नतिपरिवर्तन बिन्दु: Difference between revisions
No edit summary |
|||
Line 14: | Line 14: | ||
नति परिवर्तन का गिरता बिंदु एक नति परिवर्तन बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन घट रहा है। नति परिवर्तन का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन बढ़ रहा है। | नति परिवर्तन का गिरता बिंदु एक नति परिवर्तन बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन घट रहा है। नति परिवर्तन का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन बढ़ रहा है। | ||
[[Index.php?title=पैरामीट्रिक समीकरणों|पैरामीट्रिक समीकरणों]] द्वारा दिए गए एक चिकने वक्र के लिए | [[Index.php?title=पैरामीट्रिक समीकरणों|पैरामीट्रिक समीकरणों]] द्वारा दिए गए एक चिकने वक्र के लिए नति परिवर्तन बिंदु है यदि इसकी हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है अर्थात चिह्न परिवर्तन होता है। | ||
एक चिकने वक्र के लिए जो दो बार अलग-अलग फलन का ग्राफ़ है, नति परिवर्तन बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है। | एक चिकने वक्र के लिए जो दो बार अलग-अलग फलन का ग्राफ़ है, नति परिवर्तन बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है। |
Revision as of 00:04, 5 December 2022
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (July 2013) (Learn how and when to remove this template message) |
![](https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/X_cubed_plot.svg/langen-gb-300px-X_cubed_plot.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Cubic_graph_special_points.svg/langen-gb-272px-Cubic_graph_special_points.svg.png)
अवकलन गणित और अवकलन ज्यामिति में, एक नति परिवर्तन बिंदु , नति परिवर्तन का बिंदु फ्लेक्स(बल) या नति परिवर्तन (ब्रिटिश अंग्रेजी: इन्फ्लेक्शन) समतल वक्र पर एक बिंदु होता है जिस पर वक्रता परिवर्तन चिन्ह होता हैं। विशेष रूप से किसी फलन के ग्राफ़ के मामले में, यह एक बिंदु है जहां फलन अवतल (अवतल नीचे की ओर) से उत्तल फलन (अवतल ऊपर की ओर) या इसके विपरीत बदलता है।
अवकलनीयता वर्ग के एक फलन के ग्राफ के लिए C2 (f इसका पहला व्युत्पन्न f' और इसका दूसरा व्युत्पन्न f मौजूद है और निरंतर है) स्थिति f=0 का उपयोग नति परिवर्तन बिंदु खोजने के लिए भी किया जा सकता है क्योंकि f=0 का एक बिंदु f को धनात्मक मान (अवतल ऊपर की ओर) से ऋणात्मक मान (अवतल नीचे की ओर) या इसके विपरीत f में बदलने के लिए पारित किया जाना चाहिए क्योंकि f'' निरंतर है वक्र का नति परिवर्तन बिंदु है जहाँ f=0 और उस बिंदु पर अपना चिह्न बदलता है (धनात्मक से ऋणात्मक या ऋणात्मक से धनात्मक)।[1] एक बिंदु जहां दूसरा व्युत्पन्न गायब हो जाता है, लेकिन इसके संकेत को नहीं बदलता है उसे कभी-कभी तरंगों का बिंदु या तरंग बिंदु कहा जाता है।
बीजगणितीय ज्यामिति में नति परिवर्तन बिंदु को बीजगणितीय विविधता के एक नियमित बिंदु के रूप में थोड़ा अधिक सामान्य रूप से परिभाषित किया जाता है जहां स्पर्शरेखा शास्त्रीय बीजगणितीय ज्यामिति कम से कम 3 के क्रम में वक्र से मिलती है और तरंग बिंदु या हाइपरफ्लेक्स को एक बिंदु के रूप में परिभाषित किया जाता है जहां स्पर्शरेखा कम से कम 4 के क्रम में वक्र से मिलती है।
परिभाषा
विभेदक ज्यामिति में नति परिवर्तन बिंदु वक्र के बिंदु होते हैं जहाँ वक्रता अपना चिन्ह बदलती है।[2][3] उदाहरण के लिए, अवकलनीय फलन के ग्राफ़ में नति परिवर्तन बिंदु होता है (x, f(x)) और यदि इसका प्रथम अवकलज f' का x पर पृथक बिंदु चरम पर होता हैं (यह ऐसा कहने जैसा नहीं है f का चरम है)। यानी कई जगहों पर x एकमात्र बिंदु है जिस पर f' एक (स्थानीय) न्यूनतम या अधिकतम होता है। यदि सभी अति f' पृथक बिंदु हैं, तो के ग्राफ पर एक नति परिवर्तन बिंदु है f जिस पर स्पर्शरेखा वक्र को पार करती है।
नति परिवर्तन का गिरता बिंदु एक नति परिवर्तन बिंदु है जहां बिंदु के दोनों ओर व्युत्पन्न ऋणात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन घट रहा है। नति परिवर्तन का बढ़ता हुआ बिंदु एक बिंदु है जहां व्युत्पन्न बिंदु के दोनों ओर धनात्मक होता है दूसरे शब्दों में, यह नति परिवर्तन बिंदु है जिसके निकट फलन बढ़ रहा है।
पैरामीट्रिक समीकरणों द्वारा दिए गए एक चिकने वक्र के लिए नति परिवर्तन बिंदु है यदि इसकी हस्ताक्षरित वक्रता प्लस से माइनस या माइनस से प्लस में बदलती है अर्थात चिह्न परिवर्तन होता है।
एक चिकने वक्र के लिए जो दो बार अलग-अलग फलन का ग्राफ़ है, नति परिवर्तन बिंदु ग्राफ़ पर एक बिंदु होता है जिस पर दूसरे व्युत्पन्न मे एक पृथक शून्य होता है और चिह्न बदलता है।
बीजगणितीय ज्यामिति में, यदि बीजगणितीय वक्र का गैर-एकवचन बिंदु नति परिवर्तन बिंदु होता है और केवल स्पर्श रेखा और वक्र (स्पर्शरेखा के बिंदु पर) की प्रतिच्छेदन संख्या 2 से अधिक हो। इस भिन्न परिभाषा की मुख्य प्रेरणा यह है कि अन्यथा किसी वक्र के नति परिवर्तन बिंदुओं का समुच्चय बीजगणितीय समुच्चय नहीं होगा। वास्तव में एक समतल बीजगणितीय वक्र के नति परिवर्तन बिंदुओं का समुच्चय ठीक इसके गैर-एकवचन बिंदु होते हैं जो इसकी प्रक्षेपी पूर्णता के हेस्सियन निर्धारक के शून्य होते हैं।
![](https://upload.wikimedia.org/wikipedia/commons/7/78/Animated_illustration_of_inflection_point.gif)
एक आवश्यक लेकिन पर्याप्त शर्त नहीं
किसी फलन f के लिए यदि इसका दूसरा अवकलज f″(x) है जो x0 पर मौजूद है और x0 के लिए नति परिवर्तन बिंदु है f तो f″(x0) = 0, लेकिन यह स्थिति एक नति परिवर्तन बिंदु होने के लिए पर्याप्त स्थिति नहीं है, भले ही किसी आदेश के व्युत्पन्न मौजूद हों। इस मामले में किसी को विषम क्रम (तीसरे, पांचवें आदि) के लिए सबसे कम-क्रम (दूसरे से ऊपर) गैर-शून्य व्युत्पन्न की भी आवश्यकता होती है। यदि निम्नतम-क्रम गैर-शून्य व्युत्पन्न समान क्रम का है तो बिंदु नति परिवर्तन का बिंदु नहीं है बल्कि एक तरंग बिंदु है। हालाँकि, बीजगणितीय ज्यामिति में नति परिवर्तन बिंदु और तरंग बिंदु दोनों को आमतौर पर नति परिवर्तन बिंदु कहा जाता है। तरंग बिंदु का उदाहरण है x = 0 फलन f के द्वारा दिया गया f(x) = x4
पूर्ववर्ती अभिकथनों में यह माना जाता है कि f का x पर कुछ उच्च-क्रम गैर-शून्य व्युत्पन्न है जो जरूरी नहीं है। यदि यह स्थिति है, तो शर्त यह है कि पहले गैर-शून्य व्युत्पन्न का एक विषम क्रम है जिसका अर्थ है कि x के एक पड़ोस (गणित) में x के दोनों ओर f'(x) का चिह्न समान हैं, यदि यह चिह्न धनात्मक है तो नति परिवर्तन का बिंदु एक उभरता हुआ बिंदु है, यदि यह ऋणात्मक है तो नति परिवर्तन बिंदु एक गिरता हुआ बिंदु है।
'नति परिवर्तन अंक पर्याप्त स्थिति:'
- इस मामले में नति परिवर्तन बिंदु के लिए पर्याप्त अस्तित्व की स्थिति f(x) है k {{{1}}} विषम और k ≥ 3 के साथ बिंदु x0 के एक निश्चित पड़ोस में k बार-बार अलग-अलग होता है वह यह है कि f(n)(x0) = 0 के लिये n = 2, ..., k − 1 तथा f(k)(x0) ≠ 0 तब f(x) का x0 पर एक नति परिवर्तन बिंदु है।
- एक और अधिक सामान्य पर्याप्त अस्तित्व की स्थिति के लिए f″(x0 + ε) तथा f″(x0 − ε) की आवश्यकता होती है ताकि x0 के पड़ोस में विपरीत संकेत हों (ब्रोंशेटिन और सेमेंदयेव 2004, पृष्ठ 231)।
नति परिवर्तन बिंदुओं का वर्गीकरण
नति परिवर्तन बिंदुओं को इस आधार पर भी वर्गीकृत किया जा सकता है कि f'(x) शून्य या अशून्य है।
- यदि f'(x) शून्य है, तो नति परिवर्तन का एक स्थिर बिंदु है
- यदि f'(x) शून्य नहीं है, तो नति परिवर्तन का एक गैर-स्थिर बिंदु है
नति परिवर्तन का स्थिर बिंदु एक स्थानीय चरम सीमा नहीं है। आमतौर पर, कई वास्तविक चरों के कार्यों के संदर्भ में, एक स्थिर बिंदु जो स्थानीय चरम सीमा नहीं है उसे काठी बिंदु (गणितीय चर्चा) कहा जाता है।
नति परिवर्तन का स्थिर बिंदु का एक उदाहरण बिंदु (0, 0) है y = x3 के ग्राफ पर स्पर्शरेखा x-अक्ष है जो इस बिंदु पर ग्राफ को काटता है।
नति परिवर्तन के गैर-स्थिर बिंदु का एक उदाहरण बिंदु है (0, 0) है y = x3 + ax के ग्राफ पर किसी भी अशून्य a के लिए। मूल बिंदु पर स्पर्शरेखा रेखा y = ax है जो इस बिंदु पर ग्राफ को काटता है।
विच्छिन्नता के साथ कार्य
कुछ कार्य नति परिवर्तन बिंदुओं के बिना अवतलता को बदलते हैं। इसके बजाय, वे ऊर्ध्वाधर स्पर्शोन्मुख या विच्छिन्नता के आसपास अवतलता को बदल सकते हैं। उदाहरण के लिए, फलन ऋणात्मक x के लिए अवतल और धनात्मक x के लिए उत्तल है लेकिन इसमें नति परिवर्तन का कोई बिंदु नहीं है क्योंकि 0 फलन के क्षेत्र में नहीं है।
नति परिवर्तन बिंदुओं के साथ कार्य जिसका दूसरा व्युत्पन्न गायब नहीं होता है
कुछ निरंतर कार्यों में एक नति परिवर्तन बिंदु होता है भले ही दूसरा व्युत्पन्न कभी भी 0 न हो। उदाहरण के लिए, क्यूब रूट फलन x ऋणात्मक होने पर ऊपर की ओर अवतल होता है और x धनात्मक होने पर नीचे की ओर अवतल होता है लेकिन मूल पर किसी भी क्रम का कोई व्युत्पन्न नहीं होता है।
यह भी देखें
- महत्वपूर्ण बिंदु (गणित)
- पारिस्थितिक दहलीज
- एक अण्डाकार वक्र के नौ नति परिवर्तन बिंदु द्वारा गठित हेस्से विन्यास
- द्विज्या, नति परिवर्तन बिंदु के साथ एक वास्तुशिल्प रूप
- वर्टेक्स (वक्र), एक स्थानीय न्यूनतम या अधिकतम वक्रता
संदर्भ
- ↑ Stewart, James (2015). गणना (8 ed.). Boston: Cengage Learning. p. 281. ISBN 978-1-285-74062-1.
- ↑ गणितीय विश्लेषण में समस्याएं. Baranenkov, G. S. Moscow: Mir Publishers. 1976 [1964]. ISBN 5030009434. OCLC 21598952.
{{cite book}}
: CS1 maint: others (link) - ↑ Bronshtein; Semendyayev (2004). गणित की पुस्तिका (4th ed.). Berlin: Springer. p. 231. ISBN 3-540-43491-7.
स्रोत
- Weisstein, Eric W. "Inflection Point". MathWorld.
- "Point of inflection", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
श्रेणी:अंतर कलन श्रेणी:विभेदक ज्यामिति श्रेणी:विश्लेषणात्मक ज्यामिति श्रेणी:वक्र