फर्मेट बिंदु: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Triangle center minimizing sum of distances}}
{{Short description|Triangle center minimizing sum of distances}}
[[Image:Fermat Point.svg|thumb|right|300px|चित्र 1.   पहले आइसोगोनिक केंद्र का निर्माण, X(13)। जब त्रिभुज का कोई कोण 120° से अधिक नहीं होता है, तो यह बिंदु फर्मेट बिंदु होता है।]][[ज्यामिति]] में, त्रिभुज का फ़र्मेट बिंदु, जिसे टोरिकेली बिंदु या फ़र्मेट-टोरिकेली बिंदु भी कहा जाता है, एक ऐसा बिंदु है, जहाँ त्रिभुज के तीन शीर्षों में से प्रत्येक से बिंदु तक तीन दूरियों का योग सबसे छोटा संभव है।<ref>[http://www.cut-the-knot.org/Generalization/fermat_point.shtml Cut The Knot - The Fermat Point and Generalizations]</ref> इसका नाम इसलिए रखा गया है क्योंकि इस समस्या को सबसे पहले [[पियरे डी फर्मेट]] ने [[इवेंजलिस्ता  टोरिकेली]] को एक निजी पत्र में उठाया था, जिन्होंने इसे हल किया था।
[[Image:Fermat Point.svg|thumb|right|300px|चित्र 1.   पहले तुल्यकोणी केंद्र का निर्माण, X(13)। जब त्रिभुज का कोई कोण 120° से अधिक नहीं होता है, तो यह बिंदु फर्मेट बिंदु होता है।]][[ज्यामिति]] में, त्रिभुज का फ़र्मेट बिंदु, जिसे टोरिकेली बिंदु या फ़र्मेट-टोरिकेली बिंदु भी कहा जाता है, एक ऐसा बिंदु है, जहाँ त्रिभुज के तीन शीर्षों में से प्रत्येक से बिंदु तक तीन दूरियों का योग सबसे छोटा संभव है।<ref>[http://www.cut-the-knot.org/Generalization/fermat_point.shtml Cut The Knot - The Fermat Point and Generalizations]</ref> इसका नाम इसलिए रखा गया है क्योंकि इस समस्या को सबसे पहले [[पियरे डी फर्मेट]] ने [[इवेंजलिस्ता  टोरिकेली]] को एक निजी पत्र में उठाया था, जिन्होंने इसे हल किया था।


फर्मेट बिंदु तीन बिंदुओं के लिए [[ज्यामितीय माध्यिका]] और [[स्टेनर वृक्ष की समस्याओं]] का समाधान देता है।
फर्मेट बिंदु तीन बिंदुओं के लिए [[ज्यामितीय माध्यिका]] और [[स्टेनर वृक्ष की समस्याओं]] का समाधान देता है।
Line 20: Line 20:


== एक्स (13) का स्थान ==
== एक्स (13) का स्थान ==
[[Image:Fermat Point Proof.svg|thumb|right|300px|चित्र 2.   पहले आइसोगोनिक केंद्र की ज्यामिति।]]चित्र 2 समबाहु त्रिभुज ARB, AQC और CPB को यादृच्छिक त्रिभुज ABC की भुजाओं से जुड़ा हुआ दिखाता है।
[[Image:Fermat Point Proof.svg|thumb|right|300px|चित्र 2.   पहले तुल्यकोणी केंद्र की ज्यामिति।]]चित्र 2 समबाहु त्रिभुज ARB, AQC और CPB को यादृच्छिक त्रिभुज ABC की भुजाओं से जुड़ा हुआ दिखाता है।
यहाँ [[चक्रीय बिंदु|चक्रीय बिंदुओं]] के गुणों का उपयोग करके यह दिखाने का प्रयास गया है कि चित्र 2 में तीन रेखाएँ RC, BQ और AP सभी बिंदु F पर प्रतिच्छेद करती हैं और एक दूसरे को 60° के कोण पर काटती हैं।
यहाँ [[चक्रीय बिंदु|चक्रीय बिंदुओं]] के गुणों का उपयोग करके यह दिखाने का प्रयास गया है कि चित्र 2 में तीन रेखाएँ RC, BQ और AP सभी बिंदु F पर प्रतिच्छेद करती हैं और एक दूसरे को 60° के कोण पर काटती हैं।


Line 65: Line 65:


== गुण ==
== गुण ==
[[File:Isogonic centres and vesicae piscis.png|thumb|300px|दो आइसोगोनिक केंद्र तीन [[मछली मूत्राशय]] के प्रतिच्छेदन हैं जिनके युग्मित शीर्ष त्रिभुज के शीर्ष हैं]]* जब त्रिभुज का सबसे बड़ा कोण 120° से बड़ा न हो, तो X(13) फर्मेट बिंदु होता है।
[[File:Isogonic centres and vesicae piscis.png|thumb|300px|दो तुल्यकोणी केंद्र तीन [[मछली मूत्राशय]] के प्रतिच्छेदन हैं जिनके युग्मित शीर्ष त्रिभुज के शीर्ष हैं]]* जब त्रिभुज का सबसे बड़ा कोण 120° से बड़ा न हो, तो X(13) फर्मेट बिंदु होता है।
* त्रिभुज की भुजाओं द्वारा X(13) पर बनाए गए सभी कोण 120° (स्थिति 2), या 60°, 60°, 120° (स्थिति 1) के बराबर हैं।
* त्रिभुज की भुजाओं द्वारा X(13) पर बनाए गए सभी कोण 120° (स्थिति 2), या 60°, 60°, 120° (स्थिति 1) के बराबर हैं।
* तीन निर्मित समबाहु त्रिभुजों के [[परिवृत्त]] X(13) पर समवर्ती हैं।
* तीन निर्मित समबाहु त्रिभुजों के [[परिवृत्त]] X(13) पर संगामी हैं।
* पहले आइसोगोनिक केंद्र के लिए त्रिरेखीय निर्देशांक, X(13):
* पहले X(13) तुल्यकोणी केंद्र के लिए त्रिरेखीय निर्देशांक:
:सीएससी(+ π/3) : सीएससी(बी + π/3) : सीएससी(सी + π/3), या, समकक्ष,
:csc(''A'' + π/3) : csc(''B'' + π/3) : csc(''C'' + π/3), या समकक्ष,
:sec(A − π/6) : sec(B − π/6) : sec(C − π/6).<ref>Entry X(13) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
:sec(A − π/6) : sec(B − π/6) : sec(C − π/6).<ref>Entry X(13) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
* दूसरे आइसोगोनिक केंद्र के लिए त्रिरेखीय निर्देशांक, X(14):
* दूसरे X(14) के तुल्यकोणी केंद्र के लिए त्रिरेखीय निर्देशांक:
:csc(A − π/3) : csc(B − π/3) : csc(C − π/3), या, इसके समकक्ष,
:csc(A − π/3) : csc(B − π/3) : csc(C − π/3), या, इसके समकक्ष,
: सेकेंड (+ π/6) : सेकेंड (बी + π/6) : सेकेंड (सी + π/6)।<ref>Entry X(14) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
: sec(''A'' + π/6) : sec(''B'' + π/6) : sec(''C'' + π/6)।<ref>Entry X(14) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
* फर्मेट बिंदु के लिए त्रिरेखीय निर्देशांक:
* फर्मेट बिंदु के लिए त्रिरेखीय निर्देशांक:
:1 − u + uvw sec(A − π/6) : 1 − v + uvw sec(B − π/6) : 1 − w + uvw sec(C − π/6)
:1 − u + uvw sec(A − π/6) : 1 − v + uvw sec(B − π/6) : 1 − w + uvw sec(C − π/6)
: जहाँ u, v, w क्रमशः [[बूलियन डोमेन]] को निरूपित करते हैं (A<120°), (B<120°), (C<120°).
: जहाँ u, v, w क्रमशः [[बूलियन डोमेन|बूलियन डोमेन  (A<120°), (B<120°), (C<120°)]] को निरूपित करते हैं
* X(13) का आइसोगोनल संयुग्म [[आइसोडायनामिक बिंदु]] है, X(15):
* X(13) का तुल्यकोणी संयुग्म X(15) का  [[आइसोडायनामिक बिंदु]] है:
: पाप (+ π/3) : पाप (बी + π/3) : पाप (सी + π/3)।<ref>Entry X(15) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
: sin(''A'' + π/3) : sin(''B'' + π/3) : sin(''C'' + π/3)।<ref>Entry X(15) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
* X(14) का आइसोगोनल संयुग्म आइसोडायनामिक बिंदु है, X(16):
* X(14) का तुल्यकोणी संयुग्म X(16) का आइसोडायनामिक बिंदु है:
:sin(A − π/3) : sin(B − π/3) : sin(C − π/3).<ref>Entry X(16) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
:sin(A − π/3) : sin(B − π/3) : sin(C − π/3).<ref>Entry X(16) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] {{webarchive |url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |date=April 19, 2012 }}</ref>
* निम्नलिखित त्रिभुज समबाहु हैं:
* निम्नलिखित त्रिभुज समबाहु हैं:
: एक्स (13) का [[पेडल त्रिकोण]]
: X(13) का [[पेडल त्रिकोण]]
: एक्स (14) का एंटीपेडल त्रिकोण
: X(14) का एंटीपेडल त्रिकोण
: एक्स (15) का पेडल त्रिकोण
: X(15) का पेडल त्रिकोण
: एक्स (16) का पेडल त्रिकोण
: X(16) का पेडल त्रिकोण
: X(15) का सर्कमसेवियन त्रिकोण
: X(15) का सर्कमसेवियन त्रिकोण
: X(16) का सर्कमसेवियन त्रिकोण
: X(16) का सर्कमसेवियन त्रिकोण
* रेखाएँ X(13)X(15) और X(14)X(16) यूलर रेखा के समानांतर हैं। तीन रेखाएँ यूलर अनंत बिंदु, X(30) पर मिलती हैं।
* रेखाएँ X(13)X(15) और X(14)X(16) यूलर रेखा के समानांतर हैं। तीन रेखाएँ यूलर अनंत बिंदु, X(30) पर मिलती हैं।
* बिंदु X(13), X(14), परिवृत्त, और नौ-बिंदु वृत्त|नौ-बिंदु केंद्र एक लेस्टर प्रमेय पर स्थित हैं।
* बिंदु X(13), X(14), परिकेंद्र और नौ-बिंदु केंद्र एक लेस्टर वृत पर स्थित हैं।
* रेखा X(13)X(14) यूलर रेखा से X(2) और X(4) के मध्य बिंदु पर मिलती है।<ref name=ETC>{{cite web|last=Kimberling|first=Clark|title=त्रिभुज केंद्रों का विश्वकोश|url=http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X381}}</ref>
* रेखा X(13)X(14) यूलर रेखा से X(2) और X(4) के मध्य बिंदु पर मिलती है।<ref name=ETC>{{cite web|last=Kimberling|first=Clark|title=त्रिभुज केंद्रों का विश्वकोश|url=http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X381}}</ref>
* फर्मेट बिंदु खुली [[ऑर्थोसेंट्रोइडल डिस्क]] में स्थित होता है जो अपने स्वयं के केंद्र में छिद्रित होता है, और उसमें कोई भी बिंदु हो सकता है।<ref name=Bradley>Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers", ''Forum Geometricorum'' 6 (2006), 57--70.  http://forumgeom.fau.edu/FG2006volume6/FG200607index.html</ref>
* फर्मेट बिंदु खुली [[ऑर्थोसेंट्रोइडल डिस्क]] में स्थित होता है जो अपने स्वयं के केंद्र में छिद्रित होता है, और उसमें कोई भी बिंदु हो सकता है।<ref name=Bradley>Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers", ''Forum Geometricorum'' 6 (2006), 57--70.  http://forumgeom.fau.edu/FG2006volume6/FG200607index.html</ref>
Line 95: Line 95:


== उपनाम ==
== उपनाम ==
आइसोगोनिक केंद्र ''X''(13) और ''X''(14) को क्रमशः पहले फर्मेट बिंदु और दूसरे फर्मेट बिंदु के रूप में भी जाना जाता है। विकल्प सकारात्मक फर्मेट बिंदु और नकारात्मक फर्मेट बिंदु हैं। हालाँकि ये अलग-अलग नाम भ्रमित करने वाले हो सकते हैं और शायद इनसे बचना ही सबसे अच्छा है। समस्या यह है कि अधिकांश साहित्य फ़र्मेट बिंदु और पहले फ़र्मेट बिंदु के बीच के अंतर को धुंधला कर देता है, जबकि उपरोक्त केस 2 में ही वे वास्तव में समान हैं।
तुल्यकोणी केंद्र ''X''(13) और ''X''(14) को क्रमशः पहले फर्मेट बिंदु और दूसरे फर्मेट बिंदु के रूप में भी जाना जाता है। विकल्प सकारात्मक फर्मेट बिंदु और नकारात्मक फर्मेट बिंदु हैं। सामान्यतः  ये अलग-अलग नाम अस्पष्ट करने वाले हो सकते हैं और यद्यपि इनसे बचना ही सबसे अच्छा है। समस्या यह है कि अधिकांश साहित्य फ़र्मेट बिंदु और पहले फ़र्मेट बिंदु के बीच के अंतर को हल्का कर देता है, जबकि उपरोक्त '''स्थिति''' 2 में ही वे वास्तव में समान हैं।


== इतिहास ==
== इतिहास ==
यह प्रश्न इवेंजेलिस्ता टोर्रिकेली के लिए एक चुनौती के रूप में फर्मेट द्वारा प्रस्तावित किया गया था। उन्होंने समस्या को फ़र्मेट के समान तरीके से हल किया, यद्यपि इसके बजाय तीन नियमित त्रिभुजों के परिवृत्तों के प्रतिच्छेदन का उपयोग किया। उनके शिष्य, विवियानी ने 1659 में समाधान प्रकाशित किया।<ref>{{MathWorld|urlname=FermatPoints |title=Fermat Points}}</ref>
यह प्रश्न इवेंजेलिस्ता टोर्रिकेली के लिए एक दावे के रूप में फर्मेट द्वारा प्रस्तावित किया गया था। उन्होंने समस्या को फ़र्मेट के समान विधियों से हल किया, यद्यपि इसके अतिरिक्त तीन नियमित त्रिभुजों के परिवृत्तों के प्रतिच्छेदन का उपयोग किया। उनके शिष्य, विवियानी ने 1659 में समाधान प्रकाशित किया।<ref>{{MathWorld|urlname=FermatPoints |title=Fermat Points}}</ref>





Revision as of 13:47, 29 November 2022

चित्र 1.   पहले तुल्यकोणी केंद्र का निर्माण, X(13)। जब त्रिभुज का कोई कोण 120° से अधिक नहीं होता है, तो यह बिंदु फर्मेट बिंदु होता है।

ज्यामिति में, त्रिभुज का फ़र्मेट बिंदु, जिसे टोरिकेली बिंदु या फ़र्मेट-टोरिकेली बिंदु भी कहा जाता है, एक ऐसा बिंदु है, जहाँ त्रिभुज के तीन शीर्षों में से प्रत्येक से बिंदु तक तीन दूरियों का योग सबसे छोटा संभव है।[1] इसका नाम इसलिए रखा गया है क्योंकि इस समस्या को सबसे पहले पियरे डी फर्मेट ने इवेंजलिस्ता टोरिकेली को एक निजी पत्र में उठाया था, जिन्होंने इसे हल किया था।

फर्मेट बिंदु तीन बिंदुओं के लिए ज्यामितीय माध्यिका और स्टेनर वृक्ष की समस्याओं का समाधान देता है।

निर्माण

अधिकतम 120° के सबसे बड़े कोण वाले त्रिभुज का फर्मेट बिंदु केवल इसका पहला समद्विबाहु केंद्र या X(13) है, जिसका निर्माण निम्न प्रकार से किया गया है:

  1. दिए गए त्रिभुज की दो यादृच्छिक विधियों से चुनी गई भुजाओं में से प्रत्येक पर एक समबाहु त्रिभुज की रचना करें।
  2. प्रत्येक नए शीर्ष (ज्यामिति) से मूल त्रिभुज के विपरीत शीर्ष तक एक रेखा खींचें।
  3. दो रेखाएँ फर्मेट बिंदु पर प्रतिच्छेद करती हैं।

एक वैकल्पिक विधि निम्नलिखित है:

  1. यादृच्छिक विधियों से चुने गए दो भुजाओं में से प्रत्येक पर, एक समद्विबाहु त्रिभुज का निर्माण करें, जिसका आधार सम्बन्धित भुजा हो, आधार पर 30-डिग्री कोण हो, और प्रत्येक समद्विबाहु त्रिभुज का तीसरा शीर्ष मूल त्रिभुज के बाहर स्थित हो।
  2. प्रत्येक समद्विबाहु त्रिभुज के लिए एक वृत्त बनाएं, प्रत्येक स्थितयों में समद्विबाहु त्रिभुज के नए शीर्ष पर केंद्र के साथ और उस समद्विबाहु त्रिभुज की दो नई भुजाओं में से प्रत्येक के बराबर त्रिज्या के साथ।
  3. दो वृत्तों के बीच मूल त्रिभुज के आन्तरिक प्रतिच्छेदन फर्मेट बिंदु है।

जब एक त्रिभुज का कोण 120° से अधिक होता है, तो फ़र्मेट बिंदु अधिक कोण वाले शीर्ष पर स्थित होता है।

निम्नलिखित में "स्थिति 1" का अर्थ है कि त्रिभुज का कोण 120° से अधिक है और "स्थिति 2" का अर्थ है कि त्रिभुज का कोई भी कोण 120° से अधिक नहीं है।

एक्स (13) का स्थान

चित्र 2.   पहले तुल्यकोणी केंद्र की ज्यामिति।

चित्र 2 समबाहु त्रिभुज ARB, AQC और CPB को यादृच्छिक त्रिभुज ABC की भुजाओं से जुड़ा हुआ दिखाता है।

यहाँ चक्रीय बिंदुओं के गुणों का उपयोग करके यह दिखाने का प्रयास गया है कि चित्र 2 में तीन रेखाएँ RC, BQ और AP सभी बिंदु F पर प्रतिच्छेद करती हैं और एक दूसरे को 60° के कोण पर काटती हैं।

त्रिभुज RAC और BAQ सर्वांगसमता (ज्यामिति) हैं क्योंकि दूसरा, A के सापेक्ष पहले का 60° का घूर्णन है। इसलिए ∠ARF = ∠ABF और ∠AQF = ∠ACF। खंड AF पर लागू उत्कीर्ण कोण प्रमेय के व्युत्क्रम से, बिंदु ARBF चक्रीय बिंदु हैं (वे एक वृत्त पर स्थित हैं)। इसी प्रकार, बिंदु AFCQ चक्रीय हैं।

∠ARB = 60°, इसलिए ∠AFB = 120°, उत्कीर्ण कोण प्रमेय का उपयोग करके। इसी प्रकार, ∠AFC = 120°।

इसलिए ∠BFC = 120°। इसलिए, ∠BFC और ∠BPC का योग 180° होता है। उत्कीर्ण कोण प्रमेय का उपयोग करते हुए, इसका अर्थ है कि बिंदु BPCF चक्रीय हैं। इसलिए, खण्ड BP पर लागू किए गए उत्कीर्ण कोण प्रमेय का उपयोग करते हुए, ∠BFP = ∠BCP = 60°। क्योंकि ∠BFP + ∠BFA = 180°, बिंदु F रेखाखंड AP पर स्थित है। इसलिए, रेखाएँ RC, BQ और AP संगामी हैं (वे एक बिंदु पर प्रतिच्छेद करती हैं)। Q.E.D.

यह प्रमाण सामान्यतः स्थिति 2 में लागू होता है क्योंकि यदि ∠BAC > 120°, बिंदु A, BPC के परिवृत्त के अंदर स्थित है जो A और F की सापेक्ष स्थिति को परिवर्तित कर देता है। चूँकि इसे सरलता से स्थिति 1 को छुपाने के लिए संशोधित किया जाता है। फिर ∠AFB = ∠AFC = 60° इसलिए ∠BFC = ∠AFB + ∠AFC = 120° जिसका अर्थ है BPCF चक्रीय है इसलिए ∠BFP = ∠BCP = 60° = ∠BFA। इसलिए, A, FP पर स्थित है।

चित्र 2 में वृत्तों के केंद्रों को जोड़ने वाली रेखाएँ रेखाखंडों AP, BQ और CR पर लंब हैं। उदाहरण के लिए, ARB वाले वृत्त के केंद्र और AQC वाले वृत्त के केंद्र को जोड़ने वाली रेखा, खंड AP के लंबवत होती है। इसलिए, वृत्तों के केंद्रों को जोड़ने वाली रेखाएँ भी 60° के कोण पर प्रतिच्छेद करती हैं। इसलिए, वृत्तों के केंद्र एक समबाहु त्रिभुज बनाते हैं। इसे नेपोलियन की प्रमेय के नाम से जाना जाता है।

फर्मेट बिंदु का स्थान

पारंपरिक ज्यामिति

चित्र 3.   फर्मेट बिंदु की ज्यामिति

किसी भी यूक्लिडियन त्रिभुज ABC और एक यादृच्छिक बिंदु P को देखते हुए d(P) = PA+PB+PC, PA के साथ P और A के बीच की दूरी को दर्शाता है। इस खंड का उद्देश्य एक बिंदु P की पहचान करना है। जैसा कि d (P0) <d(P) सभी P ≠ P0 के लिए। यदि ऐसा कोई बिंदु सम्मिलित है तो वह फर्मेट बिंदु होगा। निम्नलिखित में त्रिभुज के अंदर के बिंदुओं को निरूपित करेगा और इसकी सीमा Ω को सम्मिलित करने के लिए लिया जाएगा।

एक महत्वपूर्ण परिणाम जिसका उपयोग किया जाएगा वह डॉगल नियम है जो यह पुष्टि करता है कि यदि एक त्रिभुज और बहुभुज का एक पक्ष उभयनिष्ठ है और शेष त्रिभुज बहुभुज के अंदर है तो त्रिभुज की परिधि बहुभुज की तुलना में छोटी है।
[यदि AB उभयनिष्ठ भुजा है तो बहुभुज को X पर काटने के लिए AC को विस्तार करें। फिर त्रिभुज असमानता द्वारा बहुभुज परिधि > AB + AX + XB = AB + AC + CX + XB ≥ AB + AC + BC।]

माना P, त्रिभुज के बाहर कोई बिंदु है। प्रत्येक शीर्ष को उसके दूरस्थ क्षेत्र से संबद्ध करें; वह है, विपरीत दिशा से परे(विस्तारित) आधा समतल। ये 3 क्षेत्र  त्रिभुज  को छोड़कर पूरे समतल को छिपाते हैं और P स्पष्ट रूप से उनमें से एक या दो में स्थित है। यदि P दो में है (B और C क्षेत्र प्रतिछेदन कहलाते है) तो डॉगल नियम द्वारा P' = A को व्यवस्थित करने से d(P') = d(A) <d(P) का तात्पर्य है। वैकल्पिक रूप से यदि P केवल एक क्षेत्र में है, मान लीजिए A-क्षेत्र, तो d(P') < d(P) जहां P', AP और BC का प्रतिच्छेदन है। इसलिए त्रिभुज के बाहर प्रत्येक बिंदु P के लिए Ω में एक बिंदु P' सम्मिलित है जैसे कि d(P') < d(P)।

स्थिति 1. त्रिभुज का कोण ≥ 120° है।

व्यापकता में कमी के बिना मान लीजिए कि A पर कोण ≥ 120° है। समबाहु त्रिभुज AFB की रचना करें और त्रिभुज में किसी भी बिंदु P के लिए (स्वयं A को छोड़कर) Q की रचना करें ताकि त्रिभुज AQP समबाहु हो और उसका अभिविन्यास दिखाया गया हो। तब त्रिभुज ABP, त्रिभुज AFQ का A के सापेक्ष 60° का घूर्णन है, इसलिए ये दोनों त्रिभुज सर्वांगसम हैं और यह d(P) = CP+PQ+QF का अनुसरण करता है, जो कि पथ CPQF की लंबाई है। चूंकि P को ABC के अंदर स्थित होने के लिए सीमित किया गया है, डॉगल नियम द्वारा इस पथ की लंबाई AC+AF = d(A) से अधिक हो जाती है। इसलिए, d(A) < d(P) सभी P є Δ, P ≠ A के लिए। अब P को त्रिभुज के बाहर की सीमा की अनुमति दें। ऊपर से एक बिंदु P' Ω इस तरह सम्मिलित है कि d(P') <d(P) और d(A) ≤ d (P') के रूप में यह इस प्रकार है कि त्रिभुज के बाहर सभी P के लिए d(A) <d(P)। इस प्रकार d(A) < d(P) सभी P ≠ A के लिए जिसका अर्थ है कि A त्रिभुज का फर्मेट बिंदु है। दूसरे शब्दों में, फर्मेट बिंदु अधिक कोण वाले शीर्ष पर स्थित है।

स्थिति 2. त्रिभुज का कोई कोण ≥ 120° नहीं है।

समबाहु त्रिभुज BCD की रचना करें और मान लें कि P त्रिभुज के अंदर कोई बिंदु है और समबाहु त्रिभुज CPQ की रचना करें। तब CQD, C के सापेक्ष CPB का 60° घूर्णन है, इसलिए d(P) = PA+PB+PC = AP+PQ+QD जो पथ APQD की लंबाई है। मान लें P0 वह बिंदु है जहां AD और CF प्रतिच्छेदित करते हैं। इस बिंदु को सामान्यतः पहला तुल्यकोणी केंद्र कहा जाता है। P0 के साथ भी यही अभ्यास करें जैसा आपने P के साथ किया था, और बिंदु Q0 ज्ञात कीजिए। कोणीय प्रतिबंध द्वारा P0 त्रिभुज के अंदर स्थित है इसके अतिरिक्त BCF, B के सापेक्ष BDA का 60° का घूर्णन है इसलिए Q0 को AD पर कहीं स्थित होना चाहिए। चूँकि CDB = 60°, का अर्थ है कि Q0, P0 और D के बीच स्थित है, जिसका अर्थ है कि AP0Q0D एक सीधी रेखा है इसलिए d(P0) = AD। इसके अतिरिक्त, यदि P ≠ P0 है तो या तो P या Q AD पर स्थित नहीं होगा जिसका अर्थ है d(P0) = AD < d(P)। अब P को त्रिभुज के बाहर की सीमा की अनुमति दें। ऊपर से एक बिंदु P' Ω इस प्रकार सम्मिलित है कि d(P') < d(P) और d(P0) ≤ d(P') के रूप में इस प्रकार है कि सभी P के लिए d(P0) < d(P) के बाहर P0 त्रिभुज का फर्मेट बिंदु है। दूसरे शब्दों में, फ़र्मेट बिंदु पहले तुल्यकोणी केंद्र के साथ मेल खाता है।

वेक्टर विश्लेषण

मान लीजिए O, A, B, C, X एक समतल में कोई पाँच बिंदु हैं। सदिश को क्रमशः a, b, c, x द्वारा,निरूपित करें और i, j, k को a, b, c के साथ O से इकाई सदिश होने दें। अब |a| = a ⋅ i = (a - x) ⋅ i + x ⋅ i ≤ |a - x| + x ⋅ i और इसी प्रकार |b| ≤ |b − x| + x ⋅ j और |c| ≤ |c − x| + x ⋅ k.
जोड़ने से | |a| + |b| + |c| ≤ |a − x| + |b − x| + |c − x| + x ⋅ (i + j + k)मिलता है
यदि a, b, c 120° के कोण पर O पर मिलते हैं तो i + j + k = 0 तो सभी x के लिए |a| + |b| + |c| ≤ |a − x| + |b − x| + |c − x|
दूसरे शब्दों में, OA + OB + OC ≤ XA + XB + XC और इसलिए O ABC का फर्मेट बिंदु है।
यह तर्क तब गलत हो जाता है जब त्रिभुज का कोण ∠C > 120° होता है क्योंकि ऐसा कोई बिंदु O नहीं होता है जहाँ a, b, c 120° के कोण पर मिलते हों। यद्यपि यह सहजता से k = - (i + j) को पुनः परिभाषित करके और O को C पर रखकर इसे सहजता से निर्णय किया जाता है ताकि c = 0 हो। ध्यान दें कि |k| ≤ 1 क्योंकि इकाई सदिशों i और j के बीच का कोण ∠C है जो 120° से अधिक है। चूंकि |0| ≤ |0 - x| + x ⋅ k तीसरी असमानता अभी भी जारी है, अन्य दो असमानताएँ अपरिवर्तित हैं। परिणाम अब ऊपर के रूप में जारी है (तीन असमानताओं को जोड़कर और i + j + k = 0 का उपयोग करके) एक ही निष्कर्ष पर पहुंचने के लिए कि O (या इस मामले में C) ABC का फर्मेट बिंदु होना चाहिए।

लैग्रेंज गुणक

एक त्रिकोण के अंदर बिंदु को पता करने के लिए एक अन्य दृष्टिकोण, जिसमें से त्रिभुज के शीर्षों की दूरियों का योग न्यूनतम है, गणितीय अनुकूलन विधियों में से एक का उपयोग करना है; विशेष रूप से, लैग्रेंज गुणक की विधि और कोसाइन के नियम।

हम त्रिभुज के भीतर बिंदु से उसके शीर्ष तक रेखाएँ खींचते हैं और उन्हें X, Y और Z कहते हैं। साथ ही, मान लीजिए कि इन रेखाओं की लंबाई क्रमशः x, y और z है। बता दें कि X और Y के बीच का कोण α, Y और Z के बीच का कोण β है। तब X और Z के बीच का कोण (2π - α - β) है। लैग्रेंज गुणक की विधि का उपयोग करके हमें लाग्रंगियन L का न्यूनतम ज्ञात करना होगा, जिसे इस प्रकार व्यक्त किया गया है:

L = x + y + z + λ1 (x2 + y2 − 2xy cos(α) − a2) + λ2 (y2 + z2 − 2yz cos(β) − b2) + λ3 (z2 + x2 − 2zx cos(α + β) − c2)

जहाँ a, b और c त्रिभुज की भुजाओं की लंबाई हैं।

पांच आंशिक  व्युत्पन्न δL/δx, δL/δy, δL/δz, δL/δα, δL/δβ को शून्य से बराबर करना और λ1, λ2, λ3 को हटाना अंततः sin(α) = sin(β) और sin(α) देता है + β) = − sin(β) तो α = β = 120°। सामान्यतः निष्कासन एक लंबा और थकाऊ कार्य होता है, और अंतिम परिणाम केवल स्थिति 2 को छिपाता है।

गुण

दो तुल्यकोणी केंद्र तीन मछली मूत्राशय के प्रतिच्छेदन हैं जिनके युग्मित शीर्ष त्रिभुज के शीर्ष हैं

* जब त्रिभुज का सबसे बड़ा कोण 120° से बड़ा न हो, तो X(13) फर्मेट बिंदु होता है।

  • त्रिभुज की भुजाओं द्वारा X(13) पर बनाए गए सभी कोण 120° (स्थिति 2), या 60°, 60°, 120° (स्थिति 1) के बराबर हैं।
  • तीन निर्मित समबाहु त्रिभुजों के परिवृत्त X(13) पर संगामी हैं।
  • पहले X(13) तुल्यकोणी केंद्र के लिए त्रिरेखीय निर्देशांक:
csc(A + π/3) : csc(B + π/3) : csc(C + π/3), या समकक्ष,
sec(A − π/6) : sec(B − π/6) : sec(C − π/6).[2]
  • दूसरे X(14) के तुल्यकोणी केंद्र के लिए त्रिरेखीय निर्देशांक:
csc(A − π/3) : csc(B − π/3) : csc(C − π/3), या, इसके समकक्ष,
sec(A + π/6) : sec(B + π/6) : sec(C + π/6)।[3]
  • फर्मेट बिंदु के लिए त्रिरेखीय निर्देशांक:
1 − u + uvw sec(A − π/6) : 1 − v + uvw sec(B − π/6) : 1 − w + uvw sec(C − π/6)
जहाँ u, v, w क्रमशः बूलियन डोमेन (A<120°), (B<120°), (C<120°) को निरूपित करते हैं
sin(A + π/3) : sin(B + π/3) : sin(C + π/3)।[4]
  • X(14) का तुल्यकोणी संयुग्म X(16) का आइसोडायनामिक बिंदु है:
sin(A − π/3) : sin(B − π/3) : sin(C − π/3).[5]
  • निम्नलिखित त्रिभुज समबाहु हैं:
X(13) का पेडल त्रिकोण
X(14) का एंटीपेडल त्रिकोण
X(15) का पेडल त्रिकोण
X(16) का पेडल त्रिकोण
X(15) का सर्कमसेवियन त्रिकोण
X(16) का सर्कमसेवियन त्रिकोण
  • रेखाएँ X(13)X(15) और X(14)X(16) यूलर रेखा के समानांतर हैं। तीन रेखाएँ यूलर अनंत बिंदु, X(30) पर मिलती हैं।
  • बिंदु X(13), X(14), परिकेंद्र और नौ-बिंदु केंद्र एक लेस्टर वृत पर स्थित हैं।
  • रेखा X(13)X(14) यूलर रेखा से X(2) और X(4) के मध्य बिंदु पर मिलती है।[6]
  • फर्मेट बिंदु खुली ऑर्थोसेंट्रोइडल डिस्क में स्थित होता है जो अपने स्वयं के केंद्र में छिद्रित होता है, और उसमें कोई भी बिंदु हो सकता है।[7]


उपनाम

तुल्यकोणी केंद्र X(13) और X(14) को क्रमशः पहले फर्मेट बिंदु और दूसरे फर्मेट बिंदु के रूप में भी जाना जाता है। विकल्प सकारात्मक फर्मेट बिंदु और नकारात्मक फर्मेट बिंदु हैं। सामान्यतः ये अलग-अलग नाम अस्पष्ट करने वाले हो सकते हैं और यद्यपि इनसे बचना ही सबसे अच्छा है। समस्या यह है कि अधिकांश साहित्य फ़र्मेट बिंदु और पहले फ़र्मेट बिंदु के बीच के अंतर को हल्का कर देता है, जबकि उपरोक्त स्थिति 2 में ही वे वास्तव में समान हैं।

इतिहास

यह प्रश्न इवेंजेलिस्ता टोर्रिकेली के लिए एक दावे के रूप में फर्मेट द्वारा प्रस्तावित किया गया था। उन्होंने समस्या को फ़र्मेट के समान विधियों से हल किया, यद्यपि इसके अतिरिक्त तीन नियमित त्रिभुजों के परिवृत्तों के प्रतिच्छेदन का उपयोग किया। उनके शिष्य, विवियानी ने 1659 में समाधान प्रकाशित किया।[8]


यह भी देखें

  • ज्यामितीय माध्यिका या फ़र्मेट-वेबर बिंदु, वह बिंदु जो दिए गए तीन से अधिक बिंदुओं की दूरियों के योग को न्यूनतम करता है।
  • लेस्टर की प्रमेय
  • त्रिकोण केंद्र
  • नेपोलियन अंक
  • वेबर समस्या

संदर्भ

  1. Cut The Knot - The Fermat Point and Generalizations
  2. Entry X(13) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
  3. Entry X(14) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
  4. Entry X(15) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
  5. Entry X(16) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
  6. Kimberling, Clark. "त्रिभुज केंद्रों का विश्वकोश".
  7. Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers", Forum Geometricorum 6 (2006), 57--70. http://forumgeom.fau.edu/FG2006volume6/FG200607index.html
  8. Weisstein, Eric W. "Fermat Points". MathWorld.


इस पेज में लापता आंतरिक लिंक की सूची

  • त्रिकोण
  • स्टाइनर ट्री की समस्या
  • समभुज त्रिकोण
  • समद्विबाहु त्रिकोण
  • खुदा हुआ कोण
  • कोसाइन का कानून
  • ट्रिलिनियर निर्देशांक
  • यूलर लाइन
  • परिमित त्रिकोण
  • नौ-बिंदु चक्र
  • नेपोलियन इशारा करता है
  • त्रिभुज केंद्र

बाहरी संबंध