समवर्ती रेखाएँ: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Lines which intersect at a single point}} ज्यामिति में, एक विमान (ज्यामिति) या उच्च-आ...")
 
No edit summary
Line 1: Line 1:
{{short description|Lines which intersect at a single point}}
{{short description|Lines which intersect at a single point}}
[[ज्यामिति]] में, एक विमान (ज्यामिति) या उच्च-आयामी स्थान में [[रेखा (ज्यामिति)]] को समवर्ती कहा जाता है यदि वे एक [[बिंदु (ज्यामिति)]] पर रेखा-रेखा प्रतिच्छेदन करते हैं। वे समानांतर रेखाओं के विपरीत हैं।
[[ज्यामिति]] में, एक विमान या उच्च-आयामी स्थान में [[रेखा (ज्यामिति)]] को समवर्ती कहा जाता है यदि वे एक [[बिंदु (ज्यामिति)]] पर रेखा प्रतिच्छेदन करते हैं। वे समानांतर रेखाओं के विपरीत हैं।


== उदाहरण ==
== उदाहरण ==
Line 6: Line 6:
=== [[त्रि[[कोण]]]] ===
=== [[त्रि[[कोण]]]] ===


एक त्रिकोण में, समवर्ती रेखाओं के चार मूल प्रकार के सेट [[ऊंचाई (त्रिकोण)]], द्विभाजन#कोण द्विभाजक, माध्यिका (ज्यामिति), और द्विभाजन#लंबवत द्विभाजक हैं:
एक त्रिकोण में, समवर्ती रेखाओं के चार मूल प्रकार के सेट [[ऊंचाई (त्रिकोण)|ऊंचाई ,]] कोण द्विसंयोजक, माध्यिका और लंबवत द्विभाजक हैं:


* एक त्रिभुज की ऊँचाई प्रत्येक शीर्ष (ज्यामिति) से चलती है और विपरीत दिशा में एक [[समकोण]] पर मिलती है। वह बिंदु जहां तीन ऊंचाई मिलती है वह [[orthocenter]] है।
* एक त्रिभुज की ऊँचाई प्रत्येक शीर्ष से चलती है और विपरीत दिशा में एक [[समकोण]] पर मिलती है। वह बिंदु जहां तीन ऊंचाई मिलती है वह [[ऑर्थोसेंटर]] है।
* कोण समद्विभाजक त्रिभुज के प्रत्येक शीर्ष से चलने वाली किरणें हैं और संबद्ध कोण को समद्विभाजित करती हैं। वे सभी [[केंद्र में]] मिलते हैं।
* कोण समद्विभाजक त्रिभुज के प्रत्येक शीर्ष से चलने वाली किरणें हैं और संबद्ध कोण को समद्विभाजित करती हैं। वे सभी [[केंद्र में]] मिलते हैं।
* माध्यिकाएँ त्रिभुज के प्रत्येक शीर्ष को सम्मुख भुजा के मध्यबिंदु से जोड़ती हैं। तीनों माध्यिकाएँ [[केन्द्रक]] पर मिलती हैं।
* माध्यिकाएँ त्रिभुज के प्रत्येक शीर्ष को सम्मुख भुजा के मध्यबिंदु से जोड़ती हैं। तीनों माध्यिकाएँ [[केन्द्रक]] पर मिलती हैं।
Line 15: Line 15:
त्रिभुज से जुड़ी रेखाओं के अन्य समुच्चय भी संगामी होते हैं। उदाहरण के लिए:
त्रिभुज से जुड़ी रेखाओं के अन्य समुच्चय भी संगामी होते हैं। उदाहरण के लिए:


* कोई भी माध्यिका (जो आवश्यक रूप से एक समद्विभाजक है#क्षेत्र द्विभाजक और परिधि समद्विभाजक|त्रिभुज के क्षेत्र का समद्विभाजक) दो अन्य क्षेत्र द्विभाजक के साथ समवर्ती है, जिनमें से प्रत्येक एक भुजा के समानांतर है।<ref>Dunn, J. A., and Pretty, J. E., "Halving a triangle," ''[[Mathematical Gazette]]'' 56, May 1972, 105-108.</ref>
* कोई भी माध्यिका (जो आवश्यक रूप से त्रिभुज के क्षेत्रफल का एक द्विभाजक है) दो अन्य क्षेत्र द्विभाजक के साथ समवर्ती है, जिनमें से प्रत्येक एक भुजा के समानांतर है।<ref>Dunn, J. A., and Pretty, J. E., "Halving a triangle," ''[[Mathematical Gazette]]'' 56, May 1972, 105-108.</ref>
* एक त्रिकोण का एक [[क्लीवर (ज्यामिति)]] एक रेखा खंड है जो त्रिकोण के समद्विभाजक # क्षेत्र द्विभाजक और परिधि द्विभाजक है और तीन पक्षों में से एक के मध्य बिंदु पर एक समापन बिंदु है। तीन क्लीवर [[स्पाइक सर्कल]] के केंद्र में मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है।
* एक त्रिकोण का एक [[क्लीवर (ज्यामिति)|विदारक  (ज्यामिति)]] एक रेखा खंड है जो त्रिकोण के समद्विभाजक क्षेत्र द्विभाजक और परिधि द्विभाजक है और तीन पक्षों में से एक के मध्य बिंदु पर एक समापन बिंदु है। तीन [[क्लीवर (ज्यामिति)|विदारक]] [[स्पाइक सर्कल]] के केंद्र में मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है।
* त्रिभुज का एक विभाजक (ज्यामिति) एक रेखा खंड होता है जिसका एक समापन बिंदु त्रिभुज के तीन शीर्षों में से एक पर होता है और परिधि को समद्विभाजित करता है। त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक मिलते हैं।
* त्रिभुज का एक विभाजक एक रेखा खंड होता है जिसका एक समापन बिंदु त्रिभुज के तीन शीर्षों में से एक पर होता है और परिधि को समद्विभाजित करता है। त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक मिलते हैं।
* त्रिभुज के माध्यम से कोई भी रेखा जो त्रिभुज के क्षेत्र और इसकी परिधि दोनों को आधे में विभाजित करती है, त्रिकोण के अंतःकेंद्र से होकर जाती है, और प्रत्येक त्रिभुज में इनमें से एक, दो या तीन रेखाएँ होती हैं।<ref>Kodokostas, Dimitrios, "Triangle Equalizers," ''[[Mathematics Magazine]]'' 83, April 2010, pp. 141-146.</ref> इस प्रकार यदि उनमें से तीन हैं, तो वे मध्य में सहमत होते हैं।
* त्रिभुज के माध्यम से कोई भी रेखा जो त्रिभुज के क्षेत्र और इसकी परिधि दोनों को आधे में विभाजित करती है, त्रिकोण के अंतःकेंद्र से होकर जाती है, और प्रत्येक त्रिभुज में इनमें से एक, दो या तीन रेखाएँ होती हैं।<ref>Kodokostas, Dimitrios, "Triangle Equalizers," ''[[Mathematics Magazine]]'' 83, April 2010, pp. 141-146.</ref> इस प्रकार यदि उनमें से तीन हैं, तो वे मध्य में समानांतर होते हैं।
* त्रिभुज का टैरी बिंदु त्रिभुज के शीर्षों से होकर त्रिभुज के पहले ब्रोकार्ड त्रिभुज की संगत भुजाओं पर लम्बवत रेखाओं की संगामिति का बिंदु है।
* त्रिभुज का टैरी बिंदु त्रिभुज के शीर्षों से होकर त्रिभुज के पहले ब्रोकार्ड त्रिभुज की संगत भुजाओं पर लम्बवत रेखाओं की संगामिति का बिंदु है।
* एक त्रिभुज का शिफलर बिंदु चार त्रिभुजों की यूलर रेखाओं की सहमति का बिंदु है: प्रश्न में त्रिभुज, और तीन त्रिभुज जो प्रत्येक के साथ दो शीर्ष साझा करते हैं और अन्य शीर्ष के रूप में इसका अंतःकेंद्र होता है।
* एक त्रिभुज का वर्गविभाजक बिंदु चार त्रिभुजों की यूलर रेखाओं की सहमति का बिंदु है: प्रश्न में त्रिभुज, और तीन त्रिभुज जो प्रत्येक के साथ दो शीर्ष साझा करते हैं और अन्य शीर्ष के रूप में इसका अंतःकेंद्र होता है।
* नेपोलियन के अंक और उनके सामान्यीकरण संगामिति के बिंदु हैं। उदाहरण के लिए, पहला नेपोलियन बिंदु एक शीर्ष से विपरीत दिशा के बाहरी भाग पर खींचे गए समबाहु त्रिभुज के केंद्र से तीन रेखाओं की संगामिति का बिंदु है। इस धारणा का एक सामान्यीकरण [[जैकोबी बिंदु]] है।
* नेपोलियन के अंक और उनके सामान्यीकरण संगामिति के बिंदु हैं। उदाहरण के लिए, पहला नेपोलियन बिंदु एक शीर्ष से विपरीत दिशा के बाहरी भाग पर खींचे गए समबाहु त्रिभुज के केंद्र से तीन रेखाओं की संगामिति का बिंदु है। इस धारणा का एक सामान्यीकरण [[जैकोबी बिंदु]] है।
* डी लॉन्गचैम्प्स बिंदु यूलर रेखा के साथ कई रेखाओं की सहमति का बिंदु है।
* डी लॉन्गचैम्प्स बिंदु यूलर रेखा के साथ कई रेखाओं की सहमति का बिंदु है।
* तीन रेखाएँ, प्रत्येक दिए गए त्रिभुज की एक भुजा पर एक बाहरी समबाहु त्रिभुज खींचकर और नए शीर्ष को मूल त्रिभुज के विपरीत शीर्ष से जोड़कर बनाई गई हैं, जो एक बिंदु पर समवर्ती हैं जिसे त्रिभुज केंद्र # पहला आइसोगोनिक केंद्र कहा जाता है। जिस स्थिति में मूल त्रिभुज का कोई कोण 120° से अधिक नहीं है, यह बिंदु भी [[फर्मेट बिंदु]] है।
* तीन रेखाएँ, प्रत्येक दिए गए त्रिभुज की एक भुजा पर एक बाहरी समबाहु त्रिभुज खींचकर और नए शीर्ष को मूल त्रिभुज के विपरीत शीर्ष से जोड़कर बनाई गई हैं, जो एक बिंदु पर समवर्ती हैं जिसे त्रिभुज केंद्र पहला आइसोगोनिक केंद्र कहा जाता है। जिस स्थिति में मूल त्रिभुज का कोई कोण 120° से अधिक नहीं है, यह बिंदु भी [[फर्मेट बिंदु]] है।
* [[एपोलोनियस बिंदु]] तीन रेखाओं की सहमति का बिंदु है, जिनमें से प्रत्येक वृत्त के स्पर्शरेखा के एक बिंदु को जोड़ता है जिससे त्रिभुज के बाह्य वृत्त आंतरिक रूप से स्पर्शरेखा होते हैं, त्रिभुज के विपरीत शीर्ष पर।
* [[एपोलोनियस बिंदु]] तीन रेखाओं की सहमति का बिंदु है, जिनमें से प्रत्येक वृत्त के स्पर्शरेखा के एक बिंदु को जोड़ता है जिससे त्रिभुज के बाह्य वृत्त आंतरिक रूप से स्पर्शरेखा होते हैं, त्रिभुज के विपरीत शीर्ष पर।


=== चतुर्भुज ===
=== चतुर्भुज ===


*चतुर्भुज के दो चतुर्भुज#विशेष रेखा खंड (विपरीत भुजाओं के मध्यबिंदुओं को मिलाने वाले खंड) और विकर्णों के मध्यबिंदुओं को मिलाने वाले रेखाखंड समवर्ती होते हैं और सभी उनके प्रतिच्छेदन बिंदु द्वारा द्विभाजित होते हैं।<ref name=Altshiller-Court/>{{rp|p.125}}
*चतुर्भुज के दो विशेष रेखा खंड (विपरीत भुजाओं के मध्यबिंदुओं को मिलाने वाले खंड) और विकर्णों के मध्यबिंदुओं को मिलाने वाले रेखाखंड समवर्ती होते हैं और सभी उनके प्रतिच्छेदन बिंदु द्वारा द्विभाजित होते हैं।<ref name=Altshiller-Court/>{{rp|p.125}}
* एक [[स्पर्शरेखा चतुर्भुज]] में, चार कोण समद्विभाजक अंतर्वृत्त के केंद्र पर मिलते हैं।<ref>Andreescu, Titu and Enescu, Bogdan, ''Mathematical Olympiad Treasures'', Birkhäuser, 2006, pp. 64–68.</ref>
* एक [[स्पर्शरेखा चतुर्भुज]] में, चार कोण समद्विभाजक अंतर्वृत्त के केंद्र पर मिलते हैं।<ref>Andreescu, Titu and Enescu, Bogdan, ''Mathematical Olympiad Treasures'', Birkhäuser, 2006, pp. 64–68.</ref>
*एक स्पर्शरेखा चतुर्भुज की अन्य संगामितिओं को स्पर्शरेखा चतुर्भुज#समवर्ती और लम्बवत रेखाएँ दी गई हैं।
*एक स्पर्शरेखा चतुर्भुज की अन्य संगामितिओं को स्पर्शरेखा चतुर्भुज समवर्ती और लम्बवत रेखाएँ दी गई हैं।
*एक [[चक्रीय चतुर्भुज]] में, चार रेखा खंड, प्रत्येक एक तरफ लंबवत और विपरीत दिशा के [[मध्य]]बिंदु से गुजरते हुए, संगामी होते हैं।<ref name=Altshiller-Court>{{citation |first=Nathan |last=Altshiller-Court |title=College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle |year=2007 |publisher=Courier Dover |isbn=978-0-486-45805-2 |edition=2nd |orig-year=1952 |oclc=78063045 |pages=131, 137–8}}</ref>{{rp|p.131;}}<ref>{{citation |first=Ross |last=Honsberger |title=Episodes in Nineteenth and Twentieth Century Euclidean Geometry |chapter-url=https://books.google.com/books?id=6oduPgvOAhwC&pg=PA35 |year=1995 |publisher=Cambridge University Press |isbn=978-0-88385-639-0 |pages=35–39 |chapter=4.2 Cyclic quadrilaterals |series=New Mathematical Library |volume=37}}</ref> इन रेखाखंडों को मल्टिट्यूड कहा जाता है,<ref>{{mathworld|title=Maltitude|urlname=Maltitude}}</ref> जो मध्यबिंदु ऊंचाई के लिए एक संक्षिप्त नाम है। उनके सामान्य बिंदु को एंटीसेंटर कहा जाता है।
*एक [[चक्रीय चतुर्भुज]] में, चार रेखा खंड, प्रत्येक एक तरफ लंबवत और विपरीत दिशा के [[मध्य]]बिंदु से गुजरते हुए, संगामी होते हैं।<ref name=Altshiller-Court>{{citation |first=Nathan |last=Altshiller-Court |title=College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle |year=2007 |publisher=Courier Dover |isbn=978-0-486-45805-2 |edition=2nd |orig-year=1952 |oclc=78063045 |pages=131, 137–8}}</ref>{{rp|p.131;}}<ref>{{citation |first=Ross |last=Honsberger |title=Episodes in Nineteenth and Twentieth Century Euclidean Geometry |chapter-url=https://books.google.com/books?id=6oduPgvOAhwC&pg=PA35 |year=1995 |publisher=Cambridge University Press |isbn=978-0-88385-639-0 |pages=35–39 |chapter=4.2 Cyclic quadrilaterals |series=New Mathematical Library |volume=37}}</ref> इन रेखाखंडों को मल्टिट्यूड कहा जाता है,<ref>{{mathworld|title=Maltitude|urlname=Maltitude}}</ref> जो मध्यबिंदु ऊंचाई के लिए एक संक्षिप्त नाम है। उनके सामान्य बिंदु को एंटीसेंटर कहा जाता है।
*एक उत्तल चतुर्भुज पूर्व-स्पर्शरेखा चतुर्भुज होता है। पूर्व-स्पर्शरेखा अगर और केवल अगर छह समवर्ती कोण द्विभाजक हैं: आंतरिक द्विभाजक#कोण द्विभाजक दो विपरीत शीर्ष कोणों पर, बाहरी कोण द्विभाजक अन्य दो शीर्ष कोणों पर, और बाहरी कोण द्विभाजक उन कोणों पर बनते हैं जहाँ विपरीत भुजाओं के विस्तार प्रतिच्छेद करते हैं।
*एक उत्तल चतुर्भुज पूर्व-स्पर्शरेखा चतुर्भुज होता है। पूर्व-स्पर्शरेखा अगर और केवल अगर छह समवर्ती कोण द्विभाजक हैं: आंतरिक द्विभाजक कोण द्विभाजक दो विपरीत शीर्ष कोणों पर, बाहरी कोण द्विभाजक अन्य दो शीर्ष कोणों पर, और बाहरी कोण द्विभाजक उन कोणों पर बनते हैं जहाँ विपरीत भुजाओं के विस्तार प्रतिच्छेद करते हैं।


=== [[षट्भुज]] ===
=== [[षट्भुज]] ===
Line 48: Line 48:
=== मंडलियां ===
=== मंडलियां ===


*सभी वृत्त का द्विभाजन#रेखाखंड द्विभाजक#वृत्त की जीवा वृत्त के [[केंद्र (ज्यामिति)]] पर समवर्ती होती हैं।
*सभी वृत्त का द्विभाजन रेखाखंड द्विभाजक वृत्त की जीवा वृत्त के [[केंद्र (ज्यामिति)]] पर समवर्ती होती हैं।
* स्पर्शरेखा के बिंदुओं पर एक वृत्त की स्पर्शरेखाओं की लंबवत रेखाएँ केंद्र में समवर्ती होती हैं।
* स्पर्शरेखा के बिंदुओं पर एक वृत्त की स्पर्शरेखाओं की लंबवत रेखाएँ केंद्र में समवर्ती होती हैं।
*एक वृत्त के सभी [[क्षेत्र]] समद्विभाजक और [[परिमाप]] समद्विभाजक [[व्यास]] हैं, और वे वृत्त के केंद्र में समवर्ती हैं।
*एक वृत्त के सभी [[क्षेत्र]] समद्विभाजक और [[परिमाप]] समद्विभाजक [[व्यास]] हैं, और वे वृत्त के केंद्र में समवर्ती हैं।
Line 58: Line 58:
=== हाइपरबोलस ===
=== हाइपरबोलस ===


*एक अतिपरवलय में निम्नलिखित समवर्ती होते हैं: (1) अतिपरवलय के केंद्र से गुजरने वाला और अतिपरवलय के केंद्र पर केंद्रित एक वृत्त; (2) कोई भी रेखा जो अतिपरवलय के शीर्ष पर स्पर्शरेखा है; और (3) [[अतिशयोक्ति]] के अनंतस्पर्शियों में से कोई भी।
*एक अतिपरवलय में निम्नलिखित समवर्ती होते हैं: (1) अतिपरवलय के केंद्र से गुजरने वाला और अतिपरवलय के केंद्र पर केंद्रित एक वृत्त; (2) कोई भी रेखा जो अतिपरवलय के शीर्ष पर स्पर्शरेखा है; और (3) [[अतिशयोक्ति]] के अनंतस्पर्शियों में से कोई एक।
*निम्नलिखित भी समवर्ती हैं: (1) वह वृत्त जो अतिपरवलय के केंद्र पर केंद्रित है और जो अतिपरवलय के शीर्ष से होकर गुजरता है; (2) या तो नियता; और (3) कोई भी स्पर्शोन्मुख।
*निम्नलिखित भी समवर्ती हैं: (1) वह वृत्त जो अतिपरवलय के केंद्र पर केंद्रित है और जो अतिपरवलय के शीर्ष से होकर गुजरता है; (2) या तो नियता; और (3) कोई भी स्पर्शोन्मुख।


Line 64: Line 64:


*एक चतुष्फलक में, चार माध्यिकाएँ और तीन द्विमाध्यिकाएँ एक बिंदु पर संगामी होती हैं जिसे चतुष्फलक का केन्द्रक कहा जाता है।<ref>Leung, Kam-tim; and Suen, Suk-nam; "Vectors, matrices and geometry", Hong Kong University Press, 1994, pp. 53-54</ref>
*एक चतुष्फलक में, चार माध्यिकाएँ और तीन द्विमाध्यिकाएँ एक बिंदु पर संगामी होती हैं जिसे चतुष्फलक का केन्द्रक कहा जाता है।<ref>Leung, Kam-tim; and Suen, Suk-nam; "Vectors, matrices and geometry", Hong Kong University Press, 1994, pp. 53-54</ref>
*एक टेट्राहेड्रॉन # अन्य विशेष मामले वह होते हैं जिसमें विपरीत फलकों के त्रिभुजों के अंतःवृत्त और बाह्य वृत्तों से जुड़ने वाले [[cevian]] समवर्ती होते हैं, और एक टेट्राहेड्रॉन # अन्य विशेष मामलों में समवर्ती केवियन होते हैं जो शीर्षों को बिंदुओं से जोड़ते हैं टेट्राहेड्रोन के खुदे हुए गोले के साथ विपरीत चेहरों का संपर्क।
*एक आइसोडायनामिक टेट्राहेड्रॉन वह है जिसमें विपरीत चेहरों के केंद्रों में शीर्ष से जुड़ने वाले सेवियन समवर्ती होते हैं, और एक आइसोगोनिक टेट्राहेड्रॉन में समवर्ती सेवियन होते हैं जो टेट्राहेड्रॉन के अंकित गोले के साथ विपरीत चेहरों के संपर्क बिंदुओं को शीर्षों से जोड़ते हैं।
* एक [[ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन]] में चार ऊंचाई समवर्ती होती हैं।
* एक [[ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन]] में चार ऊंचाई समवर्ती होती हैं।


== बीजगणित ==
== बीजगणित ==
{{See also|Incidence (geometry)#Concurrence}}
{{See also|घटना (ज्यामिति) सहमति}}
रोचे-कैपेली प्रमेय के अनुसार, समीकरणों की एक प्रणाली सुसंगत समीकरण है यदि और केवल यदि [[गुणांक मैट्रिक्स]] का [[रैंक (रैखिक बीजगणित)]] [[संवर्धित मैट्रिक्स]] के रैंक के बराबर है (गुणांक मैट्रिक्स इंटरसेप्ट शर्तों के एक स्तंभ के साथ संवर्धित) , और सिस्टम का एक अनूठा समाधान है अगर और केवल अगर वह सामान्य रैंक चर की संख्या के बराबर है। इस प्रकार दो चर के साथ k समीकरणों के एक सेट से जुड़े विमान में k लाइनें समवर्ती हैं यदि और केवल अगर k × 2 गुणांक मैट्रिक्स की रैंक और k × 3 संवर्धित मैट्रिक्स की रैंक दोनों 2 हैं। उस में मामले में k समीकरणों में से केवल दो [[स्वतंत्र समीकरण]] हैं, और दो चर के लिए एक साथ दो पारस्परिक रूप से स्वतंत्र समीकरणों को हल करके संगामिति बिंदु पाया जा सकता है।
 
रोचे-कैपेली प्रमेय के अनुसार, समीकरणों की एक प्रणाली सुसंगत समीकरण है और केवल यदि [[गुणांक मैट्रिक्स]] का [[रैंक (रैखिक बीजगणित)]] [[संवर्धित मैट्रिक्स]] के रैंक के बराबर है (गुणांक मैट्रिक्स इंटरसेप्ट शर्तों के एक स्तंभ के साथ संवर्धित) , और सिस्टम का एक अनूठा समाधान है अगर और केवल अगर वह सामान्य रैंक चर की संख्या के बराबर है। इस प्रकार दो चर के साथ k समीकरणों के एक सेट से जुड़े विमान में k लाइनें समवर्ती हैं यदि और केवल अगर k × 2 गुणांक मैट्रिक्स की रैंक और k × 3 संवर्धित मैट्रिक्स की रैंक दोनों 2 हैं। उस में संबंध में k समीकरणों में से केवल दो [[स्वतंत्र समीकरण]] हैं, और दो चर के लिए एक साथ दो पारस्परिक रूप से स्वतंत्र समीकरणों को हल करके संगामिति बिंदु पाया जा सकता है।


== प्रोजेक्टिव ज्यामिति ==
== प्रोजेक्टिव ज्यामिति ==

Revision as of 20:56, 29 November 2022

ज्यामिति में, एक विमान या उच्च-आयामी स्थान में रेखा (ज्यामिति) को समवर्ती कहा जाता है यदि वे एक बिंदु (ज्यामिति) पर रेखा प्रतिच्छेदन करते हैं। वे समानांतर रेखाओं के विपरीत हैं।

उदाहरण

[[त्रिकोण]]

एक त्रिकोण में, समवर्ती रेखाओं के चार मूल प्रकार के सेट ऊंचाई , कोण द्विसंयोजक, माध्यिका और लंबवत द्विभाजक हैं:

  • एक त्रिभुज की ऊँचाई प्रत्येक शीर्ष से चलती है और विपरीत दिशा में एक समकोण पर मिलती है। वह बिंदु जहां तीन ऊंचाई मिलती है वह ऑर्थोसेंटर है।
  • कोण समद्विभाजक त्रिभुज के प्रत्येक शीर्ष से चलने वाली किरणें हैं और संबद्ध कोण को समद्विभाजित करती हैं। वे सभी केंद्र में मिलते हैं।
  • माध्यिकाएँ त्रिभुज के प्रत्येक शीर्ष को सम्मुख भुजा के मध्यबिंदु से जोड़ती हैं। तीनों माध्यिकाएँ केन्द्रक पर मिलती हैं।
  • लंब समद्विभाजक वे रेखाएँ होती हैं जो किसी त्रिभुज की प्रत्येक भुजा के मध्यबिंदुओं से 90 डिग्री के कोण पर निकलती हैं। तीन लंब समद्विभाजक परिकेन्द्र पर मिलते हैं।

त्रिभुज से जुड़ी रेखाओं के अन्य समुच्चय भी संगामी होते हैं। उदाहरण के लिए:

  • कोई भी माध्यिका (जो आवश्यक रूप से त्रिभुज के क्षेत्रफल का एक द्विभाजक है) दो अन्य क्षेत्र द्विभाजक के साथ समवर्ती है, जिनमें से प्रत्येक एक भुजा के समानांतर है।[1]
  • एक त्रिकोण का एक विदारक (ज्यामिति) एक रेखा खंड है जो त्रिकोण के समद्विभाजक क्षेत्र द्विभाजक और परिधि द्विभाजक है और तीन पक्षों में से एक के मध्य बिंदु पर एक समापन बिंदु है। तीन विदारक स्पाइक सर्कल के केंद्र में मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है।
  • त्रिभुज का एक विभाजक एक रेखा खंड होता है जिसका एक समापन बिंदु त्रिभुज के तीन शीर्षों में से एक पर होता है और परिधि को समद्विभाजित करता है। त्रिभुज के नागल बिंदु पर तीन विभाजक मिलते हैं।
  • त्रिभुज के माध्यम से कोई भी रेखा जो त्रिभुज के क्षेत्र और इसकी परिधि दोनों को आधे में विभाजित करती है, त्रिकोण के अंतःकेंद्र से होकर जाती है, और प्रत्येक त्रिभुज में इनमें से एक, दो या तीन रेखाएँ होती हैं।[2] इस प्रकार यदि उनमें से तीन हैं, तो वे मध्य में समानांतर होते हैं।
  • त्रिभुज का टैरी बिंदु त्रिभुज के शीर्षों से होकर त्रिभुज के पहले ब्रोकार्ड त्रिभुज की संगत भुजाओं पर लम्बवत रेखाओं की संगामिति का बिंदु है।
  • एक त्रिभुज का वर्गविभाजक बिंदु चार त्रिभुजों की यूलर रेखाओं की सहमति का बिंदु है: प्रश्न में त्रिभुज, और तीन त्रिभुज जो प्रत्येक के साथ दो शीर्ष साझा करते हैं और अन्य शीर्ष के रूप में इसका अंतःकेंद्र होता है।
  • नेपोलियन के अंक और उनके सामान्यीकरण संगामिति के बिंदु हैं। उदाहरण के लिए, पहला नेपोलियन बिंदु एक शीर्ष से विपरीत दिशा के बाहरी भाग पर खींचे गए समबाहु त्रिभुज के केंद्र से तीन रेखाओं की संगामिति का बिंदु है। इस धारणा का एक सामान्यीकरण जैकोबी बिंदु है।
  • डी लॉन्गचैम्प्स बिंदु यूलर रेखा के साथ कई रेखाओं की सहमति का बिंदु है।
  • तीन रेखाएँ, प्रत्येक दिए गए त्रिभुज की एक भुजा पर एक बाहरी समबाहु त्रिभुज खींचकर और नए शीर्ष को मूल त्रिभुज के विपरीत शीर्ष से जोड़कर बनाई गई हैं, जो एक बिंदु पर समवर्ती हैं जिसे त्रिभुज केंद्र पहला आइसोगोनिक केंद्र कहा जाता है। जिस स्थिति में मूल त्रिभुज का कोई कोण 120° से अधिक नहीं है, यह बिंदु भी फर्मेट बिंदु है।
  • एपोलोनियस बिंदु तीन रेखाओं की सहमति का बिंदु है, जिनमें से प्रत्येक वृत्त के स्पर्शरेखा के एक बिंदु को जोड़ता है जिससे त्रिभुज के बाह्य वृत्त आंतरिक रूप से स्पर्शरेखा होते हैं, त्रिभुज के विपरीत शीर्ष पर।

चतुर्भुज

  • चतुर्भुज के दो विशेष रेखा खंड (विपरीत भुजाओं के मध्यबिंदुओं को मिलाने वाले खंड) और विकर्णों के मध्यबिंदुओं को मिलाने वाले रेखाखंड समवर्ती होते हैं और सभी उनके प्रतिच्छेदन बिंदु द्वारा द्विभाजित होते हैं।[3]: p.125 
  • एक स्पर्शरेखा चतुर्भुज में, चार कोण समद्विभाजक अंतर्वृत्त के केंद्र पर मिलते हैं।[4]
  • एक स्पर्शरेखा चतुर्भुज की अन्य संगामितिओं को स्पर्शरेखा चतुर्भुज समवर्ती और लम्बवत रेखाएँ दी गई हैं।
  • एक चक्रीय चतुर्भुज में, चार रेखा खंड, प्रत्येक एक तरफ लंबवत और विपरीत दिशा के मध्यबिंदु से गुजरते हुए, संगामी होते हैं।[3]: p.131,  [5] इन रेखाखंडों को मल्टिट्यूड कहा जाता है,[6] जो मध्यबिंदु ऊंचाई के लिए एक संक्षिप्त नाम है। उनके सामान्य बिंदु को एंटीसेंटर कहा जाता है।
  • एक उत्तल चतुर्भुज पूर्व-स्पर्शरेखा चतुर्भुज होता है। पूर्व-स्पर्शरेखा अगर और केवल अगर छह समवर्ती कोण द्विभाजक हैं: आंतरिक द्विभाजक कोण द्विभाजक दो विपरीत शीर्ष कोणों पर, बाहरी कोण द्विभाजक अन्य दो शीर्ष कोणों पर, और बाहरी कोण द्विभाजक उन कोणों पर बनते हैं जहाँ विपरीत भुजाओं के विस्तार प्रतिच्छेद करते हैं।

षट्भुज

  • यदि एक चक्रीय बहुभुज षट्भुज की क्रमिक भुजाएँ a, b, c, d, e, f हैं, तो तीन मुख्य विकर्ण एक ही बिंदु पर मिलते हैं यदि और केवल यदि ace = bdf.[7]
  • यदि एक षट्भुज में एक उत्कीर्ण आकृति शंकु है, तो ब्रायनचोन के प्रमेय द्वारा इसके प्रमुख विकर्ण समवर्ती होते हैं (जैसा कि ऊपर की छवि में है)।
  • पप्पस के षट्भुज प्रमेय के दोहरे में समवर्ती रेखाएँ उत्पन्न होती हैं।
  • एक चक्रीय षट्भुज के प्रत्येक पक्ष के लिए, दिए गए पक्ष के बाहर एक त्रिभुज बनाते हुए, आसन्न भुजाओं को उनके प्रतिच्छेदन तक बढ़ाएँ। तब विपरीत त्रिभुजों के परिकेंद्रों को जोड़ने वाले खंड संगामी होते हैं।[8]


नियमित बहुभुज

  • यदि एक नियमित बहुभुज की भुजाओं की संख्या सम है, तो विपरीत शीर्षों को जोड़ने वाले विकर्ण बहुभुज के केंद्र में समवर्ती होते हैं।

मंडलियां

  • सभी वृत्त का द्विभाजन रेखाखंड द्विभाजक वृत्त की जीवा वृत्त के केंद्र (ज्यामिति) पर समवर्ती होती हैं।
  • स्पर्शरेखा के बिंदुओं पर एक वृत्त की स्पर्शरेखाओं की लंबवत रेखाएँ केंद्र में समवर्ती होती हैं।
  • एक वृत्त के सभी क्षेत्र समद्विभाजक और परिमाप समद्विभाजक व्यास हैं, और वे वृत्त के केंद्र में समवर्ती हैं।

दीर्घवृत्त

  • दीर्घवृत्त के सभी क्षेत्र समद्विभाजक और परिधि समद्विभाजक दीर्घवृत्त के केंद्र में समवर्ती होते हैं।

हाइपरबोलस

  • एक अतिपरवलय में निम्नलिखित समवर्ती होते हैं: (1) अतिपरवलय के केंद्र से गुजरने वाला और अतिपरवलय के केंद्र पर केंद्रित एक वृत्त; (2) कोई भी रेखा जो अतिपरवलय के शीर्ष पर स्पर्शरेखा है; और (3) अतिशयोक्ति के अनंतस्पर्शियों में से कोई एक।
  • निम्नलिखित भी समवर्ती हैं: (1) वह वृत्त जो अतिपरवलय के केंद्र पर केंद्रित है और जो अतिपरवलय के शीर्ष से होकर गुजरता है; (2) या तो नियता; और (3) कोई भी स्पर्शोन्मुख।

चतुष्फलक

  • एक चतुष्फलक में, चार माध्यिकाएँ और तीन द्विमाध्यिकाएँ एक बिंदु पर संगामी होती हैं जिसे चतुष्फलक का केन्द्रक कहा जाता है।[9]
  • एक आइसोडायनामिक टेट्राहेड्रॉन वह है जिसमें विपरीत चेहरों के केंद्रों में शीर्ष से जुड़ने वाले सेवियन समवर्ती होते हैं, और एक आइसोगोनिक टेट्राहेड्रॉन में समवर्ती सेवियन होते हैं जो टेट्राहेड्रॉन के अंकित गोले के साथ विपरीत चेहरों के संपर्क बिंदुओं को शीर्षों से जोड़ते हैं।
  • एक ऑर्थोसेन्ट्रिक टेट्राहेड्रॉन में चार ऊंचाई समवर्ती होती हैं।

बीजगणित

रोचे-कैपेली प्रमेय के अनुसार, समीकरणों की एक प्रणाली सुसंगत समीकरण है और केवल यदि गुणांक मैट्रिक्स का रैंक (रैखिक बीजगणित) संवर्धित मैट्रिक्स के रैंक के बराबर है (गुणांक मैट्रिक्स इंटरसेप्ट शर्तों के एक स्तंभ के साथ संवर्धित) , और सिस्टम का एक अनूठा समाधान है अगर और केवल अगर वह सामान्य रैंक चर की संख्या के बराबर है। इस प्रकार दो चर के साथ k समीकरणों के एक सेट से जुड़े विमान में k लाइनें समवर्ती हैं यदि और केवल अगर k × 2 गुणांक मैट्रिक्स की रैंक और k × 3 संवर्धित मैट्रिक्स की रैंक दोनों 2 हैं। उस में संबंध में k समीकरणों में से केवल दो स्वतंत्र समीकरण हैं, और दो चर के लिए एक साथ दो पारस्परिक रूप से स्वतंत्र समीकरणों को हल करके संगामिति बिंदु पाया जा सकता है।

प्रोजेक्टिव ज्यामिति

प्रक्षेपी ज्यामिति में, दो आयामों में संगामिति समरूपता का द्वैत (प्रक्षेपी ज्यामिति) है; तीन आयामों में, संगामिति समरूपता का द्वैत है।

संदर्भ

  1. Dunn, J. A., and Pretty, J. E., "Halving a triangle," Mathematical Gazette 56, May 1972, 105-108.
  2. Kodokostas, Dimitrios, "Triangle Equalizers," Mathematics Magazine 83, April 2010, pp. 141-146.
  3. 3.0 3.1 Altshiller-Court, Nathan (2007) [1952], College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, pp. 131, 137–8, ISBN 978-0-486-45805-2, OCLC 78063045
  4. Andreescu, Titu and Enescu, Bogdan, Mathematical Olympiad Treasures, Birkhäuser, 2006, pp. 64–68.
  5. Honsberger, Ross (1995), "4.2 Cyclic quadrilaterals", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library, vol. 37, Cambridge University Press, pp. 35–39, ISBN 978-0-88385-639-0
  6. Weisstein, Eric W. "Maltitude". MathWorld.
  7. Cartensen, Jens, "About hexagons", Mathematical Spectrum 33(2) (2000-2001), 37-40.
  8. Nikolaos Dergiades, "Dao's theorem on six circumcenters associated with a cyclic hexagon", Forum Geometricorum 14, 2014, 243--246. http://forumgeom.fau.edu/FG2014volume14/FG201424index.html
  9. Leung, Kam-tim; and Suen, Suk-nam; "Vectors, matrices and geometry", Hong Kong University Press, 1994, pp. 53-54


इस पेज में लापता आंतरिक लिंक की सूची

  • अंतरिक्ष
  • लाइन-लाइन चौराहा
  • समानांतर रेखाएं
  • समतल ज्यामिति)
  • मेडियन (ज्यामिति)
  • circumcenter
  • वर्टेक्स (ज्यामिति)
  • मध्य त्रिकोण
  • अन्तःवृत्त
  • स्प्लिटर (ज्यामिति)
  • बहिवृत्त
  • यूलर लाइन
  • नेपोलियन इशारा करता है
  • शिफलर पॉइंट
  • त्रिभुज ब्रोकेड
  • लॉन्गचैम्प्स बिंदु से
  • टैरी पॉइंट
  • चतुष्कोष
  • कोण द्विभाजक
  • सीधा
  • भूतपूर्व स्पर्शरेखा चतुर्भुज
  • अंकित आंकड़ा
  • शंकुधर
  • द्विविभाजितता
  • घेरा
  • अंडाकार
  • चतुर्पाश्वीय
  • खुदा हुआ गोला
  • त्रिभुज के अंतःवृत्त और बहिर्वृत्त
  • लगातार समीकरण
  • समरैखिकता
  • समतलीयता

बाहरी संबंध