नतिपरिवर्तन बिन्दु: Difference between revisions

From Vigyanwiki
No edit summary
Line 23: Line 23:


== एक आवश्यक लेकिन पर्याप्त शर्त नहीं ==
== एक आवश्यक लेकिन पर्याप्त शर्त नहीं ==
किसी फलन f के लिए, यदि इसका दूसरा अवकलज {{math|''f{{''}}''(''x'')}} है जो {{math|''x''<sub>0</sub>}} पर मौजूद है और {{math|''x''<sub>0</sub>}} के लिए नति परिवर्तन बिंदु है {{mvar|f}}, तो {{math|1=''f{{''}}''(''x''<sub>0</sub>) = 0}}, लेकिन यह स्थिति एक नति परिवर्तन बिंदु होने के लिए [[पर्याप्त स्थिति]] नहीं है, भले ही किसी आदेश के डेरिवेटिव मौजूद हों। इस मामले में, किसी को विषम क्रम (तीसरे, पांचवें, आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है, तो बिंदु विभक्ति का बिंदु नहीं है, बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में, विभक्ति बिंदु और तरंग बिंदु दोनों को आमतौर पर विभक्ति बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है {{math|1=''x'' = 0}} फलन {{mvar|f}} के द्वारा दिया गया{{math|}} {{math|1=''f''(''x'') = ''x''<sup>4</sup>}}
किसी फलन f के लिए यदि इसका दूसरा अवकलज {{math|''f{{''}}''(''x'')}} है जो {{math|''x''<sub>0</sub>}} पर मौजूद है और {{math|''x''<sub>0</sub>}} के लिए नति परिवर्तन बिंदु है {{mvar|f}}   तो {{math|1=''f{{''}}''(''x''<sub>0</sub>) = 0}}, लेकिन यह स्थिति एक नति परिवर्तन बिंदु होने के लिए [[पर्याप्त स्थिति]] नहीं है, भले ही किसी आदेश के डेरिवेटिव मौजूद हों। इस मामले में किसी को विषम क्रम (तीसरे, पांचवें आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है तो बिंदु विभक्ति का बिंदु नहीं है बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में विभक्ति बिंदु और तरंग बिंदु दोनों को आमतौर पर विभक्ति बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है {{math|1=''x'' = 0}} फलन {{mvar|f}} के द्वारा दिया गया{{math|}} {{math|1=''f''(''x'') = ''x''<sup>4</sup>}}


पूर्ववर्ती अभिकथनों में, यह माना जाता है कि {{mvar|f}} का {{mvar|x}} पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है {{mvar|}}जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है, जिसका अर्थ है कि {{mvar|x}} के एक [[पड़ोस (गणित)]] में {{mvar|x}}.के दोनों ओर {{math|''f{{'}}''(''x'')}} का चिह्न समान है यदि यह चिह्न धनात्मक है, तो बिंदु विभक्ति का एक उभरता हुआ बिंदु है; यदि यह [[ऋणात्मक संख्या|ऋणात्मक]] है, तो बिंदु विभक्ति का गिरता हुआ बिंदु है।
पूर्ववर्ती अभिकथनों में यह माना जाता है कि {{mvar|f}} का {{mvar|x}} पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है {{mvar|}}जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है जिसका अर्थ है कि {{mvar|x}} के एक [[पड़ोस (गणित)]] में {{mvar|x}} के दोनों ओर {{math|''f{{'}}''(''x'')}} का चिह्न समान हैं, यदि यह चिह्न धनात्मक है तो बिंदु विभक्ति का एक उभरता हुआ बिंदु है, यदि यह [[ऋणात्मक संख्या|ऋणात्मक]] है तो बिंदु विभक्ति का गिरता हुआ बिंदु है।


'विभक्ति अंक पर्याप्त स्थिति:'
'विभक्ति अंक पर्याप्त स्थिति:'
Line 36: Line 36:
* यदि {{math|''f{{'}}''(''x'')}} शून्य नहीं है, तो बिंदु विभक्ति का एक गैर-स्थिर बिंदु है
* यदि {{math|''f{{'}}''(''x'')}} शून्य नहीं है, तो बिंदु विभक्ति का एक गैर-स्थिर बिंदु है


विभक्ति का एक स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। अधिक आम तौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है, उसे काठी बिंदु (गणितीय चर्चा) कहा जाता है।
विभक्ति का स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। आमतौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है उसे काठी बिंदु (गणितीय चर्चा) कहा जाता है।


विभक्ति के स्थिर बिंदु का एक उदाहरण बिंदु {{math|(0, 0)}} है y = x3 के ग्राफ पर। स्पर्शरेखा {{mvar|x}}-अक्ष है जो इस बिंदु पर ग्राफ को काटता है।
विभक्ति के स्थिर बिंदु का एक उदाहरण बिंदु {{math|(0, 0)}} है y = x3 के ग्राफ पर स्पर्शरेखा {{mvar|x}}-अक्ष है जो इस बिंदु पर ग्राफ को काटता है।


विभक्ति के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है {{math|(0, 0)}} है  {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}} के ग्राफ पर किसी भी अशून्य {{mvar|a}} के लिए। मूल बिंदु पर स्पर्शरेखा रेखा {{math|''y'' {{=}} ''ax''}} है जो इस बिंदु पर ग्राफ को काटता है।
विभक्ति के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है {{math|(0, 0)}} है  {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}} के ग्राफ पर किसी भी अशून्य {{mvar|a}} के लिए। मूल बिंदु पर स्पर्शरेखा रेखा {{math|''y'' {{=}} ''ax''}} है जो इस बिंदु पर ग्राफ को काटता है।

Revision as of 15:53, 4 December 2022

(0,0) पर एक विभक्ति बिंदु के साथ y = x3 का प्लॉट, जो एक स्थिर बिंदु भी है।
The roots, stationary points, inflection point and concavity of a cubic polynomial x3 − 3x2 − 144x + 432 (black line) and its first and second derivatives (red and blue).

अवकलन गणित और अवकलन ज्यामिति में, एक इंफ्लेक्शन पॉइंट, इंफ्लेक्शन का पॉइंट, फ्लेक्स या इंफ्लेक्शन (ब्रिटिश अंग्रेजी: इन्फ्लेक्शन) चिकने समतल वक्र पर एक बिंदु होता है जिस पर वक्रता परिवर्तन चिन्ह होता हैं। विशेष रूप से किसी फ़ंक्शन के ग्राफ़ के मामले में, यह एक बिंदु है जहां फ़ंक्शन अवतल (अवतल नीचे की ओर) से उत्तल फ़ंक्शन (अवतल ऊपर की ओर) या इसके विपरीत बदलता है।

अवकलनीयता वर्ग के एक फ़ंक्शन के ग्राफ के लिए C2 (f इसका पहला व्युत्पन्न f' और इसका दूसरा व्युत्पन्न f मौजूद है और निरंतर है) स्थिति f=0 का उपयोग एक विभक्ति बिंदु खोजने के लिए भी किया जा सकता है क्योंकि f=0 का एक बिंदु f को धनात्मक मान (अवतल ऊपर की ओर) से ऋणात्मक मान (अवतल नीचे की ओर) या इसके विपरीत f में बदलने के लिए पारित किया जाना चाहिए क्योंकि f'' निरंतर है वक्र का एक विभक्ति बिंदु है जहाँ f=0 और उस बिंदु पर अपना चिह्न बदलता है (धनात्मक से ऋणात्मक या ऋणात्मक से धनात्मक)।[1] एक बिंदु जहां दूसरा व्युत्पन्न गायब हो जाता है, लेकिन इसके संकेत को नहीं बदलता है उसे कभी-कभी लहरदार बिंदु या लहरदार बिंदु कहा जाता है।

बीजगणितीय ज्यामिति में एक विभक्ति बिंदु को बीजगणितीय विविधता के एक नियमित बिंदु के रूप में थोड़ा अधिक सामान्य रूप से परिभाषित किया जाता है जहां स्पर्शरेखा शास्त्रीय बीजगणितीय ज्यामिति कम से कम 3 के क्रम में वक्र से मिलती है और तरंग बिंदु या हाइपरफ्लेक्स को एक बिंदु के रूप में परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 4 के क्रम में वक्र से मिलती है।

परिभाषा

विभेदक ज्यामिति में विभक्ति बिंदु वक्र के बिंदु होते हैं जहाँ वक्रता अपना चिन्ह बदलती है।[2][3] उदाहरण के लिए, अवकलनीय फलन के ग्राफ़ में एक विभक्ति बिंदु होता है (x, f(x)) और यदि इसका प्रथम अवकलज f' का x पर पृथक बिंदु चरम पर होता हैं (यह ऐसा कहने जैसा नहीं है f का चरम है)। यानी कई जगहों पर x एकमात्र बिंदु है जिस पर f' एक (स्थानीय) न्यूनतम या अधिकतम होता है। यदि सभी अति f' पृथक बिंदु हैं, तो विभक्ति बिंदु के ग्राफ पर एक बिंदु है f जिस पर स्पर्शरेखा वक्र को पार करती है।

विभक्ति का गिरता बिंदु एक विभक्ति बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह एक विभक्ति बिंदु है जिसके निकट फलन घट रहा है। विभक्ति का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह एक विभक्ति बिंदु है जिसके निकट फलन बढ़ रहा है।

पैरामीट्रिक समीकरणों द्वारा दिए गए एक चिकने वक्र के लिए बिंदु एक विभक्ति बिंदु है यदि इसकी हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है अर्थात चिह्न परिवर्तन होता है।

एक चिकने वक्र के लिए जो दो बार अलग-अलग फ़ंक्शन का ग्राफ़ है, विभक्ति बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है।

बीजगणितीय ज्यामिति में, यदि बीजगणितीय वक्र का गैर-एकवचन बिंदु एक विभक्ति बिंदु होता है और केवल स्पर्श रेखा और वक्र (स्पर्शरेखा के बिंदु पर) की प्रतिच्छेदन संख्या 2 से अधिक हो। इस भिन्न परिभाषा की मुख्य प्रेरणा यह है कि अन्यथा किसी वक्र के विभक्ति बिंदुओं का समुच्चय बीजगणितीय समुच्चय नहीं होगा। वास्तव में एक समतल बीजगणितीय वक्र के विभक्ति बिंदुओं का समुच्चय ठीक इसके गैर-एकवचन बिंदु होते हैं जो इसकी प्रक्षेपी पूर्णता के हेस्सियन निर्धारक के शून्य होते हैं।

f(x) = sin(2x) का आलेख -π/4 से 5π/4 तक; दूसरा व्युत्पन्न है f″(x) = –4sin(2x), और इसका चिन्ह इस प्रकार f के चिह्न के विपरीत है। स्पर्शरेखा नीला है जहां वक्र उत्तल कार्य है (अपनी स्वयं की स्पर्श रेखा के ऊपर), हरा जहां अवतल है (इसकी स्पर्शरेखा के नीचे), और विभक्ति बिंदुओं पर लाल: 0, π/2 और π

एक आवश्यक लेकिन पर्याप्त शर्त नहीं

किसी फलन f के लिए यदि इसका दूसरा अवकलज f″(x) है जो x0 पर मौजूद है और x0 के लिए नति परिवर्तन बिंदु है f तो f″(x0) = 0, लेकिन यह स्थिति एक नति परिवर्तन बिंदु होने के लिए पर्याप्त स्थिति नहीं है, भले ही किसी आदेश के डेरिवेटिव मौजूद हों। इस मामले में किसी को विषम क्रम (तीसरे, पांचवें आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है तो बिंदु विभक्ति का बिंदु नहीं है बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में विभक्ति बिंदु और तरंग बिंदु दोनों को आमतौर पर विभक्ति बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है x = 0 फलन f के द्वारा दिया गया f(x) = x4

पूर्ववर्ती अभिकथनों में यह माना जाता है कि f का x पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है जिसका अर्थ है कि x के एक पड़ोस (गणित) में x के दोनों ओर f'(x) का चिह्न समान हैं, यदि यह चिह्न धनात्मक है तो बिंदु विभक्ति का एक उभरता हुआ बिंदु है, यदि यह ऋणात्मक है तो बिंदु विभक्ति का गिरता हुआ बिंदु है।

'विभक्ति अंक पर्याप्त स्थिति:'

  1. मामले में विभक्ति के बिंदु के लिए पर्याप्त अस्तित्व की स्थिति f(x) है k एक बिंदु के एक निश्चित पड़ोस में बार-बार अलग-अलग x0 साथ k विषम और k ≥ 3, क्या वह f(n)(x0) = 0 के लिये n = 2, ..., k − 1 तथा f(k)(x0) ≠ 0. फिर f(x) पर मोड़ का एक बिंदु है x0.
  2. एक और अधिक सामान्य पर्याप्त अस्तित्व की स्थिति की आवश्यकता है f″(x0 + ε) तथा f″(x0ε) के पड़ोस में विपरीत चिन्ह होनाx0 (ब्रोंशेटिन और सेमेंदयेव 2004, पृष्ठ 231)।

विभक्ति के बिंदुओं का वर्गीकरण

y = x4x का बिंदु (0,0) पर शून्य का दूसरा व्युत्पन्न है लेकिन यह एक विभक्ति बिंदु नहीं है क्योंकि चौथा व्युत्पन्न पहला उच्च क्रम गैर-शून्य व्युत्पन्न है (तीसरा व्युत्पन्न भी शून्य है)।

विभक्ति के बिंदुओं को इस आधार पर भी वर्गीकृत किया जा सकता है कि f'(x) शून्य या अशून्य है।

  • यदि f'(x) शून्य है, तो बिंदु विभक्ति का एक स्थिर बिंदु है
  • यदि f'(x) शून्य नहीं है, तो बिंदु विभक्ति का एक गैर-स्थिर बिंदु है

विभक्ति का स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। आमतौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है उसे काठी बिंदु (गणितीय चर्चा) कहा जाता है।

विभक्ति के स्थिर बिंदु का एक उदाहरण बिंदु (0, 0) है y = x3 के ग्राफ पर स्पर्शरेखा x-अक्ष है जो इस बिंदु पर ग्राफ को काटता है।

विभक्ति के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है (0, 0) है y = x3 + ax के ग्राफ पर किसी भी अशून्य a के लिए। मूल बिंदु पर स्पर्शरेखा रेखा y = ax है जो इस बिंदु पर ग्राफ को काटता है।

विच्छिन्नता के साथ कार्य

कुछ कार्य विभक्ति के बिंदुओं के बिना अवतलता को बदलते हैं। इसके बजाय, वे ऊर्ध्वाधर स्पर्शोन्मुख या विच्छिन्नता के आसपास अवतलता को बदल सकते हैं। उदाहरण के लिए, समारोह ऋणात्मक x के लिए अवतल और धनात्मक x के लिए उत्तल है लेकिन इसमें विभक्ति का कोई बिंदु नहीं है क्योंकि 0 फलन के क्षेत्र में नहीं है।

विभक्ति बिंदुओं के साथ कार्य जिसका दूसरा व्युत्पन्न गायब नहीं होता है

कुछ निरंतर कार्यों में एक विभक्ति बिंदु होता है भले ही दूसरा व्युत्पन्न कभी भी 0 न हो। उदाहरण के लिए, क्यूब रूट फ़ंक्शन x ऋणात्मक होने पर ऊपर की ओर अवतल होता है और x धनात्मक होने पर नीचे की ओर अवतल होता है लेकिन मूल पर किसी भी क्रम का कोई व्युत्पन्न नहीं होता है।

यह भी देखें

संदर्भ

  1. Stewart, James (2015). गणना (8 ed.). Boston: Cengage Learning. p. 281. ISBN 978-1-285-74062-1.
  2. गणितीय विश्लेषण में समस्याएं. Baranenkov, G. S. Moscow: Mir Publishers. 1976 [1964]. ISBN 5030009434. OCLC 21598952.{{cite book}}: CS1 maint: others (link)
  3. Bronshtein; Semendyayev (2004). गणित की पुस्तिका (4th ed.). Berlin: Springer. p. 231. ISBN 3-540-43491-7.


स्रोत

श्रेणी:अंतर कलन श्रेणी:विभेदक ज्यामिति श्रेणी:विश्लेषणात्मक ज्यामिति श्रेणी:वक्र