा सकती है

यह उपसमुच्चय P1(K) में एक को छोड़कर सभी बिंदुओं को सम्मिलित करता है, जिसे अनंत पर बिंदु कहा जाता है:

यह सूत्र द्वारा K से P1(K) तक अंकगणित का विस्तार करने की अनुमति देता है।

सजातीय निर्देशांक के संदर्भ में इस अंकगणित का अनुवाद करने पर, जब [0:0] नहीं होता है:


उदाहरण

वास्तविक प्रक्षेपी रेखा

वास्तविक संख्याओं पर प्रक्षेपी रेखा वास्तविक प्रक्षेपी रेखा कहलाती है। इसे अनंत ∞ पर एक आदर्श बिंदु के साथ मिलकर रेखा K के रूप में भी सोचा जा सकता है; बिंदु K के दोनों सिरों से जुड़कर एक बंद लूप या सांस्थितिक वृत्त का निर्माण करता है।

इकाई वृत्त R2 में बिंदुओं को योजनाबद्ध करके एक उदाहरण प्राप्त किया जाता है और फिर बिल्कुल विपरीत बिंदुओं की पहचान की जाती है। समूह सिद्धांत के संदर्भ में हम उपसमूह{1, −1}.द्वारा भागफल ले सकते हैं। विस्तारित वास्तविक संख्या रेखा की तुलना करें, जो ∞ और −∞ के बीच अंतर करती है।

जटिल प्रक्षेपी रेखा: रीमैन क्षेत्र

अनंत पर एक बिंदु को जटिल तल में जोड़ने से एक ऐसा स्थान बनता है जो स्थलीय रूप से एक गोला है। इसलिए जटिल प्रक्षेपी रेखा को रीमैन क्षेत्र(या कभी-कभी गॉस क्षेत्र) के रूप में भी जाना जाता है। कॉम्पैक्ट रीमैन सतह का सबसे सरल उदाहरण के रूप में, यह जटिल विश्लेषण, बीजगणितीय ज्यामिति और जटिल कई गुना सिद्धांत में निरंतर उपयोग में है।

एक परिमित क्षेत्र के लिए

Q तत्वों के एक परिमित क्षेत्र Fq पर प्रक्षेपी रेखा में q + 1 बिंदु होते हैं। अन्य सभी परिस्थिति में यह अन्य प्रकार के क्षेत्रों पर परिभाषित प्रक्षेपी रेखाओं से अलग नहीं है। सजातीय निर्देशांक [x:y] के संदर्भ में, इन बिंदुओं में से q का रूप है:

[a : 1] प्रत्येक के लिए a में Fq,

और अनंत पर शेष बिंदु [1:0] के रूप में प्रदर्शित किया जा सकता है।

समरूपता समूह

व्यापक रूप से, K में गुणांक वाले होमोग्राफी का समूह प्रक्षेपी रेखा P1(K) पर कार्य करता है।1 यह समूह क्रिया सकर्मक है, इसलिए P1(K) समूह के लिए एक सजातीय स्थान है, जिसे प्रायः इन परिवर्तनों की अनुमानित प्रकृति पर जोर देने के लिए PGL2(K) लिखा जाता है। सकर्मकता का कहना है कि एक होमोग्राफी मौजूद है जो किसी बिंदु क्यू को किसी अन्य बिंदु R में बदल देगी। P1(के) पर अनंतता पर बिंदु इसलिए निर्देशांक की पसंद का एक आर्टिफैक्ट है: सजातीय निर्देशांक:

इसमें स्थित एक गैर-शून्य बिंदु (X, Y) द्वारा एक-आयामी उप-स्थान व्यक्त करें, लेकिन प्रक्षेप्य रेखा की समरूपता बिंदु ∞ =[1: 0] को किसी अन्य में स्थानांतरित कर सकती है, और यह किसी भी तरह से अलग नहीं है।

इसमें कुछ रूपांतरण किसी भी दिए गए अलग-अलग बिंदु Qi को i = 1, 2, 3 के लिए अलग-अलग बिंदुओं(ट्रिपल सकर्मकता) के किसी अन्य 3-ट्यूपल R में ले जा सकते हैं। विशिष्टता की यह मात्रा PGL2(K) के तीन आयामों का 'उपयोग' करती है; दूसरे शब्दों में, समूह क्रिया तीव्र रूप से 3-सकर्मक होती है। इसका संगणनात्मक पहलू क्रॉस-अनुपात है। वास्तव में, एक सामान्यीकृत आक्षेप सत्य है: एक तीव्र 3-संक्रमणीय समूह क्रिया हमेशा(आइसोमोर्फिक) एक प्रक्षेपी रेखा पर PGL2(K) क्रिया का एक सामान्यीकृत रूप है, "फ़ील्ड" को "केटी-फ़ील्ड" से प्रतिस्थापित करती है(प्रतिलोम को सामान्यीकृत करती है) एक कमजोर प्रकार के समावेशन के लिए), और "पीजीएल" प्रक्षेपी रैखिक मानचित्रों के एक समान सामान्यीकरण द्वारा।[1]


बीजगणितीय वक्र के रूप में

प्रक्षेपी रेखा एक बीजगणितीय वक्र का एक मौलिक उदाहरण है। बीजगणितीय ज्यामिति के दृष्टिकोण से, P1(K) जीनस(गणित) 0 का एक गैर-एकवचन वक्र है। यदि K बीजगणितीय रूप से बंद है, तो यह K पर अद्वितीय ऐसा वक्र है, जो परिमेय तुल्यता तक है। सामान्य तौर पर जीनस 0 का एक(गैर-एकवचन) वक्र तर्कसंगत रूप से K से एक शांकव C के समतुल्य होता है, जो स्वयं द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है और यदि केवल C में K पर परिभाषित बिंदु हो; ज्यामितीय रूप से इस तरह के एक बिंदु पी को मूल के रूप में उपयोग किया जा सकता है ताकि स्पष्ट द्विवार्षिक समानता हो सके।

प्रक्षेपी रेखा का एक बीजगणितीय विविधता का कार्य क्षेत्र, K पर तर्कसंगत कार्य का क्षेत्र K(T) है, एक अनिश्चित T में, K(T) के क्षेत्र स्वसमाकृतिकता K(T) चर्चा किए गए समूह PGL2(K) हैं।

किसी एकल बिंदु के अलावा बीजगणितीय किस्म V ओवर K के किसी भी फलन फ़ील्ड K(V) में K(T) के साथ एक सबफ़ील्ड आइसोमॉर्फिक है। द्विभाजित ज्यामिति के दृष्टिकोण से, इसका अर्थ है कि V से P1(K) तक एक परिमेय मानचित्र होगा, जो स्थिर नहीं है। इमेज केवल P1(K) के बहुत से बिंदुओं को त्याग देगी, और एक विशिष्ट बिंदु P की व्युत्क्रम इमेज का आयाम मंद V - 1 होगा। यह बीजगणितीय ज्यामिति में उन विधियों की शुरुआत है जो आयाम पर आगमनात्मक हैं। तर्कसंगत मानचित्र जटिल विश्लेषण के मेरोमॉर्फिक फलन के अनुरूप भूमिका निभाते हैं, और वास्तव में कॉम्पैक्ट रीमैन सतहों के मामले में दो अवधारणाएं समानता रखती हैं।

यदि V को अब आयाम 1 के रूप में लिया जाता है, तो हमें P1(K) पर 'ओवर' प्रस्तुत एक विशिष्ट बीजगणितीय वक्र C का चित्र मिलता है। मान लें कि सी गैर-एकवचन है(जो कि K(C) से शुरू होने वाली सामान्यता का कोई नुकसान नहीं है), यह दिखाया जा सकता है कि C से P1(K) के लिए इस तरह के तर्कसंगत मानचित्र वास्तव में हर जगह परिभाषित होंगे।(यदि विलक्षणताएं हैं तो ऐसा नहीं है, उदाहरण के लिए एक दोहरा बिंदु जहां एक वक्र स्वयं को पार करता है, तर्कसंगत मानचित्र के बाद एक अनिश्चित परिणाम दे सकता है।) यह एक तस्वीर देता है जिसमें मुख्य ज्यामितीय विशेषता शाखा है।

कई वक्र, उदाहरण के लिए हाइपरेलिप्टिक वक्र, प्रक्षेपी रेखा के शाखायुक्त आवरण के रूप में, अमूर्त रूप से प्रस्तुत किए जा सकते हैं। रिमेंन-हर्वित्ज़ सूत्र के अनुसार, जीनस केवल शाखा के प्रकार पर निर्भर करता है।

एक परिमेय वक्र एक ऐसा वक्र है जो द्विभाजित रूप से प्रक्षेपी रेखा के समतुल्य होता है(तर्कसंगत विविधता देखें); इसका जीनस 0 है। प्रक्षेपी स्थान Pn में एक परिमेय तर्कसंगत सामान्य वक्र एक परिमेय वक्र है जो किसी उचित रेखीय उपस्थान में स्थित नहीं है; यह ज्ञात है कि केवल एक उदाहरण है(प्रक्षेपी तुल्यता तक),[2] सजातीय निर्देशांक में पैरामीट्रिक रूप से दिया गया:

[1: t: t2: ...: tn]।

पहले रोचक मामले के लिए वक्र घन देखें।

यह भी देखें

संदर्भ

  1. Action of PGL(2) on Projective Space – see comment and cited paper.
  2. Harris, Joe (1992), Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer, ISBN 9780387977164.