चतुर्भुज: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 11: Line 11:
| area          = विभिन्न तरीके; ''नीचे देखें''
| area          = विभिन्न तरीके; ''नीचे देखें''
| angle        = 90° (वर्ग और आयात के लिए)}}
| angle        = 90° (वर्ग और आयात के लिए)}}
[[यूक्लिडियन ज्यामिति]] में '''चतुर्भुज''' एक चार भुजाओं वाला [[बहुभुज]] होता है, जिसमें चार किनारे (भुजाएँ) और चार [[वर्टेक्स (ज्यामिति)|वर्टेक्स]] (कोने) होते हैं। यह शब्द लैटिन शब्द ''क्वाड्री'', जो चार का एक प्रकार है, और ''लैटस'', जिसका अर्थ 'पक्ष' है, से लिया गया है। इसे '''टेट्रागोन (चतुष्कोण)''' भी कहा जाता है, जो ग्रीक 'टेट्रा' से लिया गया है जिसका अर्थ है 'चार' और 'गॉन' का अर्थ कोने या कोण है, जो अन्य बहुभुजों (जैसे [[पंचकोण]]) के अनुरूप है। चूँकि गोन का अर्थ कोण होता है, इसे समान रूप से '''चतुष्कोण''' , या 4-कोण कहा जाता है। शीर्षों वाला एक चतुर्भुज <math>A</math>, <math>B</math>, <math>C</math> तथा <math>D</math> कभी-कभी <math>\square ABCD</math> के रूप में दर्शाया जाता है।<ref name=":0">{{Cite web|title=चतुर्भुज - वर्गाकार, आयत, समचतुर्भुज, चतुर्भुज, समांतर चतुर्भुज|url=https://www.mathsisfun.com/quadrilaterals.html|access-date=2020-09-02|website=Mathsisfun.com}}</ref>
[[यूक्लिडियन ज्यामिति]] में '''चतुर्भुज''' एक चार भुजाओं वाला [[बहुभुज]] होता है, जिसमें चार किनारे(भुजाएँ) और चार शीर्ष(कोने) होते हैं। यह शब्द लैटिन शब्द ''क्वाड्री'', जो चार का एक प्रकार है, और ''लैटस'', जिसका अर्थ 'भुजा' है, से लिया गया है। इसे '''टेट्रागोन(चतुष्कोण)''' भी कहा जाता है, जो ग्रीक 'टेट्रा' से लिया गया है जिसका अर्थ है 'चार' और 'गॉन' का अर्थ कोने या कोण है, जो अन्य बहुभुजों(जैसे [[पंचकोण]]) के अनुरूप है। चूँकि गोन का अर्थ कोण होता है, इसे समान रूप से '''चतुष्कोण''' , या 4-कोण कहा जाता है। शीर्षों वाला एक चतुर्भुज <math>A</math>, <math>B</math>, <math>C</math> तथा <math>D</math> कभी-कभी <math>\square ABCD</math> के रूप में दर्शाया जाता है।<ref name=":0">{{Cite web|title=चतुर्भुज - वर्गाकार, आयत, समचतुर्भुज, चतुर्भुज, समांतर चतुर्भुज|url=https://www.mathsisfun.com/quadrilaterals.html|access-date=2020-09-02|website=Mathsisfun.com}}</ref>


चतुर्भुज या तो [[साधारण बहुभुज]] (स्व-प्रतिच्छेदी नहीं) या [[जटिल बहुभुज]] (स्व-प्रतिच्छेदी, या रेखित) होते हैं। सरल चतुर्भुज या तो [[उत्तल बहुभुज]] या [[अवतल बहुभुज]] होते हैं।
चतुर्भुज या तो [[साधारण बहुभुज]](स्व-प्रतिच्छेदी नहीं) या [[जटिल बहुभुज]](स्व-प्रतिच्छेदी, या रेखित) होते हैं। सरल चतुर्भुज या तो [[उत्तल बहुभुज]] या [[अवतल बहुभुज]] होते हैं।


एक सरल (और समतलीय) चतुर्भुज ABCD के आंतरिक 360 डिग्री तक चाप जोड़ते हैं, जो कि<ref name=":0" />:
एक सरल(और समतलीय) चतुर्भुज ABCD के आंतरिक 360 डिग्री तक चाप जोड़ते हैं, जो कि<ref name=":0" />:


<math>\angle A+\angle B+\angle C+\angle D=360^{\circ}.</math>
<math>\angle A+\angle B+\angle C+\angle D=360^{\circ}.</math>


यह n-गॉन आंतरिक कोण योग सूत्र की एक विशेष स्थिति है: S = (n - 2) × 180°।<ref>{{Cite web|url=https://www.cuemath.com/geometry/sum-of-angles-in-a-polygon/|title=एक बहुभुज में कोणों का योग|website=Cuemath|access-date=22 June 2022}}</ref>
यह n-गॉन आंतरिक कोण योग सूत्र की एक विशेष स्थिति है: S =(n - 2) × 180°।<ref>{{Cite web|url=https://www.cuemath.com/geometry/sum-of-angles-in-a-polygon/|title=एक बहुभुज में कोणों का योग|website=Cuemath|access-date=22 June 2022}}</ref>


सभी स्वतः रेखांकित चतुर्भुज, उनके किनारों के मध्य बिंदुओं के चारों ओर बार-बार घुमाकर समतल करते है।<ref>{{citation|last=Martin|first=George Edward|doi=10.1007/978-1-4612-5680-9|isbn=0-387-90636-3|mr=718119|at=Theorem 12.1, page 120|publisher=Springer-Verlag|series=Undergraduate Texts in Mathematics|title=Transformation geometry|url=https://books.google.com/books?id=gevlBwAAQBAJ&pg=PA120|year=1982}}</ref>
सभी स्वतः रेखांकित चतुर्भुज, उनके भुजाओं के मध्य बिंदुओं के चारों ओर बार-बार घुमाकर समतल करते है।<ref>{{citation|last=Martin|first=George Edward|doi=10.1007/978-1-4612-5680-9|isbn=0-387-90636-3|mr=718119|at=Theorem 12.1, page 120|publisher=Springer-Verlag|series=Undergraduate Texts in Mathematics|title=Transformation geometry|url=https://books.google.com/books?id=gevlBwAAQBAJ&pg=PA120|year=1982}}</ref>
== सरल चतुर्भुज ==
== सरल चतुर्भुज ==
कोई भी चतुर्भुज जो स्व-प्रतिच्छेदी नहीं है, एक सरल चतुर्भुज है।
कोई भी चतुर्भुज जो स्व-प्रतिच्छेदी नहीं है, एक सरल चतुर्भुज है।


=== उत्तल चतुर्भुज ===
=== उत्तल चतुर्भुज ===
[[File:Euler diagram of quadrilateral types.svg|thumb|300px|कुछ प्रकार के सरल चतुर्भुजों का [[यूलर आरेख]]। (यूके) ब्रिटिश अंग्रेजी को दर्शाता है और (यूएस) अमेरिकी अंग्रेजी को दर्शाता है।]]
[[File:Euler diagram of quadrilateral types.svg|thumb|300px|कुछ प्रकार के सरल चतुर्भुजों का [[यूलर आरेख]]।(यूके) ब्रिटिश अंग्रेजी को दर्शाता है और(यूएस) अमेरिकी अंग्रेजी को दर्शाता है।]]
[[File:Symmetries_of_square.svg|300px|thumb|सममिति द्वारा उत्तल चतुर्भुज, एक हस्से आरेख के साथ दर्शाया गया है।]]एक उत्तल चतुर्भुज में सभी आंतरिक कोण 180° से कम होते हैं, और दोनों विकर्ण चतुर्भुज के अंदर स्थित होते हैं।
[[File:Symmetries_of_square.svg|300px|thumb|सममिति द्वारा उत्तल चतुर्भुज, एक हस्से आरेख के साथ दर्शाया गया है।]]एक उत्तल चतुर्भुज में सभी आंतरिक कोण 180° से कम होते हैं, और दोनों विकर्ण चतुर्भुज के अंदर स्थित होते हैं।
*अनियमित चतुर्भुज ([[ब्रिटिश अंग्रेजी]]) या ट्रेपेजियम (उत्तरी अमेरिकी अंग्रेजी): कोई पक्ष समानांतर नहीं हैं। (ब्रिटिश अंग्रेजी में, इसे एक बार ट्रेपेज़ॉइड कहा जाता था। अधिक जानकारी के लिए, देखें {{Section link|Trapezoid (विषम चतुर्भुज)|Trapezium (समलम्ब ) vs Trapezoid (विषम चतुर्भुज)}}
*अनियमित चतुर्भुज([[ब्रिटिश अंग्रेजी]]) या ट्रेपेजियम(उत्तरी अमेरिकी अंग्रेजी): कोई भुजा समानांतर नहीं हैं।(ब्रिटिश अंग्रेजी में, इसे एक बार ट्रेपेज़ॉइड कहा जाता था। अधिक जानकारी के लिए, देखें {{Section link|Trapezoid (विषम चतुर्भुज)|Trapezium (समलम्ब ) vs Trapezoid (विषम चतुर्भुज)}}
*समलम्ब (यूके) या ट्रेपेज़ॉइड (यूएस): कम से कम एक जोड़ी विपरीत भुजाएँ [[समानांतर (ज्यामिति)]] हैं। समलम्ब (यूके) और ट्रेपेज़ोइड्स (यूएस) में समांतर [[चतुर्भुज]] सम्मिलित हैं।
*समलम्ब(यूके) या ट्रेपेज़ॉइड(यूएस): कम से कम एक जोड़ी विपरीत भुजाएँ [[समानांतर (ज्यामिति)|समानांतर(ज्यामिति)]] हैं। समलम्ब(यूके) और ट्रेपेज़ोइड्स(यूएस) में समांतर [[चतुर्भुज]] सम्मिलित हैं।
<!--Please do NOT define an isosceles trapezoid as having legs equal.  Doing so would make all parallelograms isosceles trapezoids, which we know is wrong.-->
<!--Please do NOT define an isosceles trapezoid as having legs equal.  Doing so would make all parallelograms isosceles trapezoids, which we know is wrong.-->
*समद्विबाहु ट्रेपेज़ियम (यूके) या [[[[समद्विबाहु ट्रेपेज़ॉइड]]]] (यूएस): विपरीत भुजाओं का एक जोड़ा समानांतर होता है और आधार [[कोण]] माप में बराबर होते हैं। वैकल्पिक परिभाषाएँ समरूपता के अक्ष के साथ एक [[चतुर्भुज]] हैं जो विपरीत पक्षों के एक जोड़े को द्विभाजित करती हैं, या समान लंबाई के विकर्णों के साथ एक चतुर्भुज हैं।
*समद्विबाहु ट्रेपेज़ियम(यूके) या [[[[समद्विबाहु ट्रेपेज़ॉइड]]]](यूएस): विपरीत भुजाओं का एक जोड़ा समानांतर होता है और आधार [[कोण]] माप में बराबर होते हैं। वैकल्पिक परिभाषाएँ समरूपता के अक्ष के साथ एक [[चतुर्भुज]] हैं जो विपरीत भुजाओ के एक जोड़े को द्विभाजित करती हैं, या समान लंबाई के विकर्णों के साथ एक चतुर्भुज हैं।
*समांतर चतुर्भुज: समानांतर भुजाओं के दो युग्मों वाला चतुर्भुज। समतुल्य स्थितियाँ हैं कि विपरीत भुजाएँ समान लंबाई की हों; सम्मुख कोण बराबर होते हैं; या यह कि विकर्ण एक दूसरे को समद्विभाजित करते हैं। समांतर चतुर्भुजों में सम्मिलित हैं rhombi (उन आयतों सहित जिन्हें वर्ग कहा जाता है) और rhomboids (उन आयतों सहित जिन्हें आयताकार कहा जाता है)। दूसरे शब्दों में, समांतर चतुर्भुज में सभी समचतुर्भुज और सभी समचतुर्भुज सम्मिलित होते हैं, और इस प्रकार इसमें सभी आयत भी सम्मिलित होते हैं।
*समांतर चतुर्भुज: समानांतर भुजाओं के दो युग्मों वाला चतुर्भुज। समतुल्य स्थितियाँ हैं कि विपरीत भुजाएँ समान लंबाई की हों; सम्मुख कोण बराबर होते हैं; या यह कि विकर्ण एक दूसरे को समद्विभाजित करते हैं। समांतर चतुर्भुजों में सम्मिलित हैं समचतुर्भुज(उन आयतों सहित जिन्हें वर्ग कहा जाता है) और विषमचतुर्भुज(उन आयतों सहित जिन्हें आयताकार कहा जाता है)। दूसरे शब्दों में, समांतर चतुर्भुज में सभी समचतुर्भुज और सभी समचतुर्भुज सम्मिलित होते हैं, और इस प्रकार इसमें सभी आयत भी सम्मिलित होते हैं।
* समचतुर्भुज, समचतुर्भुज:<ref name=":0" />चारों भुजाएँ समान लंबाई (समबाहु) की हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को समद्विभाजित करते हैं। अनौपचारिक रूप से: एक पुश-ओवर वर्ग (लेकिन सख्ती से एक वर्ग भी सम्मिलित है)
* समचतुर्भुज, समचतुर्भुज:<ref name=":0" />चारों भुजाएँ समान लंबाई(समबाहु) की हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को लंब-समद्विभाजित करते हैं। अनौपचारिक रूप से: वर्ग एक समचतुर्भुज(लेकिन दृढ़ता से एक वर्ग भी सम्मिलित है)है।
*समचतुर्भुज: एक समांतर चतुर्भुज जिसमें आसन्न भुजाएँ असमान लंबाई की होती हैं, और कुछ कोण कोण # कोण के प्रकार होते हैं (समतुल्य, कोई समकोण नहीं होता है)। अनौपचारिक रूप से: एक धक्का दिया हुआ आयताकार। सभी संदर्भ सहमत नहीं हैं, कुछ एक समचतुर्भुज को समांतर चतुर्भुज के रूप में परिभाषित करते हैं जो एक समचतुर्भुज नहीं है।<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf |title=संग्रहीत प्रति|access-date=June 20, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf |archive-date=May 14, 2014 }}</ref>
*समचतुर्भुज: एक समांतर चतुर्भुज जिसमें आसन्न भुजाएँ असमान लंबाई की होती हैं, और कुछ कोण तिर्यक होते है(समतुल्य,कोई समकोण नहीं होता है)। अनौपचारिक रूप से: एक समचतुर्भुज आयताकार है। सभी संदर्भ सहमत नहीं हैं, कुछ समचतुर्भुज को समांतर चतुर्भुज के रूप में परिभाषित करते हैं जो एक समचतुर्भुज नहीं है।<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf |title=संग्रहीत प्रति|access-date=June 20, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf |archive-date=May 14, 2014 }}</ref>
*[[आयत]]: चारों कोण समकोण (समकोणीय) होते हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को समद्विभाजित करते हैं और लंबाई में बराबर होते हैं। आयतों में वर्ग और आयताकार सम्मिलित हैं। अनौपचारिक रूप से: एक बॉक्स या आयताकार (एक वर्ग सहित)।
*[[आयत]]: चारों कोण समकोण(समकोणीय) होते हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को समद्विभाजित करते हैं और लंबाई में बराबर होते हैं। आयतों में वर्ग और आयताकार सम्मिलित हैं। अनौपचारिक रूप से: एक बॉक्स या आयताकार(एक वर्ग सहित)।
* [[वर्ग (ज्यामिति)]] (नियमित चतुर्भुज): चारों भुजाएँ समान लंबाई (समबाहु) की होती हैं, और चारों कोण समकोण होते हैं। एक समतुल्य स्थिति यह है कि विपरीत भुजाएं समानांतर होती हैं (एक वर्ग एक समांतर चतुर्भुज होता है), और यह कि विकर्ण लंबवत रूप से एक दूसरे को समद्विभाजित करते हैं और समान लंबाई के होते हैं। एक चतुर्भुज एक वर्ग है यदि और केवल यदि यह एक समचतुर्भुज और एक आयत दोनों है (अर्थात्, चार समान भुजाएँ और चार समान कोण)।
* [[वर्ग (ज्यामिति)|वर्ग]](नियमित चतुर्भुज): चारों भुजाएँ समान लंबाई(समबाहु) की होती हैं, और चारों कोण समकोण होते हैं। एक समतुल्य स्थिति यह है कि विपरीत भुजाएं समानांतर होती हैं(एक वर्ग एक समांतर चतुर्भुज होता है), और यह कि विकर्ण लंबवत रूप से एक दूसरे को समद्विभाजित करते हैं और समान लंबाई के होते हैं। एक चतुर्भुज एक वर्ग है यदि और केवल यदि यह एक समचतुर्भुज और एक आयत दोनों है(अर्थात्, चार समान भुजाएँ और चार समान कोण)।
*wikt:आयताकार: चौड़े से लंबा, या लंबे से चौड़ा (यानी, एक आयत जो वर्ग नहीं है)।<ref>{{Cite web|url=http://www.cleavebooks.co.uk/scol/calrect.htm|title=आयत कैलकुलेटर|website=Cleavebooks.co.uk|access-date=1 March 2022}}</ref>
*आयताकार: चौडाई से लंबा, या लंबाई से चौड़ा(यानी, एक आयत जो वर्ग नहीं है)।<ref>{{Cite web|url=http://www.cleavebooks.co.uk/scol/calrect.htm|title=आयत कैलकुलेटर|website=Cleavebooks.co.uk|access-date=1 March 2022}}</ref>
*काइट (ज्यामिति): आसन्न भुजाओं के दो जोड़े समान लंबाई के होते हैं। इसका तात्पर्य यह है कि एक विकर्ण पतंग को [[सर्वांगसम त्रिभुज]]ों में विभाजित करता है, और इसलिए समान भुजाओं के दो युग्मों के बीच के कोण माप में बराबर होते हैं। इसका तात्पर्य यह भी है कि विकर्ण लंबवत हैं। पतंग में रोम्बी सम्मिलित है।
*काइट(ज्यामिति): आसन्न भुजाओं के दो जोड़े समान लंबाई के होते हैं। इसका तात्पर्य यह है कि एक विकर्ण पतंग को [[सर्वांगसम त्रिभुज|सर्वांगसम त्रिभुजो]] में विभाजित करता है, और इसलिए समान भुजाओं के दो युग्मों के बीच के कोण माप में बराबर होते हैं। इसका तात्पर्य यह भी है कि विकर्ण लंबवत हैं। पतंग में समचतुर्भुज सम्मिलित है।
[[File:Quadrilaterals.svg]]
[[File:Quadrilaterals.svg]]


* [[स्पर्शरेखा]] चतुर्भुज: चार भुजाएँ एक खुदे हुए वृत्त की स्पर्शरेखाएँ हैं। एक उत्तल चतुर्भुज स्पर्शरेखीय होता है यदि और केवल यदि विपरीत भुजाओं का योग बराबर हो।
* [[स्पर्शरेखा]] चतुर्भुज: चार भुजाएँ एक उत्कीर्ण वृत्त की स्पर्शरेखाएँ हैं। एक उत्तल चतुर्भुज स्पर्शरेखीय होता है यदि और केवल यदि विपरीत भुजाओं का योग बराबर हो।
* स्पर्शरेखा ट्रेपेज़ॉइड: एक ट्रेपेज़ॉइड जहाँ चारों भुजाएँ एक खुदे हुए वृत्त की स्पर्शरेखाएँ होती हैं।
* स्पर्शरेखा ट्रेपेज़ॉइड: एक ट्रेपेज़ॉइड जहाँ चारों भुजाएँ एक उत्कीर्ण वृत्त की स्पर्शरेखाएँ होती हैं।
*[[चक्रीय चतुर्भुज]]: चारों शीर्ष एक परिबद्ध वृत्त पर स्थित होते हैं। एक उत्तल चतुर्भुज चक्रीय होता है यदि और केवल यदि सम्मुख कोणों का योग 180° हो।
*[[चक्रीय चतुर्भुज]]: चारों शीर्ष एक परिबद्ध वृत्त पर स्थित होते हैं। एक उत्तल चतुर्भुज चक्रीय होता है यदि और केवल यदि सम्मुख कोणों का योग 180° हो।
*दाहिनी पतंग: दो विपरीत [[समकोण]] वाली पतंग। यह एक प्रकार का चक्रीय चतुर्भुज है।
*दाहिनी पतंग: एक पतंग जिसमे दो विपरीत [[समकोण]] होते है। यह एक प्रकार का चक्रीय चतुर्भुज है।
*हारमोनिक चतुर्भुज: विरोधी पक्षों की लंबाई के गुणनफल बराबर होते हैं। यह एक प्रकार का चक्रीय चतुर्भुज है।
*संगत चतुर्भुज: सम्मुख स्थित सिरों की लंबाई के गुणनफल बराबर होते हैं। यह एक प्रकार का चक्रीय चतुर्भुज है।
*[[द्विकेंद्रित चतुर्भुज]]: यह स्पर्शरेखा और चक्रीय दोनों है।
*[[द्विकेंद्रित चतुर्भुज]]: यह स्पर्शरेखा और चक्रीय दोनों है।
*ओर्थोडायगोनल चतुर्भुज: विकर्ण समकोण पर काटते हैं।
*समकोणीय चतुर्भुज: विकर्ण समकोण पर एक दूसरे को काटते हैं।
*[[समबाहु चतुर्भुज]]: विकर्ण समान लंबाई के होते हैं।
*[[समबाहु चतुर्भुज]]: विकर्ण समान लंबाई के होते हैं।
*Ex-tangential चतुर्भुज: पक्षों के चार विस्तार एक बहिर्वृत्त के स्पर्शरेखा हैं।
*पूर्व-स्पर्शरेखा चतुर्भुज: भुजाओ के चार आयतन एक बहिर्वृत्त के स्पर्शरेखा हैं।
*समबाहु चतुर्भुज की दो विपरीत समान भुजाएँ होती हैं जिन्हें बढ़ाने पर वे 60° पर मिलती हैं।
*समबाहु चतुर्भुज की दो विपरीत समान भुजाएँ होती हैं जिन्हें बढ़ाने पर वे 60° पर मिलती हैं।
*वाट चतुर्भुज एक ऐसा चतुर्भुज है जिसमें समान लंबाई की विपरीत भुजाओं का युग्म होता है।<ref>{{cite journal |first1=G. |last1=Keady |first2=P. |last2=Scales |first3=S. Z. |last3=Németh |title=वाट लिंकेज और चतुर्भुज|journal=[[The Mathematical Gazette]] |volume=88 |issue=513 |year=2004 |pages=475–492 |doi=10.1017/S0025557200176107 |s2cid=125102050 |url=http://www.m-a.org.uk/jsp/index.jsp?lnk=620 }}</ref>
*वाट चतुर्भुज एक ऐसा चतुर्भुज है जिसमें समान लंबाई की विपरीत भुजाओं का युग्म होता है।<ref>{{cite journal |first1=G. |last1=Keady |first2=P. |last2=Scales |first3=S. Z. |last3=Németh |title=वाट लिंकेज और चतुर्भुज|journal=[[The Mathematical Gazette]] |volume=88 |issue=513 |year=2004 |pages=475–492 |doi=10.1017/S0025557200176107 |s2cid=125102050 |url=http://www.m-a.org.uk/jsp/index.jsp?lnk=620 }}</ref>
*चतुर्भुज एक उत्तल चतुर्भुज होता है जिसके चारों शीर्ष एक वर्ग की परिधि पर स्थित होते हैं।<ref>{{cite journal |first=A. K. |last=Jobbings |title=चतुर्भुज चतुर्भुज|journal=The Mathematical Gazette |volume=81 |issue=491 |year=1997 |pages=220–224 |doi=10.2307/3619199 |jstor=3619199 |s2cid=250440553 }}</ref>
*चतुर्भुज एक उत्तल चतुर्भुज होता है जिसके चारों शीर्ष एक वर्ग की परिधि पर स्थित होते हैं।<ref>{{cite journal |first=A. K. |last=Jobbings |title=चतुर्भुज चतुर्भुज|journal=The Mathematical Gazette |volume=81 |issue=491 |year=1997 |pages=220–224 |doi=10.2307/3619199 |jstor=3619199 |s2cid=250440553 }}</ref>
*व्यासयुक्त चतुर्भुज एक चक्रीय चतुर्भुज होता है जिसकी एक भुजा परिवृत्त के व्यास के रूप में होती है।<ref>{{cite journal |first=R. A. |last=Beauregard |title=दो समान भुजाओं वाला व्यासीय चतुर्भुज|journal=College Mathematics Journal |volume=40 |issue=1 |year=2009 |pages=17–21 |doi=10.1080/07468342.2009.11922331 |s2cid=122206817 }}</ref>
*व्यासयुक्त चतुर्भुज एक चक्रीय चतुर्भुज होता है जिसकी एक भुजा परिवृत्त के व्यास के रूप में होती है।<ref>{{cite journal |first=R. A. |last=Beauregard |title=दो समान भुजाओं वाला व्यासीय चतुर्भुज|journal=College Mathematics Journal |volume=40 |issue=1 |year=2009 |pages=17–21 |doi=10.1080/07468342.2009.11922331 |s2cid=122206817 }}</ref>
*जेल्म्सलेव चतुर्भुज एक ऐसा चतुर्भुज होता है जिसके दो समकोण विपरीत शीर्षों पर होते हैं।<ref>{{cite book |first=R. |last=Hartshorne |title=ज्यामिति: यूक्लिड और परे|publisher=Springer |year=2005 |pages=429–430 |isbn=978-1-4419-3145-0 }}</ref>
*''जेल्म्सलेव चतुर्भुज'' एक ऐसा चतुर्भुज होता है जिसके दो समकोण विपरीत शीर्षों पर होते हैं।<ref>{{cite book |first=R. |last=Hartshorne |title=ज्यामिति: यूक्लिड और परे|publisher=Springer |year=2005 |pages=429–430 |isbn=978-1-4419-3145-0 }}</ref>
 
 
=== अवतल चतुर्भुज ===
=== अवतल चतुर्भुज ===


* अवतल चतुर्भुज में, एक आंतरिक कोण 180° से बड़ा होता है, और दो विकर्णों में से एक चतुर्भुज के बाहर स्थित होता है।
* अवतल चतुर्भुज में, एक आंतरिक कोण 180° से बड़ा होता है, और दो विकर्णों में से एक चतुर्भुज के बाहर स्थित होता है।
*एक डार्ट (या तीर का सिरा) एक पतंग की तरह द्विपक्षीय समरूपता के साथ एक अवतल बहुभुज चतुर्भुज है, लेकिन जहां एक आंतरिक कोण प्रतिवर्त होता है। पतंग (ज्यामिति) देखें।
*एक शंकु(या तीर का सिरा) पतंग की तरह द्विपक्षीय समरूपता के साथ एक अवतल बहुभुज चतुर्भुज है, लेकिन जहां एक आंतरिक कोण प्रतिवर्त होता है। पतंग(ज्यामिति) देखें।


== जटिल चतुर्भुज ==
== जटिल चतुर्भुज ==
[[File:DU21 facets.png|thumb|upright=0.8|एक प्रतिसमांतर चतुर्भुज]]स्वयं-प्रतिच्छेदी बहुभुजों की एक सूची|स्व-प्रतिच्छेदी चतुर्भुज को विभिन्न प्रकार से एक क्रॉस-चतुर्भुज, रेखित चतुर्भुज, [[तितली]] चतुर्भुज या [[बो टाई]] चतुर्भुज कहा जाता है। एक रेखित किए गए चतुर्भुज में, क्रॉसिंग के दोनों तरफ चार आंतरिक कोण (दो [[न्यून कोण]] और दो [[पलट कोण]], सभी बाईं ओर या सभी दाईं ओर जैसा कि आकृति का पता लगाया गया है) 720 डिग्री तक जोड़ते हैं।<ref>{{cite web|url=http://mysite.mweb.co.za/residents/profmd/stars.pdf|title=सितारे: एक दूसरा रूप|website=Mysite.mweb.co.za|access-date=March 1, 2022|archive-date=March 3, 2016|archive-url=https://web.archive.org/web/20160303182521/http://mysite.mweb.co.za/residents/profmd/stars.pdf|url-status=dead}}</ref>
[[File:DU21 facets.png|thumb|upright=0.8|एक प्रतिसमांतर चतुर्भुज]]स्व-प्रतिच्छेदी चतुर्भुज को विभिन्न प्रकार से एक रेखित-चतुर्भुज, '''रेखित चतुर्भुज, [[तितली]] चतुर्भुज''' या '''[[बो टाई]] चतुर्भुज''' कहा जाता है। एक रेखित किए गए चतुर्भुज में, रेखित के दोनों तरफ चार आंतरिक कोण(दो [[न्यून कोण]] और दो प्रतिबिंब [[पलट कोण|कोण]], सभी बाईं ओर या सभी दाईं ओर जैसा कि आकृति का पता लगाया गया है) 720 डिग्री तक जोड़ते हैं।<ref>{{cite web|url=http://mysite.mweb.co.za/residents/profmd/stars.pdf|title=सितारे: एक दूसरा रूप|website=Mysite.mweb.co.za|access-date=March 1, 2022|archive-date=March 3, 2016|archive-url=https://web.archive.org/web/20160303182521/http://mysite.mweb.co.za/residents/profmd/stars.pdf|url-status=dead}}</ref>
*समद्विबाहु ट्रेपेज़ॉइड#स्व-चौराहे (यूएस) या ट्रेपेज़ियम (कॉमनवेल्थ):<ref>{{cite web | url=https://blogs.adelaide.edu.au/maths-learning/2016/04/06/the-crossed-trapezium/ | title=पार किया हुआ ट्रेपेज़ियम| last=Butler | first=David | date=2016-04-06 | website=Making Your Own Sense | access-date=2017-09-13}}</ref> एक पार किया हुआ चतुर्भुज जिसमें एक जोड़ी असन्निकट भुजाएँ समानांतर होती हैं (एक ट्रेपेज़ॉइड की तरह)
*समद्विबाहु ट्रेपेज़ॉइड(यूएस) या समलम्ब(कॉमनवेल्थ):<ref>{{cite web | url=https://blogs.adelaide.edu.au/maths-learning/2016/04/06/the-crossed-trapezium/ | title=पार किया हुआ ट्रेपेज़ियम| last=Butler | first=David | date=2016-04-06 | website=Making Your Own Sense | access-date=2017-09-13}}</ref> एक रेखित किया हुआ चतुर्भुज जिसमें एक जोड़ी असन्निकट भुजाएँ समानांतर होती हैं(एक समलम्ब की तरह)
*[[प्रतिसमांतर चतुर्भुज]]: एक पार किया हुआ चतुर्भुज जिसमें असन्निकट भुजाओं के प्रत्येक जोड़े की लंबाई समान होती है (एक समांतर चतुर्भुज की तरह)
*[[प्रतिसमांतर चतुर्भुज]]: एक रेखित किया हुआ चतुर्भुज जिसमें असन्निकट भुजाओं के प्रत्येक जोड़े की लंबाई समान होती है(एक समांतर चतुर्भुज की तरह)
*[[पार किया हुआ आयत]]: एक प्रतिसमांतर चतुर्भुज जिसकी भुजाएँ दो विपरीत भुजाएँ होती हैं और एक आयत के दो विकर्ण होते हैं, इसलिए समानांतर विपरीत भुजाओं का एक युग्म होता है
* [[पार किया हुआ आयत|रेखित किया हुआ आयत]]: एक प्रतिसमांतर चतुर्भुज जिसकी भुजाएँ दो विपरीत भुजाएँ होती हैं और एक आयत के दो विकर्ण होते हैं, इसलिए समानांतर विपरीत भुजाओं का एक युग्म होता है
*स्क्वायर#रेखित स्क्वायर: एक क्रास्ड आयत का एक विशेष स्थिति   जहां दो पक्ष समकोण पर प्रतिच्छेद करते हैं
*रेखित वर्ग: एक रेखित आयत की एक विशेष स्थिति जहां दो भुजा समकोण पर प्रतिच्छेद करते हैं


== विशेष [[रेखा खंड]] ==
== विशेष [[रेखा खंड]] ==
उत्तल चतुर्भुज के दो [[विकर्ण]] रेखा खंड होते हैं जो विपरीत शीर्षों को जोड़ते हैं।
उत्तल चतुर्भुज के दो [[विकर्ण]] रेखा खंड होते हैं जो विपरीत शीर्षों को जोड़ते हैं।


एक उत्तल चतुर्भुज की दो द्विमाध्यिकाएं वे रेखाखंड होते हैं जो विपरीत भुजाओं के मध्यबिंदुओं को जोड़ते हैं।<ref>{{cite web |author=E.W. Weisstein |title=बीआईएम ई-कोड|url=http://mathworld.wolfram.com/Bimedian.html |publisher=MathWorld – A Wolfram Web Resource}}</ref> वे चतुर्भुज के शीर्ष केन्द्रक पर प्रतिच्छेद करते हैं (देखें {{Section link||Remarkable points and lines in a convex quadrilateral}} नीचे)।
एक उत्तल चतुर्भुज की दो '''द्विमाध्यिकाएं''' वे रेखाखंड होते हैं जो विपरीत भुजाओं के मध्यबिंदुओं को जोड़ते हैं।<ref>{{cite web |author=E.W. Weisstein |title=बीआईएम ई-कोड|url=http://mathworld.wolfram.com/Bimedian.html |publisher=MathWorld – A Wolfram Web Resource}}</ref> वे चतुर्भुज के <nowiki>''शीर्ष केन्द्रक''</nowiki> पर प्रतिच्छेद करते हैं(नीचे  {{Section link|एक उत्तल चतुर्भुज मे|उल्लेखनीय बिन्दु और रेखाएं }} देखें)।


एक उत्तल चतुर्भुज के चार कोण एक तरफ के लंबवत होते हैं - विपरीत दिशा के मध्य बिंदु के माध्यम से।<ref>{{cite web |author=E.W. Weisstein |title=कुरूपता|url=http://mathworld.wolfram.com/Maltitude.html |publisher=MathWorld – A Wolfram Web Resource}}</ref>
एक उत्तल चतुर्भुज के चार '''कोण''' एक तरफ के लंबवत होते हैं-विपरीत दिशा के मध्य बिंदु से होकर।<ref>{{cite web |author=E.W. Weisstein |title=कुरूपता|url=http://mathworld.wolfram.com/Maltitude.html |publisher=MathWorld – A Wolfram Web Resource}}</ref>




== एक उत्तल चतुर्भुज का [[क्षेत्र]]फल ==
== एक उत्तल चतुर्भुज का [[क्षेत्र]]फल ==
क्षेत्र के लिए विभिन्न सामान्य सूत्र हैं {{math|''K''}} पक्षों के साथ एक उत्तल चतुर्भुज ABCD का {{math|''a'' {{=}}  ''AB'', ''b'' {{=}} ''BC'', ''c'' {{=}} ''CD'' and ''d'' {{=}} ''DA''}}.
उत्तल चतुर्भुज ABCD के भुजाओ {{math|''a'' {{=}}  ''AB'', ''b'' {{=}} ''BC'', ''c'' {{=}} ''CD'' and ''d'' {{=}} ''DA''}} क्षेत्रफल {{math|''K''}} के लिए विभिन्न सामान्य सूत्र हैं


=== त्रिकोणमितीय सूत्र ===
=== त्रिकोणमितीय सूत्र ===
क्षेत्र को त्रिकोणमितीय शब्दों में व्यक्त किया जा सकता है<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=चतुष्कोष|url=https://mathworld.wolfram.com/चतुष्कोष.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref>
क्षेत्र को त्रिकोणमितीय शब्दों में व्यक्त किया जा सकता है<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=चतुष्कोष|url=https://mathworld.wolfram.com/चतुष्कोष.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref>
:<math>K = \frac{pq}{2} \sin \theta,</math>
:<math>K = \frac{pq}{2} \sin \theta,</math>
जहां विकर्णों की लंबाई हैं {{math|''p''}} तथा {{math|''q''}} और उनके बीच का कोण है {{math|''θ''}}.<ref>Harries, J. "Area of a quadrilateral," ''Mathematical Gazette'' 86, July 2002, 310–311.</ref> एक ऑर्थोडायगोनल चतुर्भुज (जैसे समचतुर्भुज, वर्ग और पतंग) के मामले में, यह सूत्र कम हो जाता है <math>K=\tfrac{pq}{2}</math> जबसे {{math|''θ''}} है {{math|90°}}.
जहां विकर्णों की लंबाई {{math|''p''}} तथा {{math|''q''}} है और उनके बीच का कोण {{math|''θ''}} है। <ref>Harries, J. "Area of a quadrilateral," ''Mathematical Gazette'' 86, July 2002, 310–311.</ref> एक समकोणीय चतुर्भुज(जैसे समचतुर्भुज, वर्ग और पतंग) की स्थितियों में, यह सूत्र कम हो जाता है <math>K=\tfrac{pq}{2}</math> चूंकि {{math|''θ''}} {{math|90°}} है।


क्षेत्र को द्विमाध्यकों के रूप में भी व्यक्त किया जा सकता है<ref name=Josefsson4/>:<math>K = mn \sin \varphi,</math>
क्षेत्र को द्विमाध्यकों के रूप में भी व्यक्त किया जा सकता है<ref name=Josefsson4/>:<math>K = mn \sin \varphi,</math>
जहां बिमेडियन की लंबाई हैं {{math|''m''}} तथा {{math|''n''}} और उनके बीच का कोण है {{math|''φ''}}.


Bretschneider का सूत्र<ref>R. A. Johnson, ''Advanced Euclidean Geometry'', 2007, [[Dover Publications|Dover Publ.]], p. 82.</ref><ref name=":1" />भुजाओं और दो विपरीत कोणों के संदर्भ में क्षेत्र को व्यक्त करता है:
जहां द्विमाध्यिका की लंबाई  {{math|''m''}} तथा {{math|''n''}} है और उनके बीच का कोण {{math|''φ''}} है।
 
[[कार्ल एंटोन Bretschneider|ब्रेटश्राइडर]] का सूत्र<ref>R. A. Johnson, ''Advanced Euclidean Geometry'', 2007, [[Dover Publications|Dover Publ.]], p. 82.</ref><ref name=":1" /> भुजाओं और दो विपरीत कोणों के संदर्भ में क्षेत्र को व्यक्त करता है:
:<math>\begin{align}
:<math>\begin{align}
K &= \sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{2} abcd \; [ 1 + \cos (A + C) ]} \\
K &= \sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{2} abcd \; [ 1 + \cos (A + C) ]} \\
&= \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd \left[ \cos^2 \left( \frac{A + C}{2} \right)\right]}
&= \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd \left[ \cos^2 \left( \frac{A + C}{2} \right)\right]}
\end{align}</math>
\end{align}</math>
जहाँ क्रम में भुजाएँ हैं {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}}, कहाँ पे {{math|''s''}} अर्धपरिधि है, और {{math|''A''}} तथा {{math|''C''}} दो (वास्तव में, कोई भी दो) विपरीत कोण हैं। यह चक्रीय चतुर्भुज के क्षेत्र के लिए ब्रह्मगुप्त के सूत्र को कम करता है - जब {{math|{{nobreak|''A'' + ''C'' {{=}} 180°}} }}.
जहाँ क्रम में भुजाएँ {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}} है, जहाँ {{math|''s''}} अर्धपरिधि है, और {{math|''A''}} तथा {{math|''C''}} दो(वास्तव में, कोई भी दो) विपरीत कोण हैं। यह चक्रीय चतुर्भुज के क्षेत्र के लिए ब्रह्मगुप्त के सूत्र को कम करता है - जब {{math|{{nobreak|''A'' + ''C'' {{=}} 180°}} }}.


कोण के साथ भुजाओं और कोणों के संदर्भ में एक अन्य क्षेत्र सूत्र {{math|''C''}} पक्षों के बीच होना {{math|''b''}} तथा {{math|''c''}}, तथा {{math|''A''}} पक्षों के बीच होना {{math|''a''}} तथा {{math|''d''}}, है
कोण के साथ भुजाओं और कोणों के संदर्भ में एक अन्य क्षेत्र सूत्र {{math|''C''}} भुजाओ के बीच {{math|''b''}} तथा {{math|''c''}} के बीच है, तथा {{math|''A''}} भुजाओ {{math|''a''}} तथा {{math|''d''}} के बीच है
:<math>K = \frac{ad}{2} \sin{A} + \frac{bc}{2} \sin{C}.</math>
:<math>K = \frac{ad}{2} \sin{A} + \frac{bc}{2} \sin{C}.</math>
चक्रीय चतुर्भुज के मामले में, बाद वाला सूत्र बन जाता है <math>K = \frac{ad+bc}{2}\sin{A}.</math>
चक्रीय चतुर्भुज के स्थितियों में, बाद वाला सूत्र बन जाता है <math>K = \frac{ad+bc}{2}\sin{A}.</math>
 
समांतर चतुर्भुज में, जहाँ विपरीत भुजाओं और कोणों के दोनों युग्म बराबर होते हैं, यह सूत्र कम हो जाता है <math>K=ab \cdot \sin{A}.</math>
समांतर चतुर्भुज में, जहाँ विपरीत भुजाओं और कोणों के दोनों युग्म बराबर होते हैं, यह सूत्र कम हो जाता है <math>K=ab \cdot \sin{A}.</math>
वैकल्पिक रूप से, हम क्षेत्रफल को भुजाओं और प्रतिच्छेदन कोण के रूप में लिख सकते हैं {{math|''θ''}} विकर्णों की, जितनी लंबी {{math|''θ''}} नहीं है {{math|90°}}:<ref name=Mitchell>Mitchell, Douglas W., "The area of a quadrilateral," ''Mathematical Gazette'' 93, July 2009, 306–309.</ref>
 
वैकल्पिक रूप से, हम क्षेत्रफल को भुजाओं और प्रतिच्छेदन कोण {{math|''θ''}} के रूप में लिख सकते हैं  विकर्णों, जब तक कि लंबाई {{math|''θ''}} नहीं {{math|90°}} है:<ref name="Mitchell">Mitchell, Douglas W., "The area of a quadrilateral," ''Mathematical Gazette'' 93, July 2009, 306–309.</ref>
:<math>K = \frac{\left|\tan \theta\right|}{4} \cdot \left| a^2 + c^2 - b^2 - d^2 \right|.</math>
:<math>K = \frac{\left|\tan \theta\right|}{4} \cdot \left| a^2 + c^2 - b^2 - d^2 \right|.</math>
समांतर चतुर्भुज के मामले में, बाद वाला सूत्र बन जाता है <math>K = \frac{\left|\tan \theta\right|}{2}\cdot \left| a^2 - b^2 \right|.</math>
समांतर चतुर्भुज के स्थितियों में, बाद वाला सूत्र बन जाता है <math>K = \frac{\left|\tan \theta\right|}{2}\cdot \left| a^2 - b^2 \right|.</math>
पक्षों सहित एक अन्य क्षेत्र सूत्र {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}} है<ref name=Josefsson4>{{citation
 
भुजाओ सहित एक अन्य क्षेत्र सूत्र {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}} है<ref name="Josefsson4">{{citation
  | last = Josefsson | first = Martin
  | last = Josefsson | first = Martin
  | journal = Forum Geometricorum
  | journal = Forum Geometricorum
Line 111: Line 113:
  | year = 2013}}.</ref>
  | year = 2013}}.</ref>
:<math>K=\frac{\sqrt{((a^2+c^2)-2x^2)((b^2+d^2)-2x^2)}}{2}\sin{\varphi}</math>
:<math>K=\frac{\sqrt{((a^2+c^2)-2x^2)((b^2+d^2)-2x^2)}}{2}\sin{\varphi}</math>
कहाँ पे {{math|''x''}} विकर्णों के मध्य बिंदुओं के बीच की दूरी है, और {{math|''φ''}} चतुर्भुज#विशेष रेखाखंडों के बीच का कोण है।
जहाँ {{math|''x''}} विकर्णों के मध्य बिंदुओं के बीच की दूरी है, और {{math|''φ''}} द्विमाध्यको के बीच का कोण है।
पक्षों सहित अंतिम त्रिकोणमिति क्षेत्र सूत्र {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}} और कोण {{math|''α''}} (के बीच {{math|''a''}} तथा {{math|''b''}}) है:<ref>https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-triangleformulae-2009-1.pdf {{Bare URL PDF|date=June 2022}}</ref>
 
भुजाओ {{math|''a''}}, {{math|''b''}}, {{math|''c''}}, {{math|''d''}} और कोण {{math|''α''}}(के बीच {{math|''a''}} तथा {{math|''b''}} के बीच) सहित अंतिम त्रिकोणमिति क्षेत्रसूत्र है:<ref>https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-triangleformulae-2009-1.pdf {{Bare URL PDF|date=June 2022}}</ref>
:<math>K=\frac{ab}{2}\sin{\alpha}+\frac{\sqrt{4c^2d^2-(c^2+d^2-a^2-b^2+2ab\cdot\cos{\alpha})^2}}{4} ,</math>
:<math>K=\frac{ab}{2}\sin{\alpha}+\frac{\sqrt{4c^2d^2-(c^2+d^2-a^2-b^2+2ab\cdot\cos{\alpha})^2}}{4} ,</math>
जिसका उपयोग अवतल चतुर्भुज के क्षेत्र के लिए भी किया जा सकता है (अवतल भाग कोण के विपरीत होता है {{math|''α''}}), केवल पहला चिह्न बदलकर {{math|+}} प्रति {{math|-}}.
जिसका उपयोग अवतल चतुर्भुज के क्षेत्र के लिए भी किया जा सकता है(अवतल भाग कोण के विपरीत होता है {{math|''α''}}), केवल पहला चिह्न को {{math|+}} से {{math|-}} मे बदलकर।


=== गैर-त्रिकोणमितीय सूत्र ===
=== गैर-त्रिकोणमितीय सूत्र ===
निम्नलिखित दो सूत्र पक्षों के संदर्भ में क्षेत्र को व्यक्त करते हैं {{math|''a''}}, {{math|''b''}}, {{math|''c''}} तथा {{math|''d''}}, अर्धपरिधि#चतुर्भुज {{math|''s''}}, और विकर्ण {{math|''p''}}, {{math|''q''}}:
निम्नलिखित दो सूत्र भुजाओ {{math|''a''}}, {{math|''b''}}, {{math|''c''}} तथा {{math|''d''}}, अर्धपरिधि {{math|''s''}}, और विकर्ण {{math|''p''}}, {{math|''q''}} के संदर्भ में क्षेत्र को व्यक्त करते हैंː


:<math>K = \sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{4}(ac+bd+pq)(ac+bd-pq)},</math> <ref>J. L. Coolidge, "A historically interesting formula for the area of a quadrilateral", ''American Mathematical Monthly'', 46 (1939) 345–347.</ref>
:<math>K = \sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{4}(ac+bd+pq)(ac+bd-pq)},</math> <ref>J. L. Coolidge, "A historically interesting formula for the area of a quadrilateral", ''American Mathematical Monthly'', 46 (1939) 345–347.</ref>
:<math>K = \frac{\sqrt{4p^{2}q^{2}- \left( a^{2}+c^{2}-b^{2}-d^{2} \right) ^{2}}}{4}.</math> <ref>{{cite web |author=E.W. Weisstein |title=Bretschneider का सूत्र|url=http://mathworld.wolfram.com/BretschneidersFormula.html |publisher=MathWorld – A Wolfram Web Resource}}</ref>
:<math>K = \frac{\sqrt{4p^{2}q^{2}- \left( a^{2}+c^{2}-b^{2}-d^{2} \right) ^{2}}}{4}.</math> <ref>{{cite web |author=E.W. Weisstein |title=Bretschneider का सूत्र|url=http://mathworld.wolfram.com/BretschneidersFormula.html |publisher=MathWorld – A Wolfram Web Resource}}</ref>
तब से चक्रीय चतुर्भुज मामले में पहला ब्रह्मगुप्त के सूत्र को कम करता है {{math|1=''pq'' = ''ac'' + ''bd''}}.
तब से चक्रीय चतुर्भुज स्थितियों में पहला ब्रह्मगुप्त के सूत्र को कम करता है तब से {{math|1=''pq'' = ''ac'' + ''bd''}}.


क्षेत्र को द्विमाध्यकों के संदर्भ में भी व्यक्त किया जा सकता है {{math|''m''}}, {{math|''n''}} और विकर्ण {{math|''p''}}, {{math|''q''}}:
क्षेत्र को द्विमाध्यकों {{math|''m''}}, {{math|''n''}} और विकर्ण {{math|''p''}}, {{math|''q''}} के संदर्भ में भी व्यक्त किया जा सकता हैː


:<math>K=\frac{\sqrt{(m+n+p)(m+n-p)(m+n+q)(m+n-q)}}{2},</math> <ref>Archibald, R. C., "The Area of a Quadrilateral", ''American Mathematical Monthly'', 29 (1922) pp. 29–36.</ref>
:<math>K=\frac{\sqrt{(m+n+p)(m+n-p)(m+n+q)(m+n-q)}}{2},</math> <ref>Archibald, R. C., "The Area of a Quadrilateral", ''American Mathematical Monthly'', 29 (1922) pp. 29–36.</ref>
Line 140: Line 143:


=== वेक्टर सूत्र ===
=== वेक्टर सूत्र ===
एक चतुर्भुज का क्षेत्रफल {{math|''ABCD''}} [[वेक्टर (ज्यामितीय)]] का उपयोग करके गणना की जा सकती है। चलो वैक्टर {{math|'''AC'''}} तथा {{math|'''BD'''}} से विकर्ण बनाएँ {{math|''A''}} प्रति {{math|''C''}} और यहां ये {{math|''B''}} प्रति {{math|''D''}}. तब चतुर्भुज का क्षेत्रफल है
एक चतुर्भुज का क्षेत्रफल {{math|''ABCD''}} [[वेक्टर (ज्यामितीय)|वेक्टर(ज्यामितीय)]] का उपयोग करके गणना की जा सकती है। मान ले वैक्टर {{math|'''AC'''}} तथा {{math|'''BD'''}} से {{math|''A''}} से {{math|''C''}} और यहां ये {{math|''B''}} से {{math|''D''}} विकर्ण बनाते है। तब चतुर्भुज का क्षेत्रफल है
:<math>K = \frac{|\mathbf{AC}\times\mathbf{BD}|}{2},</math>
:<math>K = \frac{|\mathbf{AC}\times\mathbf{BD}|}{2},</math>
जो सदिशों के रेखित उत्पाद का आधा परिमाण है {{math|'''AC'''}} तथा {{math|'''BD'''}}. द्वि-आयामी यूक्लिडियन अंतरिक्ष में, वेक्टर व्यक्त करना {{math|'''AC'''}} एक यूक्लिडियन वेक्टर के रूप में # कार्टेशियन अंतरिक्ष में बराबर {{math|('''''x''<sub>1</sub>,''y''<sub>1</sub>''')}} तथा {{math|'''BD'''}} जैसा {{math|('''''x''<sub>2</sub>,''y''<sub>2</sub>''')}}, इसे फिर से लिखा जा सकता है:
जो वेक्टर के रेखित गुणनफल का आधा परिमाण {{math|'''AC'''}} तथा {{math|'''BD'''}} है। द्वि-आयामी यूक्लिडियन समष्टि में, वेक्टर {{math|'''AC'''}} को कार्टेशियन समष्टि मुक्त वेक्टर के रूप में व्यक्त करते हुए  {{math|('''''x''<sub>1</sub>,''y''<sub>1</sub>''')}} तथा {{math|'''BD'''}} को {{math|('''''x''<sub>2</sub>,''y''<sub>2</sub>''')}} के रूप मे व्यक्त करते हुए, इसे फिर से लिखा जा सकता है:
:<math>K = \frac{|x_1 y_2 - x_2 y_1|}{2}.</math>
:<math>K = \frac{|x_1 y_2 - x_2 y_1|}{2}.</math>
== विकर्ण ==
== विकर्ण ==


Line 183: Line 184:
|| हाँ || हाँ || हाँ  
|| हाँ || हाँ || हाँ  
|}
|}
नोट 1: सबसे सामान्य समलंब चतुर्भुज और समद्विबाहु समलम्ब चतुर्भुज में लंबवत विकर्ण नहीं होते हैं, लेकिन अनंत संख्या में (गैर-समान) समलंब और समद्विबाहु समलम्बाकार होते हैं जिनमें लंबवत विकर्ण होते हैं और कोई अन्य नामित चतुर्भुज नहीं होते हैं।
''नोट 1: सबसे सामान्य समलंब चतुर्भुज और समद्विबाहु समलम्ब चतुर्भुज में लंबवत विकर्ण नहीं होते हैं, लेकिन अनंत संख्या में(गैर-समान) समलंब और समद्विबाहु समलम्बाकार होते हैं जिनमें लंबवत विकर्ण होते हैं और कोई अन्य नामित चतुर्भुज नहीं होते हैं।''


नोट 2: एक पतंग में, एक विकर्ण दूसरे को समद्विभाजित करता है। सबसे सामान्य पतंग में असमान विकर्ण होते हैं, लेकिन अनंत संख्या में (गैर-समान) पतंगें होती हैं जिनमें विकर्ण लंबाई में समान होते हैं (और पतंग कोई अन्य नामित चतुर्भुज नहीं होते हैं)।
''नोट 2: एक पतंग में, एक विकर्ण दूसरे को समद्विभाजित करता है। सबसे सामान्य पतंग में असमान विकर्ण होते हैं, लेकिन अनंत संख्या में(गैर-समान) पतंगें होती हैं जिनमें विकर्ण लंबाई में समान होते हैं(और पतंग कोई अन्य नामित चतुर्भुज नहीं होते हैं)।''


=== विकर्णों की लंबाई ===
=== विकर्णों की लंबाई ===
Line 197: Line 198:
:<math>q=\sqrt{\frac{(ab+cd)(ac+bd)-2abcd(\cos{A}+\cos{C})}{ad+bc}}.</math>
:<math>q=\sqrt{\frac{(ab+cd)(ac+bd)-2abcd(\cos{A}+\cos{C})}{ad+bc}}.</math>


 
=== समांतर चतुर्भुज नियम और टॉलेमी के प्रमेय का सामान्यीकरण ===
=== समांतर चतुर्भुज कानून और टॉलेमी के प्रमेय का सामान्यीकरण ===
किसी भी उत्तल चतुर्भुज ABCD में, चारों भुजाओं के वर्गों का योग दो विकर्णों के वर्गों के योग के बराबर होता है और विकर्णों के मध्य बिंदुओं को जोड़ने वाले रेखा खंड के वर्ग का चार गुना होता है। इस प्रकार
किसी भी उत्तल चतुर्भुज ABCD में, चारों भुजाओं के वर्गों का योग दो विकर्णों के वर्गों के योग के बराबर होता है और विकर्णों के मध्य बिंदुओं को जोड़ने वाले रेखा खंड के वर्ग का चार गुना होता है। इस प्रकार
:<math> a^2 + b^2 + c^2 + d^2 = p^2 + q^2 + 4x^2 </math>
:<math> a^2 + b^2 + c^2 + d^2 = p^2 + q^2 + 4x^2 </math>
जहाँ x विकर्णों के मध्य बिन्दुओं के बीच की दूरी है।<ref name=Altshiller-Court/>{{rp|p.126}} इसे कभी-कभी यूलर के चतुर्भुज प्रमेय के रूप में जाना जाता है और यह समांतर चतुर्भुज नियम का सामान्यीकरण है।
जहाँ x विकर्णों के मध्य बिन्दुओं के बीच की दूरी है।<ref name=Altshiller-Court/>{{rp|p.126}} इसे कभी-कभी यूलर के चतुर्भुज प्रमेय के रूप में जाना जाता है और यह समांतर चतुर्भुज नियम का सामान्यीकरण है।


जर्मन गणितज्ञ [[कार्ल एंटोन Bretschneider]] ने 1842 में उत्तल चतुर्भुज में विकर्णों के उत्पाद के संबंध में टॉलेमी के प्रमेय के निम्नलिखित सामान्यीकरण को व्युत्पन्न किया।<ref>Andreescu, Titu & Andrica, Dorian, ''Complex Numbers from A to...Z'', Birkhäuser, 2006, pp. 207–209.</ref>
जर्मन गणितज्ञ [[कार्ल एंटोन Bretschneider|कार्ल एंटोन ब्रेटश्राइडर]] ने 1842 में उत्तल चतुर्भुज में विकर्णों के गुणनफल के संबंध में टॉलेमी के प्रमेय के निम्नलिखित सामान्यीकरण को व्युत्पन्न किया था।<ref>Andreescu, Titu & Andrica, Dorian, ''Complex Numbers from A to...Z'', Birkhäuser, 2006, pp. 207–209.</ref>
:<math> p^2q^2=a^2c^2+b^2d^2-2abcd\cos{(A+C)}.</math>
:<math> p^2q^2=a^2c^2+b^2d^2-2abcd\cos{(A+C)}.</math>
इस संबंध को एक चतुर्भुज के लिए कोसाइन का नियम माना जा सकता है। एक चक्रीय चतुर्भुज में, जहाँ A + C = 180°, यह घटकर pq = ac + bd हो जाता है। चूँकि cos (A + C) ≥ −1, यह टॉलेमी की असमानता का प्रमाण भी देता है।
इस संबंध को एक चतुर्भुज के लिए कोसाइन का नियम माना जा सकता है। एक चक्रीय चतुर्भुज में, जहाँ A + C = 180°, यह घटकर pq = ac + bd हो जाता है। चूँकि cos(A + C) ≥ −1, यह टॉलेमी की असमानता का प्रमाण भी देता है।


=== अन्य मीट्रिक संबंध ===
=== अन्य मीट्रिक संबंध ===
यदि X और Y एक उत्तल चतुर्भुज abcd  में b और d से विकर्ण ac = p के मानक के पैर हैं a = ab, b = bc, c = cd , d  = da , फिर<ref name=Josefsson/>{{rp|p.14}}
यदि X और Y एक उत्तल चतुर्भुज ABCD मे भुजाओ b और d से विकर्ण ac = p के मानक के चरण a = ab, b = bc, c = cd , d  = da है तो<ref name=Josefsson/>{{rp|p.14}}
:<math>XY=\frac{|a^2+c^2-b^2-d^2|}{2p}.</math>
:<math>XY=\frac{|a^2+c^2-b^2-d^2|}{2p}.</math>
एक उत्तल चतुर्भुज ABCD में जिसकी भुजाएँ a = AB, b = BC, c = CD, d = DA है, और जहाँ विकर्ण E पर प्रतिच्छेद करते हैं,
एक उत्तल चतुर्भुज ABCD में जिसकी भुजाएँ a = AB, b = BC, c = CD, d = DA है, और जहाँ विकर्ण E पर प्रतिच्छेद करते हैं,
:<math> efgh(a+c+b+d)(a+c-b-d) = (agh+cef+beh+dfg)(agh+cef-beh-dfg)</math>
:<math> efgh(a+c+b+d)(a+c-b-d) = (agh+cef+beh+dfg)(agh+cef-beh-dfg)</math>
जहां e = fe, af = be, g = ce, और h = de।<ref>{{citation
जहां e = AE, f = BE, g = CE, और h = DE.<ref>{{citation
  | last = Hoehn | first = Larry
  | last = Hoehn | first = Larry
  | journal = Forum Geometricorum
  | journal = Forum Geometricorum
Line 221: Line 221:
  | year = 2011}}.</ref>
  | year = 2011}}.</ref>


एक उत्तल चतुर्भुज का आकार और आकार पूरी तरह से क्रम में इसकी भुजाओं की लंबाई और दो निर्दिष्ट शीर्षों के बीच एक विकर्ण द्वारा निर्धारित किया जाता है। एक चतुर्भुज के दो विकर्ण p, q और चारों भुजाओं की लंबाई a, b, c, d संबंधित हैं<ref name=":1" />दूरी ज्यामिति द्वारा#केली.E2.80.93मेंजर निर्धारक|केली-मेंजर निर्धारक, इस प्रकार है:
एक उत्तल चतुर्भुज का आकार और माप को पूरी तरह से क्रम में इसकी भुजाओं की लंबाई और दो निर्दिष्ट शीर्षों के बीच एक विकर्ण द्वारा निर्धारित किया जाता है। एक चतुर्भुज के दो विकर्ण p, q और चारों भुजाओं की लंबाई a, b, c, d<ref name=":1" />केली-मेंजर निर्धारक द्वारा संबंधित इस प्रकार है:
:<math> \det \begin{bmatrix}  
:<math> \det \begin{bmatrix}  
   0 & a^2 & p^2 & d^2 & 1 \\
   0 & a^2 & p^2 & d^2 & 1 \\
Line 229: Line 229:
   1 &  1 &  1 & 1  & 0
   1 &  1 &  1 & 1  & 0
\end{bmatrix} = 0. </math>
\end{bmatrix} = 0. </math>


== [[कोण द्विभाजक]] ==
== [[कोण द्विभाजक]] ==
उत्तल चतुर्भुज के आंतरिक कोण समद्विभाजक या तो एक चक्रीय चतुर्भुज बनाते हैं<ref name=Altshiller-Court/>{{rp|p.127}} (अर्थात, आसन्न कोण समद्विभाजक के चार प्रतिच्छेदन बिंदु समवर्ती बिंदु हैं) या वे [[समवर्ती रेखाएँ]] हैं। बाद के मामले में चतुर्भुज एक स्पर्शरेखा चतुर्भुज है।
उत्तल चतुर्भुज के आंतरिक कोण समद्विभाजक या तो एक चक्रीय चतुर्भुज बनाते हैं<ref name=Altshiller-Court/>{{rp|p.127}}(अर्थात, आसन्न कोण समद्विभाजक के चार प्रतिच्छेदन बिंदु संचक्रीय होते हैं) या वे [[समवर्ती रेखाएँ]] हैं। बाद की स्थितियों में चतुर्भुज एक स्पर्शरेखा चतुर्भुज है।


चतुर्भुज ABCD में, यदि A और C के कोणों का समद्विभाजक # विकर्ण BD पर मिलता है, तो B और D के कोण समद्विभाजक विकर्ण AC पर मिलते हैं।<ref>Leversha, Gerry, "A property of the diagonals of a cyclic quadrilateral", ''Mathematical Gazette'' 93, March 2009, 116–118.</ref>
चतुर्भुज ABCD में, यदि A और C के कोणों का समद्विभाजक विकर्ण BD पर मिलते है, तो B और D के कोण समद्विभाजक विकर्ण AC पर मिलते हैं।<ref>Leversha, Gerry, "A property of the diagonals of a cyclic quadrilateral", ''Mathematical Gazette'' 93, March 2009, 116–118.</ref>


== द्विमाध्यिका ==
{{See also|वैरिग्नन प्रमेय }}
[[File:Varignon theorem convex.png|300px|thumb|वैरिग्नन समांतर चतुर्भुज EFGH]]किसी चतुर्भुज केद्विमाध्यिकाएँ विपरीत भुजाओं के [[मध्य]]बिंदुओं को जोड़ने वाले रेखाखंड होते हैं। द्विमाध्यिकाओं का प्रतिच्छेदन चतुर्भुज के शीर्षों का [[केन्द्रक]] होता है।<ref name=":1" />


== बिमेडियंस ==
किसी भी चतुर्भुज(उत्तल, अवतल या रेखित ) की भुजाओं के मध्य बिंदु एक समांतर चतुर्भुज के शीर्ष होते हैं जिन्हें वेरिग्नॉन प्रमेय कहा जाता है। इसके निम्नलिखित गुण हैं:
{{See also|Varignon's theorem}}
* वैरिग्नॉन समांतर चतुर्भुज के विपरीत भुजाओ की प्रत्येक जोड़ी मूल चतुर्भुज में एक विकर्ण के समानांतर होती है।
[[File:Varignon theorem convex.png|300px|thumb|वैरिग्नन
*वरिग्नन समांतर चतुर्भुज का एक भुजा मूल चतुर्भुज में विकर्ण के बराबर लंबा होता है, जिसके समानांतर होता है।
समांतरोग्राम ईएफजीएच]]चतुर्भुज#चतुर्भुज के विशेष रेखाखंड विपरीत भुजाओं के [[मध्य]]बिंदुओं को जोड़ने वाले रेखाखंड होते हैं। द्विमाध्यिकाओं का प्रतिच्छेदन चतुर्भुज के शीर्षों का [[केन्द्रक]] होता है।<ref name=":1" />
*वैरिग्नन समांतर चतुर्भुज का क्षेत्रफल मूल चतुर्भुज के आधे क्षेत्रफल के बराबर होता है। यह उत्तल, अवतल और रेखित चतुर्भुज के लिए सही है, परंतु बाद वाले का क्षेत्रफल दो त्रिभुजों के क्षेत्रों के अंतर के रूप में परिभाषित किया गया हो।<ref>H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967, pp.&nbsp;52–53.</ref>
 
किसी भी चतुर्भुज (उत्तल, अवतल या पार) की भुजाओं के मध्य बिंदु एक समांतर चतुर्भुज के शीर्ष होते हैं जिन्हें वेरिग्नॉन प्रमेय कहा जाता है। इसके निम्नलिखित गुण हैं:
* वैरिग्नॉन समांतरोग्राम के विपरीत पक्षों की प्रत्येक जोड़ी मूल चतुर्भुज में एक विकर्ण के समानांतर होती है।
*वरिग्नन समांतर चतुर्भुज का एक किनारा मूल चतुर्भुज में विकर्ण के बराबर लंबा होता है, जिसके समानांतर होता है।
*वैरिग्नन समांतर चतुर्भुज का क्षेत्रफल मूल चतुर्भुज के आधे क्षेत्रफल के बराबर होता है। यह उत्तल, अवतल और पार चतुर्भुज के लिए सही है, बशर्ते बाद वाले का क्षेत्रफल दो त्रिभुजों के क्षेत्रों के अंतर के रूप में परिभाषित किया गया हो।<ref>H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967, pp.&nbsp;52–53.</ref>
*वैरिग्नन समांतर चतुर्भुज का [[परिमाप]] मूल चतुर्भुज के विकर्णों के योग के बराबर होता है।
*वैरिग्नन समांतर चतुर्भुज का [[परिमाप]] मूल चतुर्भुज के विकर्णों के योग के बराबर होता है।
*वैरिग्नन समांतर चतुर्भुज के विकर्ण मूल चतुर्भुज के द्विमाध्यक हैं।
*वैरिग्नन समांतर चतुर्भुज के विकर्ण मूल चतुर्भुज के द्विमाध्यक हैं।
 
*किसी चतुर्भुज में दो द्विमाध्यिकाएँ और उस चतुर्भुज में विकर्णों के मध्यबिंदुओं को मिलाने वाला रेखाखंड समवर्ती रेखाएँ होती हैं और सभी अपने प्रतिच्छेदन बिंदु द्वारा द्विभाजित होती हैं।<ref name="Altshiller-Court">Altshiller-Court, Nathan, ''College Geometry'', Dover Publ., 2007.</ref>{{rp|p.125}}
किसी चतुर्भुज में दो द्विमाध्यिकाएँ और उस चतुर्भुज में विकर्णों के मध्यबिंदुओं को मिलाने वाला रेखाखंड समवर्ती रेखाएँ होती हैं और सभी अपने प्रतिच्छेदन बिंदु द्वारा द्विभाजित होती हैं।<ref name=Altshiller-Court>Altshiller-Court, Nathan, ''College Geometry'', Dover Publ., 2007.</ref>{{rp|p.125}}
*भुजाओ a, b, c और d के साथ एक उत्तल चतुर्भुज में, भुजाओ के मध्य बिंदुओं a और c को जोड़ने वाली द्विमाध्यिका की लंबाई है
पक्षों ए, बी, सी और d के साथ एक उत्तल चतुर्भुज में, बिमेडियन की लंबाई जो पक्षों के मध्य बिंदुओं को जोड़ती है और सी है
:<math>m=\tfrac{1}{2}\sqrt{-a^2+b^2-c^2+d^2+p^2+q^2}</math>
:<math>m=\tfrac{1}{2}\sqrt{-a^2+b^2-c^2+d^2+p^2+q^2}</math>
जहाँ p और q विकर्णों की लंबाई हैं।<ref>{{cite web| url = http://www.artofproblemsolving.com/Forum/viewtopic.php?t=363253| title = मैटेस्कु कॉन्स्टेंटिन, 'विकर्ण की असमानता' का उत्तर}}</ref> भुजाओं b और d के मध्यबिंदुओं को जोड़ने वाली द्विमाध्यिका की लंबाई है
जहाँ p और q विकर्णों की लंबाई हैं।<ref>{{cite web| url = http://www.artofproblemsolving.com/Forum/viewtopic.php?t=363253| title = मैटेस्कु कॉन्स्टेंटिन, 'विकर्ण की असमानता' का उत्तर}}</ref> भुजाओं b और d के मध्यबिंदुओं को जोड़ने वाली द्विमाध्यिका की लंबाई है
Line 256: Line 252:
अत<ref name=Altshiller-Court/>{{rp|p.126}}
अत<ref name=Altshiller-Court/>{{rp|p.126}}
:<math>\displaystyle p^2+q^2=2(m^2+n^2).</math>
:<math>\displaystyle p^2+q^2=2(m^2+n^2).</math>
यह वैरिग्नन समांतर चतुर्भुज में लागू समांतर चतुर्भुज कानून का एक [[परिणाम]] भी है।
यह वैरिग्नन समांतर चतुर्भुज में लागू समांतर चतुर्भुज नियम का एक [[परिणाम]] भी है।


द्विमाध्यकों की लंबाई को दो विपरीत भुजाओं और विकर्णों के मध्यबिंदुओं के बीच की दूरी x के रूप में भी व्यक्त किया जा सकता है। उपरोक्त सूत्रों में यूलर के चतुर्भुज प्रमेय का उपयोग करते समय यह संभव है। जहां से<ref name=Josefsson3/>:<math>m=\tfrac{1}{2}\sqrt{2(b^2+d^2)-4x^2}</math>
द्विमाध्यकों की लंबाई को दो विपरीत भुजाओं और विकर्णों के मध्यबिंदुओं के बीच की दूरी x के रूप में भी व्यक्त किया जा सकता है। उपरोक्त सूत्रों में यूलर के चतुर्भुज प्रमेय का उपयोग करते समय यह संभव है। जहां से<ref name=Josefsson3/>:<math>m=\tfrac{1}{2}\sqrt{2(b^2+d^2)-4x^2}</math>
तथा
तथा
:<math>n=\tfrac{1}{2}\sqrt{2(a^2+c^2)-4x^2}.</math>
:<math>n=\tfrac{1}{2}\sqrt{2(a^2+c^2)-4x^2}.</math>
ध्यान दें कि इन सूत्रों में दो विपरीत पक्ष वे दो नहीं हैं जिन्हें द्विमाध्यिका जोड़ती है।
ध्यान दें कि इन सूत्रों में दो विपरीत भुजा वे दो नहीं हैं जिन्हें द्विमाध्यिका जोड़ती है।


एक उत्तल चतुर्भुज में, द्विमाध्यकों और विकर्णों के बीच निम्नलिखित [[द्वैत (गणित)]] संबंध होता है:<ref name=Josefsson>{{citation
एक उत्तल चतुर्भुज में, द्विमाध्यकों और विकर्णों के बीच निम्नलिखित [[द्वैत (गणित)|द्वैत(गणित)]] संबंध होता है:<ref name=Josefsson>{{citation
  | last = Josefsson | first = Martin
  | last = Josefsson | first = Martin
  | journal = Forum Geometricorum
  | journal = Forum Geometricorum
Line 272: Line 269:
  | year = 2012}}.</ref>
  | year = 2012}}.</ref>
* दो द्विमाध्यकों की लंबाई समान होती है यदि और केवल यदि दो विकर्ण लंबवत हों।
* दो द्विमाध्यकों की लंबाई समान होती है यदि और केवल यदि दो विकर्ण लंबवत हों।
* दो द्विमाध्यम लंबवत होते हैं यदि और केवल यदि दो विकर्णों की लंबाई समान हो।
* दो द्विमाध्यिकाएँ लंबवत होते हैं यदि और केवल यदि दो विकर्णों की लंबाई समान हो।


== त्रिकोणमितीय पहचान ==
== त्रिकोणमितीय पहचान ==
एक सरल चतुर्भुज ABCD के चारों कोण निम्नलिखित सर्वसमिकाओं को संतुष्ट करते हैं:<ref>C. V. Durell & A. Robson, ''Advanced Trigonometry'', Dover, 2003, p. 267.</ref>
एक सरल चतुर्भुज ABCD के चारों कोण निम्नलिखित सर्वसमिकाओं को स्वीकार करते हैं:<ref>C. V. Durell & A. Robson, ''Advanced Trigonometry'', Dover, 2003, p. 267.</ref>
:<math>\sin{A}+\sin{B}+\sin{C}+\sin{D}=4\sin{\frac{A+B}{2}}\sin{\frac{A+C}{2}}\sin{\frac{A+D}{2}}</math>
:<math>\sin{A}+\sin{B}+\sin{C}+\sin{D}=4\sin{\frac{A+B}{2}}\sin{\frac{A+C}{2}}\sin{\frac{A+D}{2}}</math>
तथा
तथा
Line 283: Line 280:
अंतिम दो सूत्रों में, किसी भी कोण को समकोण होने की अनुमति नहीं है, क्योंकि tan 90° परिभाषित नहीं है।
अंतिम दो सूत्रों में, किसी भी कोण को समकोण होने की अनुमति नहीं है, क्योंकि tan 90° परिभाषित नहीं है।


होने देना <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> उत्तल चतुर्भुज की भुजाएँ हों, <math>s</math> अर्द्धपरिधि है,
मान ले <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> उत्तल चतुर्भुज की भुजाएँ हों, <math>s</math> अर्द्धपरिधि है,


तथा  <math>A</math> तथा <math>C</math> विपरीत कोण हैं, तो<ref>{{Cite web|url=http://matinf.upit.ro/MATINF6/index.html#p=1|title=ईए जोस गार्सिया, दो पहचान और उनके परिणाम, MATINF, 6 (2020) 5-11|website=Matinf.upit.ro|access-date=1 March 2022}}</ref>
तथा  <math>A</math> तथा <math>C</math> विपरीत कोण हैं, तो<ref>{{Cite web|url=http://matinf.upit.ro/MATINF6/index.html#p=1|title=ईए जोस गार्सिया, दो पहचान और उनके परिणाम, MATINF, 6 (2020) 5-11|website=Matinf.upit.ro|access-date=1 March 2022}}</ref>
Line 291: Line 288:
:<math>bc\sin^2{\frac{C}{2}}+ad\cos^2{\frac{A}{2}}=(s-b)(s-c)</math>.
:<math>bc\sin^2{\frac{C}{2}}+ad\cos^2{\frac{A}{2}}=(s-b)(s-c)</math>.


हम इन सर्वसमिकाओं का उपयोग Bretschneider के सूत्र को व्युत्पन्न करने के लिए कर सकते हैं।
हम इन सर्वसमिकाओं का उपयोग [[कार्ल एंटोन Bretschneider|ब्रेटश्राइडर]] के सूत्र को व्युत्पन्न करने के लिए कर सकते हैं।


== असमानताएं ==
== असमानताएं ==


=== क्षेत्र ===
=== क्षेत्र ===
यदि एक उत्तल चतुर्भुज की लगातार भुजाएँ a, b, c, d और विकर्ण p, q हैं, तो इसका क्षेत्रफल K संतुष्ट करता है<ref>O. Bottema, ''Geometric Inequalities'', Wolters–Noordhoff Publishing, The Netherlands, 1969, pp. 129, 132.</ref>
यदि एक उत्तल चतुर्भुज की लगातार भुजाएँ a, b, c, d और विकर्ण p, q हैं, तो इसका क्षेत्रफल K स्वीकार करता है<ref>O. Bottema, ''Geometric Inequalities'', Wolters–Noordhoff Publishing, The Netherlands, 1969, pp. 129, 132.</ref>
:<math>K\le \tfrac{1}{4}(a+c)(b+d)</math> समानता के साथ केवल एक आयत के लिए।
:<math>K\le \tfrac{1}{4}(a+c)(b+d)</math> समानता के साथ केवल एक आयत के लिए।
:<math>K\le \tfrac{1}{4}(a^2+b^2+c^2+d^2)</math> समानता के साथ केवल एक [[वर्ग]] के लिए।
:<math>K\le \tfrac{1}{4}(a^2+b^2+c^2+d^2)</math> समानता के साथ केवल एक [[वर्ग]] के लिए।
Line 302: Line 299:
:<math>K\le \tfrac{1}{2}\sqrt{(a^2+c^2)(b^2+d^2)}</math> समानता के साथ केवल एक आयत के लिए।<ref name=Josefsson4/>
:<math>K\le \tfrac{1}{2}\sqrt{(a^2+c^2)(b^2+d^2)}</math> समानता के साथ केवल एक आयत के लिए।<ref name=Josefsson4/>


Bretschneider के सूत्र से यह सीधे तौर पर पता चलता है कि एक चतुर्भुज का क्षेत्रफल संतुष्ट करता है
[[कार्ल एंटोन Bretschneider|ब्रेटश्राइडर]] के सूत्र से यह सामान्य रूप से पता चलता है कि एक चतुर्भुज का क्षेत्रफल स्वीकार करता है
:<math>K \le \sqrt{(s-a)(s-b)(s-c)(s-d)}</math>
:<math>K \le \sqrt{(s-a)(s-b)(s-c)(s-d)}</math>
समानता के साथ अगर और केवल अगर चतुर्भुज चक्रीय चतुर्भुज है या ऐसा पतित है कि एक पक्ष अन्य तीन के योग के बराबर है (यह एक रेखा खंड में ढह गया है, इसलिए क्षेत्र शून्य है)।
समानता के साथ अगर और केवल अगर चतुर्भुज चक्रीय चतुर्भुज है या अपकृष्ट है कि एक भुजा अन्य तीन के योग के बराबर है(यह एक रेखा खंड मे निपात है, इसलिए क्षेत्र शून्य है)।


किसी चतुर्भुज का क्षेत्रफल भी असमानता को संतुष्ट करता है<ref name=Alsina>{{citation|last1=Alsina|first1=Claudi|last2=Nelsen|first2=Roger|title=When Less is More: Visualizing Basic Inequalities|publisher=Mathematical Association of America|year=2009|page=68}}.</ref>
किसी चतुर्भुज का क्षेत्रफल भी असमानता को स्वीकार करता है<ref name=Alsina>{{citation|last1=Alsina|first1=Claudi|last2=Nelsen|first2=Roger|title=When Less is More: Visualizing Basic Inequalities|publisher=Mathematical Association of America|year=2009|page=68}}.</ref>
:<math>\displaystyle K\le \tfrac{1}{2}\sqrt[3]{(ab+cd)(ac+bd)(ad+bc)}.</math>
:<math>\displaystyle K\le \tfrac{1}{2}\sqrt[3]{(ab+cd)(ac+bd)(ad+bc)}.</math>
परिधि को L के रूप में नकारते हुए, हमारे पास है<ref name=Alsina/>{{rp|p.114}}
परिधि को L के रूप मेंचिन्हित करने पर, हमारे पास है<ref name=Alsina/>{{rp|p.114}}
:<math>K\le \tfrac{1}{16}L^2,</math>
:<math>K\le \tfrac{1}{16}L^2,</math>
समानता के साथ केवल एक वर्ग के मामले में।
समानता के साथ केवल एक वर्ग के स्थितियों में।


एक उत्तल चतुर्भुज का क्षेत्रफल भी संतुष्ट करता है
एक उत्तल चतुर्भुज का क्षेत्रफल भी स्वीकार करता है
:<math>K \le \tfrac{1}{2}pq</math>
:<math>K \le \tfrac{1}{2}pq</math>
विकर्ण लंबाई पी और क्यू के लिए, समानता के साथ अगर और केवल अगर विकर्ण लंबवत हैं।
विकर्ण लंबाई p और q के लिए, समानता के साथ यदि और केवल विकर्ण लंबवत हैं।


माना a, b, c, d एक उत्तल चतुर्भुज ABCD की भुजाओं की लंबाई है जिसका क्षेत्रफल K है और विकर्ण AC = p, BD = q है। फिर<ref>Dao Thanh Oai, Leonard Giugiuc, Problem 12033, American Mathematical Monthly, March 2018, p. 277</ref>
माना a, b, c, d एक उत्तल चतुर्भुज ABCD की भुजाओं की लंबाई है जिसका क्षेत्रफल K है और विकर्ण AC = p, BD = q है। तब<ref>Dao Thanh Oai, Leonard Giugiuc, Problem 12033, American Mathematical Monthly, March 2018, p. 277</ref>
:<math> K \leq \frac{a^2+b^2+c^2+d^2+p^2+q^2+pq-ac-bd}{8} </math> समानता के साथ केवल एक वर्ग के लिए।
:<math> K \leq \frac{a^2+b^2+c^2+d^2+p^2+q^2+pq-ac-bd}{8} </math> समानता के साथ केवल एक वर्ग के लिए।


Line 327: Line 324:
जहां समानता धारण करती है यदि और केवल यदि चतुर्भुज एक समांतर चतुर्भुज है।
जहां समानता धारण करती है यदि और केवल यदि चतुर्भुज एक समांतर चतुर्भुज है।


[[लियोनहार्ड यूलर]] ने टॉलेमी के प्रमेय को भी सामान्यीकृत किया, जो चक्रीय चतुर्भुज में एक समानता है, एक उत्तल चतुर्भुज के लिए एक असमानता में। यह प्रकट करता है कि  
[[लियोनहार्ड यूलर]] ने टॉलेमी के प्रमेय को भी सामान्यीकृत किया, जो उत्तल चतुर्भुज में एक असमानता है, एक चक्रीय चतुर्भुज के लिए एक समानता में। यह प्रकट करता है कि  
:<math> pq \le ac + bd </math>
:<math> pq \le ac + bd </math>
जहां समता है यदि और केवल यदि चतुर्भुज चक्रीय है।<ref name=Altshiller-Court/>{{rp|p.128–129}} इसे प्रायः टॉलेमी की असमानता कहा जाता है।
जहां समानता है यदि और केवल यदि चतुर्भुज चक्रीय है।<ref name=Altshiller-Court/>{{rp|p.128–129}} इसे प्रायः टॉलेमी की असमानता कहा जाता है।


किसी भी उत्तल चतुर्भुज में द्विमाध्यिकाएँ m, n और विकर्ण p, q असमानता द्वारा संबंधित हैं
किसी भी उत्तल चतुर्भुज में द्विमाध्यिकाएँ m, n और विकर्ण p, q असमानता द्वारा संबंधित हैं
:<math>pq \leq m^2+n^2,</math>
:<math>pq \leq m^2+n^2,</math>
समानता धारण के साथ यदि और केवल यदि विकर्ण समान हैं।<ref name=J2014>{{cite journal |last=Josefsson |first=Martin |title=समबाहु चतुर्भुज के गुण|journal=Forum Geometricorum |volume=14 |year=2014 |pages=129–144 |url=http://forumgeom.fau.edu/FG2014volume14/FG201412index.html }}</ref>{{rp|Prop.1}} यह चतुर्भुज तत्समक से सीधे अनुसरण करता है <math>m^2+n^2=\tfrac{1}{2}(p^2+q^2).</math>
समानता धारण के साथ यदि और केवल यदि विकर्ण समान हैं।<ref name=J2014>{{cite journal |last=Josefsson |first=Martin |title=समबाहु चतुर्भुज के गुण|journal=Forum Geometricorum |volume=14 |year=2014 |pages=129–144 |url=http://forumgeom.fau.edu/FG2014volume14/FG201412index.html }}</ref>{{rp|Prop.1}} यह चतुर्भुज पहचान से सीधे अनुसरण करता है <math>m^2+n^2=\tfrac{1}{2}(p^2+q^2).</math>
 
 
=== भुजाएँ ===
=== भुजाएँ ===
किसी भी चतुर्भुज की भुजाएँ a, b, c और d संतुष्ट करती हैं<ref name=Crux>{{cite web|url=http://www.imomath.com/othercomp/Journ/ineq.pdf|title=''क्रूक्स मैथेमेटिकोरम'' में प्रस्तावित असमानताएं (खंड 1, संख्या 1 से खंड 4, संख्या 2 को "यूरेका" के रूप में जाना जाता है)|website=Imomath.com|access-date=March 1, 2022}}</ref>{{rp|p.228,#275}}
किसी भी चतुर्भुज की भुजाएँ a, b, c और d स्वीकार करती हैं<ref name=Crux>{{cite web|url=http://www.imomath.com/othercomp/Journ/ineq.pdf|title=''क्रूक्स मैथेमेटिकोरम'' में प्रस्तावित असमानताएं (खंड 1, संख्या 1 से खंड 4, संख्या 2 को "यूरेका" के रूप में जाना जाता है)|website=Imomath.com|access-date=March 1, 2022}}</ref>{{rp|p.228,#275}}
:<math>a^2+b^2+c^2 > \frac{d^2}{3}</math>
:<math>a^2+b^2+c^2 > \frac{d^2}{3}</math>
तथा<ref name=Crux/>{{rp|p.234,#466}}
तथा<ref name=Crux/>{{rp|p.234,#466}}
:<math>a^4+b^4+c^4 \geq \frac{d^4}{27}.</math>
:<math>a^4+b^4+c^4 \geq \frac{d^4}{27}.</math>


== अधिकतम और न्यूनतम गुण ==
== अधिकतम और न्यूनतम गुण ==
दी गई परिधि वाले सभी चतुर्भुजों में, सबसे बड़े क्षेत्रफल वाला चतुर्भुज वर्ग (ज्यामिति) है। इसे चतुर्भुजों के लिए समपरिमितीय असमानता कहा जाता है। यह क्षेत्र असमानता का प्रत्यक्ष परिणाम है<ref name=Alsina/>{{rp|p.114}}
दी गई परिधि वाले सभी चतुर्भुजों में, सबसे बड़े क्षेत्रफल वाला चतुर्भुज वर्ग(ज्यामिति) है। इसे चतुर्भुजों के लिए समपरिमितीय प्रमेय कहा जाता है। यह क्षेत्र असमानता का प्रत्यक्ष परिणाम है<ref name=Alsina/>{{rp|p.114}}
:<math>K\le \tfrac{1}{16}L^2</math>
:<math>K\le \tfrac{1}{16}L^2</math>
जहां K परिमाप L के साथ एक उत्तल चतुर्भुज का क्षेत्रफल है। समानता तब और केवल तभी होती है जब चतुर्भुज एक वर्ग हो। दोहरे प्रमेय में कहा गया है कि किसी दिए गए क्षेत्रफल वाले सभी चतुर्भुजों में, वर्ग की परिधि सबसे छोटी होती है।
जहां K परिमाप L के साथ एक उत्तल चतुर्भुज का क्षेत्रफल है। समानता तब और केवल तभी होती है जब चतुर्भुज एक वर्ग हो। दोहरे प्रमेय में कहा गया है कि किसी दिए गए क्षेत्रफल वाले सभी चतुर्भुजों में, वर्ग की परिधि सबसे छोटी होती है।


दी गई भुजाओं की लंबाई वाला चतुर्भुज जिसमें [[मैक्सिमा और मिनिमा]] क्षेत्र होते हैं, चक्रीय चतुर्भुज होता है।<ref name=Peter/>
दी गई भुजाओं की लंबाई वाला चतुर्भुज जिसमें अधिकतम क्षेत्रफल चक्रीय चतुर्भुज होता है।<ref name=Peter/>


दिए गए विकर्णों वाले सभी उत्तल चतुर्भुजों में से, ऑर्थोडायगोनल चतुर्भुज का क्षेत्रफल सबसे बड़ा होता है।<ref name=Alsina/>{{rp|p.119}} यह इस तथ्य का प्रत्यक्ष परिणाम है कि एक उत्तल चतुर्भुज का क्षेत्रफल संतुष्ट करता है
दिए गए विकर्णों वाले सभी उत्तल चतुर्भुजों में से, समकोणीय चतुर्भुज का क्षेत्रफल सबसे बड़ा होता है।<ref name=Alsina/>{{rp|p.119}} यह इस तथ्य का प्रत्यक्ष परिणाम है कि एक उत्तल चतुर्भुज का क्षेत्रफल स्वीकार करता है
:<math>K=\tfrac{1}{2}pq\sin{\theta}\le \tfrac{1}{2}pq,</math>
:<math>K=\tfrac{1}{2}pq\sin{\theta}\le \tfrac{1}{2}pq,</math>
जहाँ θ विकर्णों p और q के बीच का कोण है। समानता धारण करती है यदि और केवल यदि θ = 90°।
जहाँ θ विकर्णों p और q के बीच का कोण है। समानता धारण करती है यदि और केवल यदि θ = 90°।


यदि पी उत्तल चतुर्भुज abcd  में एक आंतरिक बिंदु है, तो
यदि पी उत्तल चतुर्भुज ABCD में एक आंतरिक बिंदु है, तो
:<math>AP+BP+CP+DP\ge AC+BD.</math>
:<math>AP+BP+CP+DP\ge AC+BD.</math>
इस असमानता से यह पता चलता है कि एक चतुर्भुज के अंदर बिंदु जो कि मैक्सिमा और मिनिमा वर्टेक्स (ज्यामिति) की दूरियों का योग है, विकर्णों का प्रतिच्छेदन है। इसलिए वह बिंदु एक उत्तल चतुर्भुज का [[फर्मेट बिंदु]] है।<ref name=autogenerated1>{{cite book |last1=Alsina |first1=Claudi |last2=Nelsen |first2=Roger |title=आकर्षक सबूत: सुरुचिपूर्ण गणित में एक यात्रा|publisher=Mathematical Association of America |year=2010 |pages=114, 119, 120, 261 |isbn=978-0-88385-348-1 }}</ref>{{rp|p.120}}
इस असमानता से यह पता चलता है कि एक चतुर्भुज के अंदर बिंदु जो कि शीर्षों की(ज्यामिति) की दूरियों का योग को कम करता है, विकर्णों का प्रतिच्छेदन है। इसलिए वह बिंदु एक उत्तल चतुर्भुज का [[फर्मेट बिंदु]] है।<ref name=autogenerated1>{{cite book |last1=Alsina |first1=Claudi |last2=Nelsen |first2=Roger |title=आकर्षक सबूत: सुरुचिपूर्ण गणित में एक यात्रा|publisher=Mathematical Association of America |year=2010 |pages=114, 119, 120, 261 |isbn=978-0-88385-348-1 }}</ref>{{rp|p.120}}


== उत्तल चतुर्भुज मे उल्लेखनीय बिन्दु और रेखाएं ==
चतुर्भुज के केंद्र को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। शीर्ष केन्द्रक चतुर्भुज को शून्य मानने से आता है, लेकिन इसके शीर्षों पर समान द्रव्यमान होता है। भुजा केन्द्रक भुजाओ पर विचार करने से प्रति इकाई लंबाई में निरंतर द्रव्यमान होता है। सामान्य केंद्र, जिसे सिर्फ केन्द्रक(क्षेत्र का केंद्र) कहा जाता है, चतुर्भुज की सतह को स्थिर घनत्व के रूप में मानने से आता है। ये तीन बिंदु सामान्य रूप से एक ही बिंदु नहीं हैं।<ref>{{Cite web|url=https://sites.math.washington.edu/~king/java/gsp/center-mass-quad.html|title=एक चतुर्भुज के द्रव्यमान के दो केंद्र|website=Sites.math.washington.edu|access-date=1 March 2022}}</ref>


== उत्तल चतुर्भुज == में उल्लेखनीय बिंदु और रेखाएँ
शीर्ष केन्द्रक दो रेखा खंडों का प्रतिच्छेदन है।<ref>Honsberger, Ross, ''Episodes in Nineteenth and Twentieth Century Euclidean Geometry'', Math. Assoc. Amer., 1995, pp. 35–41.</ref> किसी भी बहुभुज की तरह, शीर्ष केन्द्रक के x और y निर्देशांक शीर्षों के x और y निर्देशांक के अंकगणितीय साधन हैं।
चतुर्भुज के केंद्र को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। वर्टेक्स सेंट्रोइड चतुर्भुज को खाली मानने से आता है, लेकिन इसके शीर्षों पर समान द्रव्यमान होता है। पक्ष केन्द्रक पक्षों पर विचार करने से प्रति इकाई लंबाई में निरंतर द्रव्यमान होता है। सामान्य केंद्र, जिसे सिर्फ केन्द्रक (क्षेत्र का केंद्र) कहा जाता है, चतुर्भुज की सतह को निरंतर घनत्व के रूप में मानने से आता है। ये तीन बिंदु सामान्य रूप से एक ही बिंदु नहीं हैं।<ref>{{Cite web|url=https://sites.math.washington.edu/~king/java/gsp/center-mass-quad.html|title=एक चतुर्भुज के द्रव्यमान के दो केंद्र|website=Sites.math.washington.edu|access-date=1 March 2022}}</ref>
शीर्ष केन्द्रक दो चतुर्भुज#विशेष रेखा खंडों का प्रतिच्छेदन है।<ref>Honsberger, Ross, ''Episodes in Nineteenth and Twentieth Century Euclidean Geometry'', Math. Assoc. Amer., 1995, pp. 35–41.</ref> किसी भी बहुभुज की तरह, वर्टेक्स सेंट्रोइड के x और y निर्देशांक शीर्षों के x और y निर्देशांक के अंकगणितीय साधन हैं।


चतुर्भुज ABCD के क्षेत्रफल केन्द्रक की रचना निम्न प्रकार से की जा सकती है। चलो जी<sub>a</sub>, जी<sub>b</sub>, जी<sub>c</sub>, जी<sub>d</sub>क्रमशः त्रिभुजों BCD, ACD, ABD, ABC के केन्द्रक बनें। तब क्षेत्र केन्द्रक रेखाओं G का प्रतिच्छेदन है<sub>a</sub>G<sub>c</sub>और जी<sub>b</sub>G<sub>d</sub>.<ref name=Myakishev>{{citation
चतुर्भुज ABCD के क्षेत्रफल केन्द्रक की रचना निम्न प्रकार से की जा सकती है। माना g<sub>a</sub>, g<sub>b</sub>, g<sub>c</sub>, g<sub>d</sub> क्रमशः त्रिभुजों BCD, ACD, ABD, ABC के केन्द्रक बनें। तब क्षेत्र केन्द्रक g<sub>a</sub>G<sub>c</sub>और g<sub>b</sub>G<sub>d</sub>.<ref name="Myakishev">{{citation
  | last = Myakishev | first = Alexei
  | last = Myakishev | first = Alexei
  | journal = Forum Geometricorum
  | journal = Forum Geometricorum
Line 370: Line 364:
  | url = http://forumgeom.fau.edu/FG2006volume6/FG200634.pdf
  | url = http://forumgeom.fau.edu/FG2006volume6/FG200634.pdf
  | volume = 6
  | volume = 6
  | year = 2006}}.</ref>
  | year = 2006}}.</ref> रेखाओं का प्रतिच्छेदन है।  
एक सामान्य उत्तल चतुर्भुज ABCD में, त्रिभुज के परिकेन्द्र और लंबकेन्द्र के लिए कोई प्राकृतिक अनुरूपता नहीं होती है। लेकिन ऐसे दो बिंदुओं का निर्माण निम्नलिखित तरीके से किया जा सकता है। चलो ओ<sub>a</sub>, ओ<sub>b</sub>, ओ<sub>c</sub>, ओ<sub>d</sub>त्रिभुजों BCD, ACD, ABD, ABC के परिकेन्द्र क्रमशः हों; और एच द्वारा निरूपित करें<sub>a</sub>, एच<sub>b</sub>, एच<sub>c</sub>, एच<sub>d</sub>समान त्रिभुजों में ऑर्थोसेंटर। फिर रेखाओं का चौराहा O<sub>a</sub>O<sub>c</sub>और ओ<sub>b</sub>O<sub>d</sub>[[द्रव्यमान का परिकेंद्र]] कहा जाता है, और रेखाओं का प्रतिच्छेदन H<sub>a</sub>H<sub>c</sub>और वह<sub>b</sub>H<sub>d</sub>उत्तल चतुर्भुज का क्वासियोर्थोसेंटर कहा जाता है।<ref name=Myakishev/>इन बिंदुओं का उपयोग चतुर्भुज की यूलर रेखा को परिभाषित करने के लिए किया जा सकता है। एक उत्तल चतुर्भुज में, क्वासिऑर्थोसेंटर एच, क्षेत्र सेंट्रोइड जी, और क्वासिकिरकमसेंटर ओ इस क्रम में संरेख हैं, और एचजी = 2GO।<ref name=Myakishev/>


लाइनों ई के चौराहे के रूप में एक क्वासिनिन-बिंदु केंद्र ई को भी परिभाषित किया जा सकता है<sub>a</sub>E<sub>c</sub>और <sub>b</sub>E<sub>d</sub>, जहां ई<sub>a</sub>, तथा<sub>b</sub>, तथा<sub>c</sub>, तथा<sub>d</sub>क्रमशः नौ-बिंदु वृत्त हैं | त्रिभुज BCD, ACD, ABD, ABC के नौ-बिंदु केंद्र हैं। तब E, OH का मध्यबिंदु है।<ref name=Myakishev/>
एक सामान्य उत्तल चतुर्भुज ABCD में, त्रिभुज के परिकेन्द्र और लंबकेन्द्र के लिए कोई प्राकृतिक अनुरूपता नहीं होती है। लेकिन ऐसे दो बिंदुओं का निर्माण निम्नलिखित तरीके से किया जा सकता है। चलो O<sub>a</sub>, O<sub>b</sub>, O<sub>c</sub>, O<sub>d</sub>त्रिभुजों BCD, ACD, ABD, ABC के परिकेन्द्र क्रमशः हों; और H<sub>a</sub>, H<sub>b</sub>, H<sub>c</sub>, H<sub>d</sub> समान त्रिभुजों में लंबकेंद्रों द्वारा निरूपित करे। फिर रेखाओं के O<sub>a</sub>O<sub>c</sub>और O<sub>b</sub>O<sub>d</sub> प्रतिच्छेदन को [[द्रव्यमान का परिकेंद्र|अर्ध-परिकेंद्र]] जाता है, और रेखाओं का प्रतिच्छेदन H<sub>a</sub>H<sub>c</sub>और H<sub>b</sub>H<sub>d</sub> उत्तल चतुर्भुज का अर्ध-अर्धकेन्द्र  कहा जाता है।<ref name="Myakishev" />इन बिंदुओं का उपयोग चतुर्भुज की यूलर रेखा को परिभाषित करने के लिए किया जा सकता है। एक उत्तल चतुर्भुज में, अर्ध-अर्धकेन्द्र H, 'क्षेत्र केन्द्रक' G, और अर्ध-अर्धकेन्द्र O इस क्रम में संरेख हैं, और HG = 2GO।<ref name="Myakishev" />


उत्तल गैर-समांतर चतुर्भुज में एक और उल्लेखनीय रेखा [[न्यूटन रेखा]] है, जो विकर्णों के मध्यबिंदुओं को जोड़ती है, इन बिंदुओं को जोड़ने वाले खंड को वर्टेक्स सेंट्रोइड द्वारा द्विभाजित किया जाता है। एक और दिलचस्प रेखा (कुछ अर्थों में न्यूटन रेखा से दोहरी | न्यूटन की एक) वह रेखा है जो विकर्णों के प्रतिच्छेदन बिंदु को शीर्ष केन्द्रक से जोड़ती है। रेखा इस तथ्य से उल्लेखनीय है कि इसमें (क्षेत्र) केन्द्रक सम्मिलित है। वर्टेक्स सेंट्रॉइड विकर्णों के प्रतिच्छेदन और (क्षेत्र) सेंट्रोइड को 3:1 के अनुपात में जोड़ने वाले खंड को विभाजित करता है।<ref>{{cite web|url=https://www.austms.org.au/Publ/Gazette/2010/May10/TechPaperMiller.pdf|title=एक चतुर्भुज का केन्द्रक|author=John Boris Miller|website=Austmd.org.au|access-date=March 1, 2022}}</ref>
E<sub>a</sub>E<sub>c</sub>और ई<sub>b</sub>E<sub>d</sub>,रेखाओ के प्रतिच्छेदन के रूप मे क्वासिनीन-बिन्दु केंद्र एको भी परिभाषित किया जा सकता है , जहां E<sub>a</sub>, तथा E<sub>b</sub>, तथा E<sub>c</sub>, तथा E<sub>d</sub> क्रमशः त्रिभुज BCD, ACD, ABD, ABC के नौ-बिंदु केंद्र हैं। तब E, OH का मध्यबिंदु है।<ref name=Myakishev/>
बिंदु P और Q वाले किसी भी चतुर्भुज ABCD के लिए क्रमशः AD और BC और AB और CD के चौराहे, वृत्त (PAB), (PCD), (QAD), और (QBC) एक सामान्य बिंदु M से होकर गुजरते हैं, जिसे Miquel कहा जाता है। बिंदु।<ref>{{Cite book|title=गणितीय ओलंपियाड में यूक्लिडियन ज्यामिति|last=Chen|first=Evan|publisher=Mathematical Association of America|year=2016|isbn=9780883858394|location=Washington, D.C.|pages=198}}</ref>
 
उत्तल चतुर्भुज ABCD के लिए जिसमें E विकर्णों का प्रतिच्छेदन बिंदु है और F भुजाओं BC और AD के विस्तार का प्रतिच्छेदन बिंदु है, मान लीजिए ω E और F से होकर जाने वाला एक वृत्त है जो CB को आंतरिक रूप से M और DA पर मिलता है N पर CA को फिर से L पर मिलने दें और DB को फिर से K पर मिलने दें। फिर वहाँ पकड़: सीधी रेखाएँ NK और ML बिंदु P पर प्रतिच्छेद करती हैं जो भुजा AB पर स्थित है; सीधी रेखाएँ NL और KM बिंदु Q पर प्रतिच्छेद करती हैं जो भुजा CD पर स्थित है।
उत्तल गैर-समांतर चतुर्भुज में एक और उल्लेखनीय रेखा [[न्यूटन रेखा]] है, जो विकर्णों के मध्यबिंदुओं को जोड़ती है, इन बिंदुओं को जोड़ने वाले खंड को शीर्ष केन्द्रक द्वारा द्विभाजित किया जाता है। एक और दिलचस्प रेखा(कुछ अर्थों में न्यूटन रेखा से दोहरी) वह रेखा है जो विकर्णों के प्रतिच्छेदन बिंदु को शीर्ष केन्द्रक से जोड़ती है। रेखा इस तथ्य से उल्लेखनीय है कि इसमें(क्षेत्र) केन्द्रक सम्मिलित है। शीर्ष केन्द्रक विकर्णों के प्रतिच्छेदन और(क्षेत्र)केन्द्रक को 3:1 के अनुपात में जोड़ने वाले खंड को विभाजित करता है।<ref>{{cite web|url=https://www.austms.org.au/Publ/Gazette/2010/May10/TechPaperMiller.pdf|title=एक चतुर्भुज का केन्द्रक|author=John Boris Miller|website=Austmd.org.au|access-date=March 1, 2022}}</ref>
बिंदुओं P और Q को भुजाओं AB और CD पर वृत्त ω द्वारा निर्मित "पास्कल बिंदु" कहा जाता है।
 
<ref name=Fraivert>{{citation
बिंदु P और Q वाले किसी भी चतुर्भुज ABCD के लिए क्रमशः AD और BC और AB और CD के प्रतिच्छेदन, वृत्त(PAB),(PCD),(QAD), और(QBC) एक सामान्य बिंदु M से होकर गुजरते हैं, जिसे मिकेल बिन्दु कहा जाता है।<ref>{{Cite book|title=गणितीय ओलंपियाड में यूक्लिडियन ज्यामिति|last=Chen|first=Evan|publisher=Mathematical Association of America|year=2016|isbn=9780883858394|location=Washington, D.C.|pages=198}}</ref>
 
उत्तल चतुर्भुज ABCD के लिए जिसमें E विकर्णों का प्रतिच्छेदन बिंदु है और F भुजाओं BC और AD के विस्तार का प्रतिच्छेदन बिंदु है, मान लीजिए ω को E और F से होकर जाने वाला एक वृत्त है जो CB को आंतरिक रूप से M और DA पर मिलता है N पर CA को फिर से L पर मिलने दें और DB को फिर से K पर मिलने दें। फिर वहाँ: सीधी रेखाएँ NK और ML बिंदु P पर प्रतिच्छेद करती हैं जो भुजा AB पर स्थित है; सीधी रेखाएँ NL और KM बिंदु Q पर प्रतिच्छेद करती हैं जो भुजा CD पर स्थित है। बिंदुओं P और Q को भुजाओं AB और CD पर वृत्त ω द्वारा निर्मित "पास्कल बिंदु" कहा जाता है।<ref name="Fraivert">{{citation
  | last = David
  | last = David
  | first = Fraivert
  | first = Fraivert
Line 389: Line 384:
  | doi = 10.1017/mag.2019.54
  | doi = 10.1017/mag.2019.54
  | s2cid = 233360695
  | s2cid = 233360695
  }}.</ref>
  }}.</ref><ref name="Fraivert2">{{citation
<ref name=Fraivert2>{{citation
  | last = David
  | last = David
  | first = Fraivert
  | first = Fraivert
Line 398: Line 392:
  | url = http://www.heldermann.de/JGG/JGG23/JGG231/jgg23002.htm
  | url = http://www.heldermann.de/JGG/JGG23/JGG231/jgg23002.htm
  | volume = 23
  | volume = 23
  | year = 2019}}.</ref>
  | year = 2019}}.</ref><ref name="Fraivert3">{{citation
<ref name=Fraivert3>{{citation
  | last = David
  | last = David
  | first = Fraivert
  | first = Fraivert
Line 408: Line 401:
  | volume = 17
  | volume = 17
  | year = 2017}}.</ref>
  | year = 2017}}.</ref>
== उत्तल चतुर्भुजों के अन्य गुण ==
== उत्तल चतुर्भुजों के अन्य गुण ==
*चलो चतुर्भुज के सभी पक्षों पर बाहरी वर्ग बनाए जाते हैं। केंद्र (ज्यामिति) को जोड़ने वाले खंड # विपरीत वर्गों की सममित वस्तुएं () लंबाई में बराबर हैं, और (बी) लंबवत हैं। इस प्रकार ये केंद्र एक समकोणीय चतुर्भुज के शीर्ष हैं। इसे वैन औबेल प्रमेय कहा जाता है।
*मान लीजिए कि चतुर्भुज के सभी भुजाओ पर बाहरी वर्ग बनाए जाते हैं। केंद्र(ज्यामिति) को जोड़ने वाले खंड विपरीत वर्गों की सममित वस्तुएं(a) लंबाई में बराबर हैं, और(b) लंबवत हैं। इस प्रकार ये केंद्र एक समकोणीय चतुर्भुज के शीर्ष हैं। इसे वैन औबेल प्रमेय कहा जाता है।
* दिए गए किनारे की लंबाई के साथ किसी भी सरल चतुर्भुज के लिए, समान किनारे की लंबाई के साथ एक चक्रीय चतुर्भुज होता है।<ref name=Peter>Peter, Thomas, "Maximizing the Area of a Quadrilateral", ''The College Mathematics Journal'', Vol. 34, No. 4 (September 2003), pp. 315–316.</ref>
* दिए गए भुजाओं की लंबाई के साथ किसी भी सरल चतुर्भुज के लिए, समान भुजाओं की लंबाई के साथ एक चक्रीय चतुर्भुज होता है।<ref name=Peter>Peter, Thomas, "Maximizing the Area of a Quadrilateral", ''The College Mathematics Journal'', Vol. 34, No. 4 (September 2003), pp. 315–316.</ref>
*एक उत्तल चतुर्भुज के विकर्णों और भुजाओं से बने चार छोटे त्रिभुजों में यह गुण होता है कि दो विपरीत त्रिभुजों के क्षेत्रफलों का गुणनफल अन्य दो त्रिभुजों के क्षेत्रफलों के गुणनफल के बराबर होता है।<ref>{{cite journal|author=Josefsson, Martin|url=http://forumgeom.fau.edu/FG2013volume13/FG201305.pdf|title=ट्रेपेज़ोइड्स के लक्षण|journal=Forum Geometricorum|volume=13|date=2013|pages=23–35}}</ref>
*एक उत्तल चतुर्भुज के विकर्णों और भुजाओं से बने चार छोटे त्रिभुजों में यह गुण होता है कि दो विपरीत त्रिभुजों के क्षेत्रफलों का गुणनफल अन्य दो त्रिभुजों के क्षेत्रफलों के गुणनफल के बराबर होता है।<ref>{{cite journal|author=Josefsson, Martin|url=http://forumgeom.fau.edu/FG2013volume13/FG201305.pdf|title=ट्रेपेज़ोइड्स के लक्षण|journal=Forum Geometricorum|volume=13|date=2013|pages=23–35}}</ref>


== टैक्सोनॉमी ==
== वर्गीकरण ==
:[[File:Quadrilateral hierarchy svg.svg|thumb|चतुर्भुजों की एक वर्गीकरण, हस्से आरेख का उपयोग करते हुए।]]चतुर्भुजों का एक पदानुक्रमित [[वर्गीकरण (सामान्य)]] दाईं ओर की आकृति द्वारा चित्रित किया गया है। निम्न वर्ग उच्च वर्गों के विशेष मामले हैं जिनसे वे जुड़े हुए हैं। ध्यान दें कि यहाँ ट्रेपेज़ॉइड उत्तर अमेरिकी परिभाषा (ब्रिटिश समतुल्य एक ट्रेपेज़ियम) की बात कर रहा है। समावेशी परिभाषाओं का उपयोग पूरे समय किया जाता है।
:[[File:Quadrilateral hierarchy svg.svg|thumb|चतुर्भुजों का वर्गीकरण, हस्से आरेख का उपयोग करते हुए।]]चतुर्भुजों का एकश्रेणीबद्ध [[वर्गीकरण (सामान्य)|वर्गीकरण(सामान्य)]] को दाईं ओर की आकृति द्वारा चित्रित किया गया है। निम्न वर्ग उच्च वर्गों के विशेष स्थितियों हैं जिनसे वे जुड़े हुए हैं। ध्यान दें कि यहाँ <nowiki>''ट्रेपेज़ॉइड''</nowiki> उत्तर अमेरिकी परिभाषा(ब्रिटिश समतुल्य एक ट्रेपेज़ियम) की बात कर रहा है। समावेशी परिभाषाओं का उपयोग पूरे समय किया जाता है।


== तिरछा चतुर्भुज ==
== तिरछा चतुर्भुज ==
{{See also|Skew polygon}}
{{See also|तिर्यक बहुभुज }}
[[File:Disphenoid tetrahedron.png|260px|thumb|[[चतुर्भुज डिफेनोइड]] के (लाल) पार्श्व किनारे एक नियमित ज़िग-ज़ैग तिरछा चतुर्भुज का प्रतिनिधित्व करते हैं]]एक गैर-तलीय चतुर्भुज को तिरछा चतुर्भुज कहा जाता है। किनारों की लंबाई से इसके डायहेड्रल कोणों की गणना करने के सूत्र और दो आसन्न किनारों के बीच के कोण को अणुओं के गुणों पर काम करने के लिए प्राप्त किया गया था जैसे कि [[साइक्लोब्यूटेन]] जिसमें चार परमाणुओं की एक सिकुड़ी हुई अंगूठी होती है।<ref>{{cite journal |first1=M. P. |last1=Barnett |first2=J. F. |last2=Capitani |title=मॉड्यूलर रासायनिक ज्यामिति और प्रतीकात्मक गणना|journal=International Journal of Quantum Chemistry |volume=106 |issue=1 |pages=215–227 |year=2006 |doi=10.1002/qua.20807 |bibcode=2006IJQC..106..215B }}</ref> ऐतिहासिक रूप से गौचे चतुर्भुज शब्द का उपयोग तिरछा चतुर्भुज के लिए भी किया जाता था।<ref>{{cite journal |last=Hamilton |first=William Rowan |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Gauche/Gauche1.pdf |title=दूसरे क्रम की सतहों में "गौचे" बहुभुज के शिलालेख का सम्मान करते हुए चतुर्धातुक विश्लेषण द्वारा प्राप्त कुछ परिणामों पर|journal=Proceedings of the Royal Irish Academy |volume=4 |year=1850 |pages=380–387 }}</ref> एक तिरछा चतुर्भुज अपने विकर्णों के साथ एक (संभवतः गैर-नियमित) [[चतुर्पाश्वीय]] बनाता है, और इसके विपरीत प्रत्येक तिरछा चतुर्भुज एक टेट्राहेड्रॉन से आता है जहां विपरीत किनारों (ज्यामिति) की एक जोड़ी को हटा दिया जाता है।
[[File:Disphenoid tetrahedron.png|260px|thumb|[[चतुर्भुज डिफेनोइड]] के(लाल) रेखित भुजाए  एक नियमित ज़िग-ज़ैग तिरछा चतुर्भुज का प्रतिनिधित्व करते हैं]]एक गैर-तलीय चतुर्भुज को '''तिरछा चतुर्भुज''' कहा जाता है। भुजाओं की लंबाई से इसके द्वितल कोणों की गणना करने के सूत्र और दो आसन्न भुजाओं के बीच के कोण को अणुओं के गुणों पर काम करने के लिए प्राप्त किया गया था जैसे कि [[साइक्लोब्यूटेन]] जिसमें चार परमाणुओं का एक <nowiki>''संवृत्त हुआ''</nowiki> वलय होता है।<ref>{{cite journal |first1=M. P. |last1=Barnett |first2=J. F. |last2=Capitani |title=मॉड्यूलर रासायनिक ज्यामिति और प्रतीकात्मक गणना|journal=International Journal of Quantum Chemistry |volume=106 |issue=1 |pages=215–227 |year=2006 |doi=10.1002/qua.20807 |bibcode=2006IJQC..106..215B }}</ref> ऐतिहासिक रूप से '''गौचे चतुर्भुज''' शब्द का उपयोग तिरछा चतुर्भुज के लिए भी किया जाता था।<ref>{{cite journal |last=Hamilton |first=William Rowan |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Gauche/Gauche1.pdf |title=दूसरे क्रम की सतहों में "गौचे" बहुभुज के शिलालेख का सम्मान करते हुए चतुर्धातुक विश्लेषण द्वारा प्राप्त कुछ परिणामों पर|journal=Proceedings of the Royal Irish Academy |volume=4 |year=1850 |pages=380–387 }}</ref> एक तिरछा चतुर्भुज अपने विकर्णों के साथ एक(संभवतः गैर-नियमित) [[चतुर्पाश्वीय|चतुष्फलक]] बनाता है, और इसके विपरीत प्रत्येक तिरछा चतुर्भुज एक चतुष्फलक से आता है जहां विपरीत भुजाओं(ज्यामिति) की एक जोड़ी को हटा दिया जाता है।


== यह भी देखें ==
== यह भी देखें ==
Line 426: Line 417:
* चतुर्भुज का लम्ब द्विभाजक निर्माण
* चतुर्भुज का लम्ब द्विभाजक निर्माण
* सचेरी चतुर्भुज
* सचेरी चतुर्भुज
*{{Section link|Types of mesh|Quadrilateral}}
*{{Section link|जाल के प्रकार|चतुष्कोष}}
* चतुर्भुज (भूगोल)
* चतुर्भुज(भूगोल)


{{clear}}
{{clear}}
Line 441: Line 432:
* [http://www.cut-the-knot.org/Curriculum/Geometry/PerpBisectQuadri.shtml Quadrilaterals Formed by Perpendicular Bisectors], [http://www.cut-the-knot.org/Curriculum/Geometry/ProjectiveQuadri.shtml Projective Collinearity] and  [http://www.cut-the-knot.org/Curriculum/Geometry/Quadrilaterals.shtml Interactive Classification] of Quadrilaterals from [[cut-the-knot]]
* [http://www.cut-the-knot.org/Curriculum/Geometry/PerpBisectQuadri.shtml Quadrilaterals Formed by Perpendicular Bisectors], [http://www.cut-the-knot.org/Curriculum/Geometry/ProjectiveQuadri.shtml Projective Collinearity] and  [http://www.cut-the-knot.org/Curriculum/Geometry/Quadrilaterals.shtml Interactive Classification] of Quadrilaterals from [[cut-the-knot]]
* [http://www.mathopenref.com/tocs/quadrilateraltoc.html Definitions and examples of quadrilaterals] and [http://www.mathopenref.com/tetragon.html Definition and properties of tetragons] from Mathopenref
* [http://www.mathopenref.com/tocs/quadrilateraltoc.html Definitions and examples of quadrilaterals] and [http://www.mathopenref.com/tetragon.html Definition and properties of tetragons] from Mathopenref
* [http://dynamicmathematicslearning.com/quad-tree-new-web.html A (dynamic) Hierarchical Quadrilateral Tree] at [http://dynamicmathematicslearning.com/JavaGSPLinks.htm Dynamic Geometry Sketches]
* [http://dynamicmathematicslearning.com/quad-tree-new-web.html A(dynamic) Hierarchical Quadrilateral Tree] at [http://dynamicmathematicslearning.com/JavaGSPLinks.htm Dynamic Geometry Sketches]
* [http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf An extended classification of quadrilaterals] {{Webarchive|url=https://web.archive.org/web/20191230004754/http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf |date=2019-12-30 }} at [http://mysite.mweb.co.za/residents/profmd/homepage4.html Dynamic Math Learning Homepage] {{Webarchive|url=https://web.archive.org/web/20180825150046/http://mysite.mweb.co.za/residents/profmd/homepage4.html |date=2018-08-25 }}
* [http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf An extended classification of quadrilaterals] {{Webarchive|url=https://web.archive.org/web/20191230004754/http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf |date=2019-12-30 }} at [http://mysite.mweb.co.za/residents/profmd/homepage4.html Dynamic Math Learning Homepage] {{Webarchive|url=https://web.archive.org/web/20180825150046/http://mysite.mweb.co.za/residents/profmd/homepage4.html |date=2018-08-25 }}
* [https://web.archive.org/web/20110719175018/http://mzone.mweb.co.za/residents/profmd/classify.pdf The role and function of a hierarchical classification of quadrilaterals] by Michael de Villiers
* [https://web.archive.org/web/20110719175018/http://mzone.mweb.co.za/residents/profmd/classify.pdf The role and function of a hierarchical classification of quadrilaterals] by Michael de Villiers


{{Polygons}}
{{Polygons}}
[[Category:4 (संख्या)]]
[[Category:4 (संख्या)]]
[[Category:All articles with bare URLs for citations]]
[[Category:Articles with PDF format bare URLs for citations]]
[[Category:Articles with bare URLs for citations from June 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 26/11/2022]]
[[Category:Exclude in print]]
[[Category:Infobox templates|polygon]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikimedia Commons templates]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:चतुर्भुज| ]]
[[Category:चतुर्भुज| ]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/11/2022]]

Latest revision as of 14:06, 9 December 2022

यह लेख चार भुजाओ वाली गणितीय आकृतियो के बारे मे है। अन्य उपयोगों के लिए,चतुर्भुज(बहुविकल्पी) देखें।

"टेट्रागोन" यहाँ पुनःनिर्देशित करता है. खाने योग्य पौधे के लिए टेट्रागोनिया टेट्रागोनाइड्स देखें।

चतुर्भुज
Six Quadrilaterals.svg
कुछ प्रकार के चतुर्भुज
किनारेs और कोने4
स्लीपी सिंबल{4} (वर्ग के लिए )
क्षेत्रविभिन्न तरीके; नीचे देखें
आंतरिक कोण (डिग्री)90° (वर्ग और आयात के लिए)

यूक्लिडियन ज्यामिति में चतुर्भुज एक चार भुजाओं वाला बहुभुज होता है, जिसमें चार किनारे(भुजाएँ) और चार शीर्ष(कोने) होते हैं। यह शब्द लैटिन शब्द क्वाड्री, जो चार का एक प्रकार है, और लैटस, जिसका अर्थ 'भुजा' है, से लिया गया है। इसे टेट्रागोन(चतुष्कोण) भी कहा जाता है, जो ग्रीक 'टेट्रा' से लिया गया है जिसका अर्थ है 'चार' और 'गॉन' का अर्थ कोने या कोण है, जो अन्य बहुभुजों(जैसे पंचकोण) के अनुरूप है। चूँकि गोन का अर्थ कोण होता है, इसे समान रूप से चतुष्कोण , या 4-कोण कहा जाता है। शीर्षों वाला एक चतुर्भुज , , तथा कभी-कभी के रूप में दर्शाया जाता है।[1]

चतुर्भुज या तो साधारण बहुभुज(स्व-प्रतिच्छेदी नहीं) या जटिल बहुभुज(स्व-प्रतिच्छेदी, या रेखित) होते हैं। सरल चतुर्भुज या तो उत्तल बहुभुज या अवतल बहुभुज होते हैं।

एक सरल(और समतलीय) चतुर्भुज ABCD के आंतरिक 360 डिग्री तक चाप जोड़ते हैं, जो कि[1]:

यह n-गॉन आंतरिक कोण योग सूत्र की एक विशेष स्थिति है: S =(n - 2) × 180°।[2]

सभी स्वतः रेखांकित चतुर्भुज, उनके भुजाओं के मध्य बिंदुओं के चारों ओर बार-बार घुमाकर समतल करते है।[3]

सरल चतुर्भुज

कोई भी चतुर्भुज जो स्व-प्रतिच्छेदी नहीं है, एक सरल चतुर्भुज है।

उत्तल चतुर्भुज

कुछ प्रकार के सरल चतुर्भुजों का यूलर आरेख।(यूके) ब्रिटिश अंग्रेजी को दर्शाता है और(यूएस) अमेरिकी अंग्रेजी को दर्शाता है।
सममिति द्वारा उत्तल चतुर्भुज, एक हस्से आरेख के साथ दर्शाया गया है।

एक उत्तल चतुर्भुज में सभी आंतरिक कोण 180° से कम होते हैं, और दोनों विकर्ण चतुर्भुज के अंदर स्थित होते हैं।

  • अनियमित चतुर्भुज(ब्रिटिश अंग्रेजी) या ट्रेपेजियम(उत्तरी अमेरिकी अंग्रेजी): कोई भुजा समानांतर नहीं हैं।(ब्रिटिश अंग्रेजी में, इसे एक बार ट्रेपेज़ॉइड कहा जाता था। अधिक जानकारी के लिए, देखें Trapezoid (विषम चतुर्भुज) § Trapezium (समलम्ब ) vs Trapezoid (विषम चतुर्भुज)
  • समलम्ब(यूके) या ट्रेपेज़ॉइड(यूएस): कम से कम एक जोड़ी विपरीत भुजाएँ समानांतर(ज्यामिति) हैं। समलम्ब(यूके) और ट्रेपेज़ोइड्स(यूएस) में समांतर चतुर्भुज सम्मिलित हैं।
  • समद्विबाहु ट्रेपेज़ियम(यूके) या [[समद्विबाहु ट्रेपेज़ॉइड]](यूएस): विपरीत भुजाओं का एक जोड़ा समानांतर होता है और आधार कोण माप में बराबर होते हैं। वैकल्पिक परिभाषाएँ समरूपता के अक्ष के साथ एक चतुर्भुज हैं जो विपरीत भुजाओ के एक जोड़े को द्विभाजित करती हैं, या समान लंबाई के विकर्णों के साथ एक चतुर्भुज हैं।
  • समांतर चतुर्भुज: समानांतर भुजाओं के दो युग्मों वाला चतुर्भुज। समतुल्य स्थितियाँ हैं कि विपरीत भुजाएँ समान लंबाई की हों; सम्मुख कोण बराबर होते हैं; या यह कि विकर्ण एक दूसरे को समद्विभाजित करते हैं। समांतर चतुर्भुजों में सम्मिलित हैं समचतुर्भुज(उन आयतों सहित जिन्हें वर्ग कहा जाता है) और विषमचतुर्भुज(उन आयतों सहित जिन्हें आयताकार कहा जाता है)। दूसरे शब्दों में, समांतर चतुर्भुज में सभी समचतुर्भुज और सभी समचतुर्भुज सम्मिलित होते हैं, और इस प्रकार इसमें सभी आयत भी सम्मिलित होते हैं।
  • समचतुर्भुज, समचतुर्भुज:[1]चारों भुजाएँ समान लंबाई(समबाहु) की हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को लंब-समद्विभाजित करते हैं। अनौपचारिक रूप से: वर्ग एक समचतुर्भुज(लेकिन दृढ़ता से एक वर्ग भी सम्मिलित है)है।
  • समचतुर्भुज: एक समांतर चतुर्भुज जिसमें आसन्न भुजाएँ असमान लंबाई की होती हैं, और कुछ कोण तिर्यक होते है(समतुल्य,कोई समकोण नहीं होता है)। अनौपचारिक रूप से: एक समचतुर्भुज आयताकार है। सभी संदर्भ सहमत नहीं हैं, कुछ समचतुर्भुज को समांतर चतुर्भुज के रूप में परिभाषित करते हैं जो एक समचतुर्भुज नहीं है।[4]
  • आयत: चारों कोण समकोण(समकोणीय) होते हैं। समतुल्य स्थिति यह है कि विकर्ण एक दूसरे को समद्विभाजित करते हैं और लंबाई में बराबर होते हैं। आयतों में वर्ग और आयताकार सम्मिलित हैं। अनौपचारिक रूप से: एक बॉक्स या आयताकार(एक वर्ग सहित)।
  • वर्ग(नियमित चतुर्भुज): चारों भुजाएँ समान लंबाई(समबाहु) की होती हैं, और चारों कोण समकोण होते हैं। एक समतुल्य स्थिति यह है कि विपरीत भुजाएं समानांतर होती हैं(एक वर्ग एक समांतर चतुर्भुज होता है), और यह कि विकर्ण लंबवत रूप से एक दूसरे को समद्विभाजित करते हैं और समान लंबाई के होते हैं। एक चतुर्भुज एक वर्ग है यदि और केवल यदि यह एक समचतुर्भुज और एक आयत दोनों है(अर्थात्, चार समान भुजाएँ और चार समान कोण)।
  • आयताकार: चौडाई से लंबा, या लंबाई से चौड़ा(यानी, एक आयत जो वर्ग नहीं है)।[5]
  • काइट(ज्यामिति): आसन्न भुजाओं के दो जोड़े समान लंबाई के होते हैं। इसका तात्पर्य यह है कि एक विकर्ण पतंग को सर्वांगसम त्रिभुजो में विभाजित करता है, और इसलिए समान भुजाओं के दो युग्मों के बीच के कोण माप में बराबर होते हैं। इसका तात्पर्य यह भी है कि विकर्ण लंबवत हैं। पतंग में समचतुर्भुज सम्मिलित है।

Quadrilaterals.svg

  • स्पर्शरेखा चतुर्भुज: चार भुजाएँ एक उत्कीर्ण वृत्त की स्पर्शरेखाएँ हैं। एक उत्तल चतुर्भुज स्पर्शरेखीय होता है यदि और केवल यदि विपरीत भुजाओं का योग बराबर हो।
  • स्पर्शरेखा ट्रेपेज़ॉइड: एक ट्रेपेज़ॉइड जहाँ चारों भुजाएँ एक उत्कीर्ण वृत्त की स्पर्शरेखाएँ होती हैं।
  • चक्रीय चतुर्भुज: चारों शीर्ष एक परिबद्ध वृत्त पर स्थित होते हैं। एक उत्तल चतुर्भुज चक्रीय होता है यदि और केवल यदि सम्मुख कोणों का योग 180° हो।
  • दाहिनी पतंग: एक पतंग जिसमे दो विपरीत समकोण होते है। यह एक प्रकार का चक्रीय चतुर्भुज है।
  • संगत चतुर्भुज: सम्मुख स्थित सिरों की लंबाई के गुणनफल बराबर होते हैं। यह एक प्रकार का चक्रीय चतुर्भुज है।
  • द्विकेंद्रित चतुर्भुज: यह स्पर्शरेखा और चक्रीय दोनों है।
  • समकोणीय चतुर्भुज: विकर्ण समकोण पर एक दूसरे को काटते हैं।
  • समबाहु चतुर्भुज: विकर्ण समान लंबाई के होते हैं।
  • पूर्व-स्पर्शरेखा चतुर्भुज: भुजाओ के चार आयतन एक बहिर्वृत्त के स्पर्शरेखा हैं।
  • समबाहु चतुर्भुज की दो विपरीत समान भुजाएँ होती हैं जिन्हें बढ़ाने पर वे 60° पर मिलती हैं।
  • वाट चतुर्भुज एक ऐसा चतुर्भुज है जिसमें समान लंबाई की विपरीत भुजाओं का युग्म होता है।[6]
  • चतुर्भुज एक उत्तल चतुर्भुज होता है जिसके चारों शीर्ष एक वर्ग की परिधि पर स्थित होते हैं।[7]
  • व्यासयुक्त चतुर्भुज एक चक्रीय चतुर्भुज होता है जिसकी एक भुजा परिवृत्त के व्यास के रूप में होती है।[8]
  • जेल्म्सलेव चतुर्भुज एक ऐसा चतुर्भुज होता है जिसके दो समकोण विपरीत शीर्षों पर होते हैं।[9]

अवतल चतुर्भुज

  • अवतल चतुर्भुज में, एक आंतरिक कोण 180° से बड़ा होता है, और दो विकर्णों में से एक चतुर्भुज के बाहर स्थित होता है।
  • एक शंकु(या तीर का सिरा) पतंग की तरह द्विपक्षीय समरूपता के साथ एक अवतल बहुभुज चतुर्भुज है, लेकिन जहां एक आंतरिक कोण प्रतिवर्त होता है। पतंग(ज्यामिति) देखें।

जटिल चतुर्भुज

एक प्रतिसमांतर चतुर्भुज

स्व-प्रतिच्छेदी चतुर्भुज को विभिन्न प्रकार से एक रेखित-चतुर्भुज, रेखित चतुर्भुज, तितली चतुर्भुज या बो टाई चतुर्भुज कहा जाता है। एक रेखित किए गए चतुर्भुज में, रेखित के दोनों तरफ चार आंतरिक कोण(दो न्यून कोण और दो प्रतिबिंब कोण, सभी बाईं ओर या सभी दाईं ओर जैसा कि आकृति का पता लगाया गया है) 720 डिग्री तक जोड़ते हैं।[10]

  • समद्विबाहु ट्रेपेज़ॉइड(यूएस) या समलम्ब(कॉमनवेल्थ):[11] एक रेखित किया हुआ चतुर्भुज जिसमें एक जोड़ी असन्निकट भुजाएँ समानांतर होती हैं(एक समलम्ब की तरह)
  • प्रतिसमांतर चतुर्भुज: एक रेखित किया हुआ चतुर्भुज जिसमें असन्निकट भुजाओं के प्रत्येक जोड़े की लंबाई समान होती है(एक समांतर चतुर्भुज की तरह)
  • रेखित किया हुआ आयत: एक प्रतिसमांतर चतुर्भुज जिसकी भुजाएँ दो विपरीत भुजाएँ होती हैं और एक आयत के दो विकर्ण होते हैं, इसलिए समानांतर विपरीत भुजाओं का एक युग्म होता है
  • रेखित वर्ग: एक रेखित आयत की एक विशेष स्थिति जहां दो भुजा समकोण पर प्रतिच्छेद करते हैं

विशेष रेखा खंड

उत्तल चतुर्भुज के दो विकर्ण रेखा खंड होते हैं जो विपरीत शीर्षों को जोड़ते हैं।

एक उत्तल चतुर्भुज की दो द्विमाध्यिकाएं वे रेखाखंड होते हैं जो विपरीत भुजाओं के मध्यबिंदुओं को जोड़ते हैं।[12] वे चतुर्भुज के ''शीर्ष केन्द्रक'' पर प्रतिच्छेद करते हैं(नीचे एक उत्तल चतुर्भुज मे § उल्लेखनीय बिन्दु और रेखाएं देखें)।

एक उत्तल चतुर्भुज के चार कोण एक तरफ के लंबवत होते हैं-विपरीत दिशा के मध्य बिंदु से होकर।[13]


एक उत्तल चतुर्भुज का क्षेत्रफल

उत्तल चतुर्भुज ABCD के भुजाओ a = AB, b = BC, c = CD and d = DA क्षेत्रफल K के लिए विभिन्न सामान्य सूत्र हैं

त्रिकोणमितीय सूत्र

क्षेत्र को त्रिकोणमितीय शब्दों में व्यक्त किया जा सकता है[14]

जहां विकर्णों की लंबाई p तथा q है और उनके बीच का कोण θ है। [15] एक समकोणीय चतुर्भुज(जैसे समचतुर्भुज, वर्ग और पतंग) की स्थितियों में, यह सूत्र कम हो जाता है चूंकि θ 90° है।

क्षेत्र को द्विमाध्यकों के रूप में भी व्यक्त किया जा सकता है[16]:

जहां द्विमाध्यिका की लंबाई m तथा n है और उनके बीच का कोण φ है।

ब्रेटश्राइडर का सूत्र[17][14] भुजाओं और दो विपरीत कोणों के संदर्भ में क्षेत्र को व्यक्त करता है:

जहाँ क्रम में भुजाएँ a, b, c, d है, जहाँ s अर्धपरिधि है, और A तथा C दो(वास्तव में, कोई भी दो) विपरीत कोण हैं। यह चक्रीय चतुर्भुज के क्षेत्र के लिए ब्रह्मगुप्त के सूत्र को कम करता है - जब A + C = 180° .

कोण के साथ भुजाओं और कोणों के संदर्भ में एक अन्य क्षेत्र सूत्र C भुजाओ के बीच b तथा c के बीच है, तथा A भुजाओ a तथा d के बीच है

चक्रीय चतुर्भुज के स्थितियों में, बाद वाला सूत्र बन जाता है

समांतर चतुर्भुज में, जहाँ विपरीत भुजाओं और कोणों के दोनों युग्म बराबर होते हैं, यह सूत्र कम हो जाता है

वैकल्पिक रूप से, हम क्षेत्रफल को भुजाओं और प्रतिच्छेदन कोण θ के रूप में लिख सकते हैं विकर्णों, जब तक कि लंबाई θ नहीं 90° है:[18]

समांतर चतुर्भुज के स्थितियों में, बाद वाला सूत्र बन जाता है

भुजाओ सहित एक अन्य क्षेत्र सूत्र a, b, c, d है[16]

जहाँ x विकर्णों के मध्य बिंदुओं के बीच की दूरी है, और φ द्विमाध्यको के बीच का कोण है।

भुजाओ a, b, c, d और कोण α(के बीच a तथा b के बीच) सहित अंतिम त्रिकोणमिति क्षेत्रसूत्र है:[19]

जिसका उपयोग अवतल चतुर्भुज के क्षेत्र के लिए भी किया जा सकता है(अवतल भाग कोण के विपरीत होता है α), केवल पहला चिह्न को + से - मे बदलकर।

गैर-त्रिकोणमितीय सूत्र

निम्नलिखित दो सूत्र भुजाओ a, b, c तथा d, अर्धपरिधि s, और विकर्ण p, q के संदर्भ में क्षेत्र को व्यक्त करते हैंː

[20]
[21]

तब से चक्रीय चतुर्भुज स्थितियों में पहला ब्रह्मगुप्त के सूत्र को कम करता है तब से pq = ac + bd.

क्षेत्र को द्विमाध्यकों m, n और विकर्ण p, q के संदर्भ में भी व्यक्त किया जा सकता हैː

[22]
[23]: Thm. 7 

वास्तव में, चार मूल्यों में से कोई तीन m, n, p, तथा q क्षेत्र के निर्धारण के लिए पर्याप्त है, क्योंकि किसी भी चतुर्भुज में चार मान इससे संबंधित होते हैं [24]: p. 126  संगत भाव हैं:[25]

यदि दो द्विमाध्यिकाओं और एक विकर्ण की लंबाई दी गई हो, और[25]
यदि दो विकर्णों और एक द्विमाध्यिका की लंबाई दी गई हो।

वेक्टर सूत्र

एक चतुर्भुज का क्षेत्रफल ABCD वेक्टर(ज्यामितीय) का उपयोग करके गणना की जा सकती है। मान ले वैक्टर AC तथा BD से A से C और यहां ये B से D विकर्ण बनाते है। तब चतुर्भुज का क्षेत्रफल है

जो वेक्टर के रेखित गुणनफल का आधा परिमाण AC तथा BD है। द्वि-आयामी यूक्लिडियन समष्टि में, वेक्टर AC को कार्टेशियन समष्टि मुक्त वेक्टर के रूप में व्यक्त करते हुए (x1,y1) तथा BD को (x2,y2) के रूप मे व्यक्त करते हुए, इसे फिर से लिखा जा सकता है:

विकर्ण

चतुर्भुज में विकर्णों के गुण

निम्न तालिका में यह सूचीबद्ध है कि क्या कुछ अधिकांश मूल रूप से चतुर्भुजों में विकर्ण एक दूसरे को द्विभाजित करते हैं, यदि उनके विकर्ण लंबवत हैं, और यदि उनके विकर्णों की लंबाई समान है।[26] सूची सबसे सामान्य स्थितियो पर लागू होती है, और नामित उप-समुच्चय को बाहर करती है।

चतुर्भुज समद्विभाजक विकर्ण लम्बवत्त विकर्ण समान विकर्ण
समलंब नहीं नोट 1 देखें नहीं
समद्विबाहु समलंब नहीं नोट 1 देखें हाँ
समांतर चतुर्भुज हाँ नहीं नहीं
पतंग नोट 2 देखें हाँ नोट 2 देखें
आयात हाँ नहीं हाँ
समचतुर्भुज हाँ हाँ नहीं
वर्ग हाँ हाँ हाँ

नोट 1: सबसे सामान्य समलंब चतुर्भुज और समद्विबाहु समलम्ब चतुर्भुज में लंबवत विकर्ण नहीं होते हैं, लेकिन अनंत संख्या में(गैर-समान) समलंब और समद्विबाहु समलम्बाकार होते हैं जिनमें लंबवत विकर्ण होते हैं और कोई अन्य नामित चतुर्भुज नहीं होते हैं।

नोट 2: एक पतंग में, एक विकर्ण दूसरे को समद्विभाजित करता है। सबसे सामान्य पतंग में असमान विकर्ण होते हैं, लेकिन अनंत संख्या में(गैर-समान) पतंगें होती हैं जिनमें विकर्ण लंबाई में समान होते हैं(और पतंग कोई अन्य नामित चतुर्भुज नहीं होते हैं)।

विकर्णों की लंबाई

उत्तल चतुर्भुज ABCD में विकर्णों की लंबाई की गणना चतुर्भुज के एक विकर्ण और दो भुजाओं द्वारा निर्मित प्रत्येक त्रिभुज पर कोसाइन के नियम का उपयोग करके की जा सकती है। इस प्रकार

तथा

अन्य, विकर्णों की लंबाई के लिए अधिक सममित सूत्र हैं[27]

तथा

समांतर चतुर्भुज नियम और टॉलेमी के प्रमेय का सामान्यीकरण

किसी भी उत्तल चतुर्भुज ABCD में, चारों भुजाओं के वर्गों का योग दो विकर्णों के वर्गों के योग के बराबर होता है और विकर्णों के मध्य बिंदुओं को जोड़ने वाले रेखा खंड के वर्ग का चार गुना होता है। इस प्रकार

जहाँ x विकर्णों के मध्य बिन्दुओं के बीच की दूरी है।[24]: p.126  इसे कभी-कभी यूलर के चतुर्भुज प्रमेय के रूप में जाना जाता है और यह समांतर चतुर्भुज नियम का सामान्यीकरण है।

जर्मन गणितज्ञ कार्ल एंटोन ब्रेटश्राइडर ने 1842 में उत्तल चतुर्भुज में विकर्णों के गुणनफल के संबंध में टॉलेमी के प्रमेय के निम्नलिखित सामान्यीकरण को व्युत्पन्न किया था।[28]

इस संबंध को एक चतुर्भुज के लिए कोसाइन का नियम माना जा सकता है। एक चक्रीय चतुर्भुज में, जहाँ A + C = 180°, यह घटकर pq = ac + bd हो जाता है। चूँकि cos(A + C) ≥ −1, यह टॉलेमी की असमानता का प्रमाण भी देता है।

अन्य मीट्रिक संबंध

यदि X और Y एक उत्तल चतुर्भुज ABCD मे भुजाओ b और d से विकर्ण ac = p के मानक के चरण a = ab, b = bc, c = cd , d = da है तो[29]: p.14 

एक उत्तल चतुर्भुज ABCD में जिसकी भुजाएँ a = AB, b = BC, c = CD, d = DA है, और जहाँ विकर्ण E पर प्रतिच्छेद करते हैं,

जहां e = AE, f = BE, g = CE, और h = DE.[30]

एक उत्तल चतुर्भुज का आकार और माप को पूरी तरह से क्रम में इसकी भुजाओं की लंबाई और दो निर्दिष्ट शीर्षों के बीच एक विकर्ण द्वारा निर्धारित किया जाता है। एक चतुर्भुज के दो विकर्ण p, q और चारों भुजाओं की लंबाई a, b, c, d[14]केली-मेंजर निर्धारक द्वारा संबंधित इस प्रकार है:

कोण द्विभाजक

उत्तल चतुर्भुज के आंतरिक कोण समद्विभाजक या तो एक चक्रीय चतुर्भुज बनाते हैं[24]: p.127 (अर्थात, आसन्न कोण समद्विभाजक के चार प्रतिच्छेदन बिंदु संचक्रीय होते हैं) या वे समवर्ती रेखाएँ हैं। बाद की स्थितियों में चतुर्भुज एक स्पर्शरेखा चतुर्भुज है।

चतुर्भुज ABCD में, यदि A और C के कोणों का समद्विभाजक विकर्ण BD पर मिलते है, तो B और D के कोण समद्विभाजक विकर्ण AC पर मिलते हैं।[31]

द्विमाध्यिका

वैरिग्नन समांतर चतुर्भुज EFGH

किसी चतुर्भुज केद्विमाध्यिकाएँ विपरीत भुजाओं के मध्यबिंदुओं को जोड़ने वाले रेखाखंड होते हैं। द्विमाध्यिकाओं का प्रतिच्छेदन चतुर्भुज के शीर्षों का केन्द्रक होता है।[14]

किसी भी चतुर्भुज(उत्तल, अवतल या रेखित ) की भुजाओं के मध्य बिंदु एक समांतर चतुर्भुज के शीर्ष होते हैं जिन्हें वेरिग्नॉन प्रमेय कहा जाता है। इसके निम्नलिखित गुण हैं:

  • वैरिग्नॉन समांतर चतुर्भुज के विपरीत भुजाओ की प्रत्येक जोड़ी मूल चतुर्भुज में एक विकर्ण के समानांतर होती है।
  • वरिग्नन समांतर चतुर्भुज का एक भुजा मूल चतुर्भुज में विकर्ण के बराबर लंबा होता है, जिसके समानांतर होता है।
  • वैरिग्नन समांतर चतुर्भुज का क्षेत्रफल मूल चतुर्भुज के आधे क्षेत्रफल के बराबर होता है। यह उत्तल, अवतल और रेखित चतुर्भुज के लिए सही है, परंतु बाद वाले का क्षेत्रफल दो त्रिभुजों के क्षेत्रों के अंतर के रूप में परिभाषित किया गया हो।[32]
  • वैरिग्नन समांतर चतुर्भुज का परिमाप मूल चतुर्भुज के विकर्णों के योग के बराबर होता है।
  • वैरिग्नन समांतर चतुर्भुज के विकर्ण मूल चतुर्भुज के द्विमाध्यक हैं।
  • किसी चतुर्भुज में दो द्विमाध्यिकाएँ और उस चतुर्भुज में विकर्णों के मध्यबिंदुओं को मिलाने वाला रेखाखंड समवर्ती रेखाएँ होती हैं और सभी अपने प्रतिच्छेदन बिंदु द्वारा द्विभाजित होती हैं।[24]: p.125 
  • भुजाओ a, b, c और d के साथ एक उत्तल चतुर्भुज में, भुजाओ के मध्य बिंदुओं a और c को जोड़ने वाली द्विमाध्यिका की लंबाई है

जहाँ p और q विकर्णों की लंबाई हैं।[33] भुजाओं b और d के मध्यबिंदुओं को जोड़ने वाली द्विमाध्यिका की लंबाई है

अत[24]: p.126 

यह वैरिग्नन समांतर चतुर्भुज में लागू समांतर चतुर्भुज नियम का एक परिणाम भी है।

द्विमाध्यकों की लंबाई को दो विपरीत भुजाओं और विकर्णों के मध्यबिंदुओं के बीच की दूरी x के रूप में भी व्यक्त किया जा सकता है। उपरोक्त सूत्रों में यूलर के चतुर्भुज प्रमेय का उपयोग करते समय यह संभव है। जहां से[23]:

तथा

ध्यान दें कि इन सूत्रों में दो विपरीत भुजा वे दो नहीं हैं जिन्हें द्विमाध्यिका जोड़ती है।

एक उत्तल चतुर्भुज में, द्विमाध्यकों और विकर्णों के बीच निम्नलिखित द्वैत(गणित) संबंध होता है:[29]

  • दो द्विमाध्यकों की लंबाई समान होती है यदि और केवल यदि दो विकर्ण लंबवत हों।
  • दो द्विमाध्यिकाएँ लंबवत होते हैं यदि और केवल यदि दो विकर्णों की लंबाई समान हो।

त्रिकोणमितीय पहचान

एक सरल चतुर्भुज ABCD के चारों कोण निम्नलिखित सर्वसमिकाओं को स्वीकार करते हैं:[34]

तथा

भी,[35]

अंतिम दो सूत्रों में, किसी भी कोण को समकोण होने की अनुमति नहीं है, क्योंकि tan 90° परिभाषित नहीं है।

मान ले , , , उत्तल चतुर्भुज की भुजाएँ हों, अर्द्धपरिधि है,

तथा तथा विपरीत कोण हैं, तो[36]

तथा

.

हम इन सर्वसमिकाओं का उपयोग ब्रेटश्राइडर के सूत्र को व्युत्पन्न करने के लिए कर सकते हैं।

असमानताएं

क्षेत्र

यदि एक उत्तल चतुर्भुज की लगातार भुजाएँ a, b, c, d और विकर्ण p, q हैं, तो इसका क्षेत्रफल K स्वीकार करता है[37]

समानता के साथ केवल एक आयत के लिए।
समानता के साथ केवल एक वर्ग के लिए।
समानता के साथ केवल तभी जब विकर्ण लंबवत और समान हों।
समानता के साथ केवल एक आयत के लिए।[16]

ब्रेटश्राइडर के सूत्र से यह सामान्य रूप से पता चलता है कि एक चतुर्भुज का क्षेत्रफल स्वीकार करता है

समानता के साथ अगर और केवल अगर चतुर्भुज चक्रीय चतुर्भुज है या अपकृष्ट है कि एक भुजा अन्य तीन के योग के बराबर है(यह एक रेखा खंड मे निपात है, इसलिए क्षेत्र शून्य है)।

किसी चतुर्भुज का क्षेत्रफल भी असमानता को स्वीकार करता है[38]

परिधि को L के रूप मेंचिन्हित करने पर, हमारे पास है[38]: p.114 

समानता के साथ केवल एक वर्ग के स्थितियों में।

एक उत्तल चतुर्भुज का क्षेत्रफल भी स्वीकार करता है

विकर्ण लंबाई p और q के लिए, समानता के साथ यदि और केवल विकर्ण लंबवत हैं।

माना a, b, c, d एक उत्तल चतुर्भुज ABCD की भुजाओं की लंबाई है जिसका क्षेत्रफल K है और विकर्ण AC = p, BD = q है। तब[39]

समानता के साथ केवल एक वर्ग के लिए।

माना a, b, c, d एक उत्तल चतुर्भुज ABCD की भुजाओं की लंबाई है जिसका क्षेत्रफल K है, तो निम्नलिखित असमिका धारण करती है:[40]

समानता के साथ केवल एक वर्ग के लिए।

विकर्ण और द्विमाध्यिका

असमानता यूलर के चतुर्भुज प्रमेय का परिणाम है

जहां समानता धारण करती है यदि और केवल यदि चतुर्भुज एक समांतर चतुर्भुज है।

लियोनहार्ड यूलर ने टॉलेमी के प्रमेय को भी सामान्यीकृत किया, जो उत्तल चतुर्भुज में एक असमानता है, एक चक्रीय चतुर्भुज के लिए एक समानता में। यह प्रकट करता है कि

जहां समानता है यदि और केवल यदि चतुर्भुज चक्रीय है।[24]: p.128–129  इसे प्रायः टॉलेमी की असमानता कहा जाता है।

किसी भी उत्तल चतुर्भुज में द्विमाध्यिकाएँ m, n और विकर्ण p, q असमानता द्वारा संबंधित हैं

समानता धारण के साथ यदि और केवल यदि विकर्ण समान हैं।[41]: Prop.1  यह चतुर्भुज पहचान से सीधे अनुसरण करता है

भुजाएँ

किसी भी चतुर्भुज की भुजाएँ a, b, c और d स्वीकार करती हैं[42]: p.228, #275 

तथा[42]: p.234, #466 

अधिकतम और न्यूनतम गुण

दी गई परिधि वाले सभी चतुर्भुजों में, सबसे बड़े क्षेत्रफल वाला चतुर्भुज वर्ग(ज्यामिति) है। इसे चतुर्भुजों के लिए समपरिमितीय प्रमेय कहा जाता है। यह क्षेत्र असमानता का प्रत्यक्ष परिणाम है[38]: p.114 

जहां K परिमाप L के साथ एक उत्तल चतुर्भुज का क्षेत्रफल है। समानता तब और केवल तभी होती है जब चतुर्भुज एक वर्ग हो। दोहरे प्रमेय में कहा गया है कि किसी दिए गए क्षेत्रफल वाले सभी चतुर्भुजों में, वर्ग की परिधि सबसे छोटी होती है।

दी गई भुजाओं की लंबाई वाला चतुर्भुज जिसमें अधिकतम क्षेत्रफल चक्रीय चतुर्भुज होता है।[43]

दिए गए विकर्णों वाले सभी उत्तल चतुर्भुजों में से, समकोणीय चतुर्भुज का क्षेत्रफल सबसे बड़ा होता है।[38]: p.119  यह इस तथ्य का प्रत्यक्ष परिणाम है कि एक उत्तल चतुर्भुज का क्षेत्रफल स्वीकार करता है

जहाँ θ विकर्णों p और q के बीच का कोण है। समानता धारण करती है यदि और केवल यदि θ = 90°।

यदि पी उत्तल चतुर्भुज ABCD में एक आंतरिक बिंदु है, तो

इस असमानता से यह पता चलता है कि एक चतुर्भुज के अंदर बिंदु जो कि शीर्षों की(ज्यामिति) की दूरियों का योग को कम करता है, विकर्णों का प्रतिच्छेदन है। इसलिए वह बिंदु एक उत्तल चतुर्भुज का फर्मेट बिंदु है।[44]: p.120 

उत्तल चतुर्भुज मे उल्लेखनीय बिन्दु और रेखाएं

चतुर्भुज के केंद्र को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। शीर्ष केन्द्रक चतुर्भुज को शून्य मानने से आता है, लेकिन इसके शीर्षों पर समान द्रव्यमान होता है। भुजा केन्द्रक भुजाओ पर विचार करने से प्रति इकाई लंबाई में निरंतर द्रव्यमान होता है। सामान्य केंद्र, जिसे सिर्फ केन्द्रक(क्षेत्र का केंद्र) कहा जाता है, चतुर्भुज की सतह को स्थिर घनत्व के रूप में मानने से आता है। ये तीन बिंदु सामान्य रूप से एक ही बिंदु नहीं हैं।[45]

शीर्ष केन्द्रक दो रेखा खंडों का प्रतिच्छेदन है।[46] किसी भी बहुभुज की तरह, शीर्ष केन्द्रक के x और y निर्देशांक शीर्षों के x और y निर्देशांक के अंकगणितीय साधन हैं।

चतुर्भुज ABCD के क्षेत्रफल केन्द्रक की रचना निम्न प्रकार से की जा सकती है। माना ga, gb, gc, gd क्रमशः त्रिभुजों BCD, ACD, ABD, ABC के केन्द्रक बनें। तब क्षेत्र केन्द्रक gaGcऔर gbGd.[47] रेखाओं का प्रतिच्छेदन है।

एक सामान्य उत्तल चतुर्भुज ABCD में, त्रिभुज के परिकेन्द्र और लंबकेन्द्र के लिए कोई प्राकृतिक अनुरूपता नहीं होती है। लेकिन ऐसे दो बिंदुओं का निर्माण निम्नलिखित तरीके से किया जा सकता है। चलो Oa, Ob, Oc, Odत्रिभुजों BCD, ACD, ABD, ABC के परिकेन्द्र क्रमशः हों; और Ha, Hb, Hc, Hd समान त्रिभुजों में लंबकेंद्रों द्वारा निरूपित करे। फिर रेखाओं के OaOcऔर ObOd प्रतिच्छेदन को अर्ध-परिकेंद्र जाता है, और रेखाओं का प्रतिच्छेदन HaHcऔर HbHd उत्तल चतुर्भुज का अर्ध-अर्धकेन्द्र कहा जाता है।[47]इन बिंदुओं का उपयोग चतुर्भुज की यूलर रेखा को परिभाषित करने के लिए किया जा सकता है। एक उत्तल चतुर्भुज में, अर्ध-अर्धकेन्द्र H, 'क्षेत्र केन्द्रक' G, और अर्ध-अर्धकेन्द्र O इस क्रम में संरेख हैं, और HG = 2GO।[47]

EaEcऔर ईbEd,रेखाओ के प्रतिच्छेदन के रूप मे क्वासिनीन-बिन्दु केंद्र एको भी परिभाषित किया जा सकता है , जहां Ea, तथा Eb, तथा Ec, तथा Ed क्रमशः त्रिभुज BCD, ACD, ABD, ABC के नौ-बिंदु केंद्र हैं। तब E, OH का मध्यबिंदु है।[47]

उत्तल गैर-समांतर चतुर्भुज में एक और उल्लेखनीय रेखा न्यूटन रेखा है, जो विकर्णों के मध्यबिंदुओं को जोड़ती है, इन बिंदुओं को जोड़ने वाले खंड को शीर्ष केन्द्रक द्वारा द्विभाजित किया जाता है। एक और दिलचस्प रेखा(कुछ अर्थों में न्यूटन रेखा से दोहरी) वह रेखा है जो विकर्णों के प्रतिच्छेदन बिंदु को शीर्ष केन्द्रक से जोड़ती है। रेखा इस तथ्य से उल्लेखनीय है कि इसमें(क्षेत्र) केन्द्रक सम्मिलित है। शीर्ष केन्द्रक विकर्णों के प्रतिच्छेदन और(क्षेत्र)केन्द्रक को 3:1 के अनुपात में जोड़ने वाले खंड को विभाजित करता है।[48]

बिंदु P और Q वाले किसी भी चतुर्भुज ABCD के लिए क्रमशः AD और BC और AB और CD के प्रतिच्छेदन, वृत्त(PAB),(PCD),(QAD), और(QBC) एक सामान्य बिंदु M से होकर गुजरते हैं, जिसे मिकेल बिन्दु कहा जाता है।[49]

उत्तल चतुर्भुज ABCD के लिए जिसमें E विकर्णों का प्रतिच्छेदन बिंदु है और F भुजाओं BC और AD के विस्तार का प्रतिच्छेदन बिंदु है, मान लीजिए ω को E और F से होकर जाने वाला एक वृत्त है जो CB को आंतरिक रूप से M और DA पर मिलता है N पर CA को फिर से L पर मिलने दें और DB को फिर से K पर मिलने दें। फिर वहाँ: सीधी रेखाएँ NK और ML बिंदु P पर प्रतिच्छेद करती हैं जो भुजा AB पर स्थित है; सीधी रेखाएँ NL और KM बिंदु Q पर प्रतिच्छेद करती हैं जो भुजा CD पर स्थित है। बिंदुओं P और Q को भुजाओं AB और CD पर वृत्त ω द्वारा निर्मित "पास्कल बिंदु" कहा जाता है।[50][51][52]

उत्तल चतुर्भुजों के अन्य गुण

  • मान लीजिए कि चतुर्भुज के सभी भुजाओ पर बाहरी वर्ग बनाए जाते हैं। केंद्र(ज्यामिति) को जोड़ने वाले खंड विपरीत वर्गों की सममित वस्तुएं(a) लंबाई में बराबर हैं, और(b) लंबवत हैं। इस प्रकार ये केंद्र एक समकोणीय चतुर्भुज के शीर्ष हैं। इसे वैन औबेल प्रमेय कहा जाता है।
  • दिए गए भुजाओं की लंबाई के साथ किसी भी सरल चतुर्भुज के लिए, समान भुजाओं की लंबाई के साथ एक चक्रीय चतुर्भुज होता है।[43]
  • एक उत्तल चतुर्भुज के विकर्णों और भुजाओं से बने चार छोटे त्रिभुजों में यह गुण होता है कि दो विपरीत त्रिभुजों के क्षेत्रफलों का गुणनफल अन्य दो त्रिभुजों के क्षेत्रफलों के गुणनफल के बराबर होता है।[53]

वर्गीकरण

चतुर्भुजों का वर्गीकरण, हस्से आरेख का उपयोग करते हुए।
चतुर्भुजों का एकश्रेणीबद्ध वर्गीकरण(सामान्य) को दाईं ओर की आकृति द्वारा चित्रित किया गया है। निम्न वर्ग उच्च वर्गों के विशेष स्थितियों हैं जिनसे वे जुड़े हुए हैं। ध्यान दें कि यहाँ ''ट्रेपेज़ॉइड'' उत्तर अमेरिकी परिभाषा(ब्रिटिश समतुल्य एक ट्रेपेज़ियम) की बात कर रहा है। समावेशी परिभाषाओं का उपयोग पूरे समय किया जाता है।

तिरछा चतुर्भुज

चतुर्भुज डिफेनोइड के(लाल) रेखित भुजाए एक नियमित ज़िग-ज़ैग तिरछा चतुर्भुज का प्रतिनिधित्व करते हैं

एक गैर-तलीय चतुर्भुज को तिरछा चतुर्भुज कहा जाता है। भुजाओं की लंबाई से इसके द्वितल कोणों की गणना करने के सूत्र और दो आसन्न भुजाओं के बीच के कोण को अणुओं के गुणों पर काम करने के लिए प्राप्त किया गया था जैसे कि साइक्लोब्यूटेन जिसमें चार परमाणुओं का एक ''संवृत्त हुआ'' वलय होता है।[54] ऐतिहासिक रूप से गौचे चतुर्भुज शब्द का उपयोग तिरछा चतुर्भुज के लिए भी किया जाता था।[55] एक तिरछा चतुर्भुज अपने विकर्णों के साथ एक(संभवतः गैर-नियमित) चतुष्फलक बनाता है, और इसके विपरीत प्रत्येक तिरछा चतुर्भुज एक चतुष्फलक से आता है जहां विपरीत भुजाओं(ज्यामिति) की एक जोड़ी को हटा दिया जाता है।

यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 "चतुर्भुज - वर्गाकार, आयत, समचतुर्भुज, चतुर्भुज, समांतर चतुर्भुज". Mathsisfun.com. Retrieved 2020-09-02.
  2. "एक बहुभुज में कोणों का योग". Cuemath. Retrieved 22 June 2022.
  3. Martin, George Edward (1982), Transformation geometry, Undergraduate Texts in Mathematics, Springer-Verlag, Theorem 12.1, page 120, doi:10.1007/978-1-4612-5680-9, ISBN 0-387-90636-3, MR 0718119
  4. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on May 14, 2014. Retrieved June 20, 2013.
  5. "आयत कैलकुलेटर". Cleavebooks.co.uk. Retrieved 1 March 2022.
  6. Keady, G.; Scales, P.; Németh, S. Z. (2004). "वाट लिंकेज और चतुर्भुज". The Mathematical Gazette. 88 (513): 475–492. doi:10.1017/S0025557200176107. S2CID 125102050.
  7. Jobbings, A. K. (1997). "चतुर्भुज चतुर्भुज". The Mathematical Gazette. 81 (491): 220–224. doi:10.2307/3619199. JSTOR 3619199. S2CID 250440553.
  8. Beauregard, R. A. (2009). "दो समान भुजाओं वाला व्यासीय चतुर्भुज". College Mathematics Journal. 40 (1): 17–21. doi:10.1080/07468342.2009.11922331. S2CID 122206817.
  9. Hartshorne, R. (2005). ज्यामिति: यूक्लिड और परे. Springer. pp. 429–430. ISBN 978-1-4419-3145-0.
  10. "सितारे: एक दूसरा रूप" (PDF). Mysite.mweb.co.za. Archived from the original (PDF) on March 3, 2016. Retrieved March 1, 2022.
  11. Butler, David (2016-04-06). "पार किया हुआ ट्रेपेज़ियम". Making Your Own Sense. Retrieved 2017-09-13.
  12. E.W. Weisstein. "बीआईएम ई-कोड". MathWorld – A Wolfram Web Resource.
  13. E.W. Weisstein. "कुरूपता". MathWorld – A Wolfram Web Resource.
  14. 14.0 14.1 14.2 14.3 Weisstein, Eric W. "चतुष्कोष". mathworld.wolfram.com (in English). Retrieved 2020-09-02.
  15. Harries, J. "Area of a quadrilateral," Mathematical Gazette 86, July 2002, 310–311.
  16. 16.0 16.1 16.2 Josefsson, Martin (2013), "Five Proofs of an Area Characterization of Rectangles" (PDF), Forum Geometricorum, 13: 17–21.
  17. R. A. Johnson, Advanced Euclidean Geometry, 2007, Dover Publ., p. 82.
  18. Mitchell, Douglas W., "The area of a quadrilateral," Mathematical Gazette 93, July 2009, 306–309.
  19. https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-triangleformulae-2009-1.pdf[bare URL PDF]
  20. J. L. Coolidge, "A historically interesting formula for the area of a quadrilateral", American Mathematical Monthly, 46 (1939) 345–347.
  21. E.W. Weisstein. "Bretschneider का सूत्र". MathWorld – A Wolfram Web Resource.
  22. Archibald, R. C., "The Area of a Quadrilateral", American Mathematical Monthly, 29 (1922) pp. 29–36.
  23. 23.0 23.1 Josefsson, Martin (2011), "The Area of a Bicentric Quadrilateral" (PDF), Forum Geometricorum, 11: 155–164.
  24. 24.0 24.1 24.2 24.3 24.4 24.5 Altshiller-Court, Nathan, College Geometry, Dover Publ., 2007.
  25. 25.0 25.1 Josefsson, Martin (2016) ‘100.31 Heron-like formulas for quadrilaterals’, The Mathematical Gazette, 100 (549), pp. 505–508.
  26. "चतुर्भुजों के विकर्ण -- लंब, समद्विभाजक या दोनों". Math.okstate.edu. Retrieved 1 March 2022.
  27. Rashid, M. A. & Ajibade, A. O., "Two conditions for a quadrilateral to be cyclic expressed in terms of the lengths of its sides", Int. J. Math. Educ. Sci. Technol., vol. 34 (2003) no. 5, pp. 739–799.
  28. Andreescu, Titu & Andrica, Dorian, Complex Numbers from A to...Z, Birkhäuser, 2006, pp. 207–209.
  29. 29.0 29.1 Josefsson, Martin (2012), "Characterizations of Orthodiagonal Quadrilaterals" (PDF), Forum Geometricorum, 12: 13–25.
  30. Hoehn, Larry (2011), "A New Formula Concerning the Diagonals and Sides of a Quadrilateral" (PDF), Forum Geometricorum, 11: 211–212.
  31. Leversha, Gerry, "A property of the diagonals of a cyclic quadrilateral", Mathematical Gazette 93, March 2009, 116–118.
  32. H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967, pp. 52–53.
  33. "मैटेस्कु कॉन्स्टेंटिन, 'विकर्ण की असमानता' का उत्तर".
  34. C. V. Durell & A. Robson, Advanced Trigonometry, Dover, 2003, p. 267.
  35. "स्टैनली राबिनोवित्ज़ द्वारा प्रस्तावित मूल समस्याएँ 1963-2005" (PDF). Mathpropress.com. Retrieved March 1, 2022.
  36. "ईए जोस गार्सिया, दो पहचान और उनके परिणाम, MATINF, 6 (2020) 5-11". Matinf.upit.ro. Retrieved 1 March 2022.
  37. O. Bottema, Geometric Inequalities, Wolters–Noordhoff Publishing, The Netherlands, 1969, pp. 129, 132.
  38. 38.0 38.1 38.2 38.3 Alsina, Claudi; Nelsen, Roger (2009), When Less is More: Visualizing Basic Inequalities, Mathematical Association of America, p. 68.
  39. Dao Thanh Oai, Leonard Giugiuc, Problem 12033, American Mathematical Monthly, March 2018, p. 277
  40. Leonard Mihai Giugiuc; Dao Thanh Oai; Kadir Altintas (2018). "उत्तल चतुर्भुज की लंबाई और क्षेत्रफल से संबंधित असमानता" (PDF). International Journal of Geometry. 7: 81–86.
  41. Josefsson, Martin (2014). "समबाहु चतुर्भुज के गुण". Forum Geometricorum. 14: 129–144.
  42. 42.0 42.1 "क्रूक्स मैथेमेटिकोरम में प्रस्तावित असमानताएं (खंड 1, संख्या 1 से खंड 4, संख्या 2 को "यूरेका" के रूप में जाना जाता है)" (PDF). Imomath.com. Retrieved March 1, 2022.
  43. 43.0 43.1 Peter, Thomas, "Maximizing the Area of a Quadrilateral", The College Mathematics Journal, Vol. 34, No. 4 (September 2003), pp. 315–316.
  44. Alsina, Claudi; Nelsen, Roger (2010). आकर्षक सबूत: सुरुचिपूर्ण गणित में एक यात्रा. Mathematical Association of America. pp. 114, 119, 120, 261. ISBN 978-0-88385-348-1.
  45. "एक चतुर्भुज के द्रव्यमान के दो केंद्र". Sites.math.washington.edu. Retrieved 1 March 2022.
  46. Honsberger, Ross, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Math. Assoc. Amer., 1995, pp. 35–41.
  47. 47.0 47.1 47.2 47.3 Myakishev, Alexei (2006), "On Two Remarkable Lines Related to a Quadrilateral" (PDF), Forum Geometricorum, 6: 289–295.
  48. John Boris Miller. "एक चतुर्भुज का केन्द्रक" (PDF). Austmd.org.au. Retrieved March 1, 2022.
  49. Chen, Evan (2016). गणितीय ओलंपियाड में यूक्लिडियन ज्यामिति. Washington, D.C.: Mathematical Association of America. p. 198. ISBN 9780883858394.
  50. David, Fraivert (2019), "Pascal-points quadrilaterals inscribed in a cyclic quadrilateral", The Mathematical Gazette, 103 (557): 233–239, doi:10.1017/mag.2019.54, S2CID 233360695.
  51. David, Fraivert (2019), "A Set of Rectangles Inscribed in an Orthodiagonal Quadrilateral and Defined by Pascal-Points Circles", Journal for Geometry and Graphics, 23: 5–27.
  52. David, Fraivert (2017), "Properties of a Pascal points circle in a quadrilateral with perpendicular diagonals" (PDF), Forum Geometricorum, 17: 509–526.
  53. Josefsson, Martin (2013). "ट्रेपेज़ोइड्स के लक्षण" (PDF). Forum Geometricorum. 13: 23–35.
  54. Barnett, M. P.; Capitani, J. F. (2006). "मॉड्यूलर रासायनिक ज्यामिति और प्रतीकात्मक गणना". International Journal of Quantum Chemistry. 106 (1): 215–227. Bibcode:2006IJQC..106..215B. doi:10.1002/qua.20807.
  55. Hamilton, William Rowan (1850). "दूसरे क्रम की सतहों में "गौचे" बहुभुज के शिलालेख का सम्मान करते हुए चतुर्धातुक विश्लेषण द्वारा प्राप्त कुछ परिणामों पर" (PDF). Proceedings of the Royal Irish Academy. 4: 380–387.


बाहरी संबंध