सेप्टिक समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Polynomial equation of degree 7}}
{{short description|Polynomial equation of degree 7}}
{{Other uses|सेप्टिक ( विसंदिग्धीकरण)}}
{{Other uses|सेप्टिक ( विसंदिग्धीकरण)}}
[[Image:Septic graph.svg|thumb|right|233px|डिग्री 7 के एक बहुपद का ग्राफ, 7 [[वास्तविक संख्या]] के साथ एक बहुपद का मूल (क्रॉसिंग) {{math|''x''}} अक्ष) और 6 [[महत्वपूर्ण बिंदु (गणित)]]। [[न्यूनतम]] की संख्या और ऊर्ध्वाधर स्थान के आधार पर, सेप्टिक में उनकी बहुलता के साथ 7, 5, 3, या 1 वास्तविक रूट गिना जा सकता है; [[जटिल संख्या]] गैर-वास्तविक जड़ों की संख्या 7 माइनस वास्तविक जड़ों की संख्या है।]][[बीजगणित]] में, एक सेप्टिक [[समीकरण]] , नीचे लिखे रूप का एक समीकरण है
[[Image:Septic graph.svg|thumb|right|233px|डिग्री 7 के एक बहुपद का ग्राफ, 7 [[वास्तविक संख्या]] के साथ एक बहुपद का मूल (क्रॉसिंग) {{math|''x''}} अक्ष) और 6 [[महत्वपूर्ण बिंदु (गणित)]]। [[न्यूनतम]] की संख्या और ऊर्ध्वाधर स्थान के आधार पर, सेप्टिक में उनकी बहुलता के साथ 7, 5, 3, या 1 वास्तविक मूल गिना जा सकता है; [[जटिल संख्या]] गैर-वास्तविक जड़ों की संख्या 7 माइनस वास्तविक जड़ों की संख्या है।]][[बीजगणित]] में, एक सेप्टिक [[समीकरण]] , नीचे लिखे रूप का एक समीकरण है


:<math>ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+gx+h=0,\,</math>
:<math>ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+gx+h=0,\,</math>
Line 18: Line 18:


== हल करने योग्य सेप्टिक्स ==
== हल करने योग्य सेप्टिक्स ==
कुछ सातवीं डिग्री के समीकरणों को मूल अभिव्यक्ति में गुणनखंड बनाकर हल किया जा सकता है, लेकिन अन्य सेप्टिक्स नहीं कर सकते। इवरिस्ट गैलोइस ने यह निर्धारित करने के लिए तकनीक विकसित की कि क्या किसी दिए गए समीकरण को रेडिकल्स द्वारा हल किया जा सकता है जिसने गैलोइस सिद्धांत के क्षेत्र को जन्म दिया। एक अलघुकरणीय लेकिन हल करने योग्य सेप्टिक का उदाहरण देने के लिए, कोई हल करने योग्य डे मोइवर [[क्विंटिक]] को प्राप्त करने के लिए सामान्य कर सकता है,
कुछ सातवीं डिग्री के समीकरणों को मूल अभिव्यक्ति में गुणनखंड बनाकर हल किया जा सकता है, लेकिन अन्य सेप्टिक्स को नहीं कर सकते। इवरिस्ट गैलोइस ने यह निर्धारित करने के लिए कि क्या किसी दिए गए समीकरण को रेडिकल्स द्वारा हल किया जा सकता है, एक  तकनीक विकसित की जिसने गैलोइस सिद्धांत के क्षेत्र को जन्म दिया। एक अलघुकरणीय लेकिन हल करने योग्य सेप्टिक का उदाहरण देने के लिए, कोई हल प्राप्त करने के लिए समाधेय डे मोइवर [[क्विंटिक]] का सामान्यीकरण कर सकता है,
:<math>x^7+7\alpha x^5+14\alpha^2x^3+7\alpha^3x+\beta = 0\,</math>,
:<math>x^7+7\alpha x^5+14\alpha^2x^3+7\alpha^3x+\beta = 0\,</math>,


जहाँ सहायक समीकरण है
जहाँ सहायक समीकरण है
:<math>y^2+\beta y-\alpha^7 = 0\,</math>.
:<math>y^2+\beta y-\alpha^7 = 0\,</math>.


Line 29: Line 29:


:<math>x_k = \omega_k\sqrt[7]{y_1} + \omega_k^6\sqrt[7]{y_2}</math>
:<math>x_k = \omega_k\sqrt[7]{y_1} + \omega_k^6\sqrt[7]{y_2}</math>
जहाँ पर {{math|''ω<sub>k</sub>''}} एकता के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोज़ समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री {{math|''k''}} के लिए सामान्यीकृत किया जाता है, जरूरी नहीं  है कि प्रधान हो।
जहाँ पर {{math|''ω<sub>k</sub>''}} इकाई के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोज़ समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री {{math|''k''}} के लिए सामान्यीकृत किया जाता है, जरूरी नहीं  है कि प्रधान हो।


एक और समाधान परिवार है,
एक और समाधान परिवार है,
Line 39: Line 39:
इन सेप्टिक्स का गैलोज़ समूह ऑर्डर 14 का [[डायहेड्रल समूह]] है।
इन सेप्टिक्स का गैलोज़ समूह ऑर्डर 14 का [[डायहेड्रल समूह]] है।


सामान्य सेप्टिक समीकरण को [[वैकल्पिक समूह]] या [[सममित समूह]] गैलोइस समूह के साथ हल किया जा सकता है {{math|''A''<sub>7</sub>}} या {{math|''S''<sub>7</sub>}}.<ref name="BeyondQuartic"/>इस तरह के समीकरणों को उनके समाधान के लिए [[जीनस (गणित)]] 3 के [[हाइपरेलिप्टिक फ़ंक्शन|हाइपरेलिप्टिक फलन]] और संबंधित थीटा कार्यों की आवश्यकता होती है।<ref name="BeyondQuartic"/>हालाँकि, इन समीकरणों का विशेष रूप से उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।<ref name="BeyondQuartic">{{citation|url=https://books.google.com/books?id=9cKX_9zkeg4C&q=septic+equation&pg=PA143 |author=R. Bruce King |title=Beyond the Quartic Equation |date=16 January 2009 |publisher= Birkhaüser|page=  143 and 144|isbn=9780817648497 }}</ref>
सामान्य सेप्टिक समीकरण को [[वैकल्पिक समूह|वैकल्पिक]] या [[सममित समूह|सममित]] गैलोइस समूह {{math|''A''<sub>7</sub>}} या {{math|''S''<sub>7</sub>}} के साथ हल किया जा सकता है। <ref name="BeyondQuartic"/>इस तरह के समीकरणों को उनके समाधान के लिए [[जीनस (गणित)|जीनस]] 3 के [[हाइपरेलिप्टिक फ़ंक्शन|हाइपरेलिप्टिक फलन]] और उससे संबंधित थीटा फलनो की आवश्यकता होती है।<ref name="BeyondQuartic"/>चूंकि, उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन करते इन समीकरणों का विशेष रूप से अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।<ref name="BeyondQuartic">{{citation|url=https://books.google.com/books?id=9cKX_9zkeg4C&q=septic+equation&pg=PA143 |author=R. Bruce King |title=Beyond the Quartic Equation |date=16 January 2009 |publisher= Birkhaüser|page=  143 and 144|isbn=9780817648497 }}</ref>  
सेप्टिक्स निम्नतम क्रम के समीकरण हैं जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर कार्यों को अध्यारोपित करके प्राप्त किए जा सकते हैं। हिल्बर्ट की तेरहवीं समस्या|हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य मामले में संभव नहीं था। [[व्लादिमीर अर्नोल्ड]] ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।<ref>{{citation |chapter-url=https://books.google.com/books?id=SpTv44Ia-J0C&pg=PA254 |title=Kolmogorov's heritage in mathematics |author=Vasco Brattka |chapter=Kolmogorov's Superposition Theorem|date=13 September 2007 |publisher=Springer|isbn=9783540363514 }}</ref> हालांकि, अर्नोल्ड ने खुद को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय कार्यों को सुपरइम्पोज़ करके प्राप्त किए जा सकते हैं (समस्या अभी भी खुली है)।<ref>{{citation |url=http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz |title=From Hilbert's Superposition Problem to Dynamical Systems |author=V.I. Arnold |page=4}}</ref>
 
सेप्टिक्स निम्नतम क्रम के समीकरण हैं जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं। हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य स्थिति में संभव नहीं था। [[व्लादिमीर अर्नोल्ड]] ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।<ref>{{citation |chapter-url=https://books.google.com/books?id=SpTv44Ia-J0C&pg=PA254 |title=Kolmogorov's heritage in mathematics |author=Vasco Brattka |chapter=Kolmogorov's Superposition Theorem|date=13 September 2007 |publisher=Springer|isbn=9783540363514 }}</ref> चूंकि, अर्नोल्ड ने खुद को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं (समस्या अभी भी बनी हुयी है)।<ref>{{citation |url=http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect1.ps.gz |title=From Hilbert's Superposition Problem to Dynamical Systems |author=V.I. Arnold |page=4}}</ref>
 




Line 46: Line 48:
[[Image:Fano plane.svg|thumb|[[फानो विमान]]]]रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोज़ समूह होता है जो या तो ऑर्डर 7 का [[चक्रीय समूह]] होता है, या ऑर्डर 14 का डायहेड्रल समूह या ऑर्डर 21 या 42 का [[मेटासाइक्लिक समूह]] होता है।<ref name="BeyondQuartic"/>  
[[Image:Fano plane.svg|thumb|[[फानो विमान]]]]रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोज़ समूह होता है जो या तो ऑर्डर 7 का [[चक्रीय समूह]] होता है, या ऑर्डर 14 का डायहेड्रल समूह या ऑर्डर 21 या 42 का [[मेटासाइक्लिक समूह]] होता है।<ref name="BeyondQuartic"/>  


{{math|''L''(3, 2)}}<nowiki> }} गाल्वा समूह (क्रम 168 का) 7 वर्टेक्स लेबल के </nowiki>[[क्रमपरिवर्तन]] से बनता है जो फ़ानो विमान में 7 पंक्तियों को संरक्षित करता है।<ref name="BeyondQuartic" />इस गैलोज़ समूह के साथ सेप्टिक समीकरण {{math|''L''(3, 2)}} उनके समाधान के लिए अण्डाकार कार्यों की आवश्यकता होती है, लेकिन हाइपरलिप्टिक कार्यों की नहीं।<ref name="BeyondQuartic" />*अन्यथा एक सेप्टिक का गैलोज़ समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।
{{math|''L''(3, 2)}} गाल्वा समूह (क्रम 168 का) 7 शीर्ष लेबल के [[क्रमपरिवर्तन]] से बनता है जो फ़ानो विमान में 7 पंक्तियों को संरक्षित करता है।<ref name="BeyondQuartic" /> गैलोज़ समूह के साथ इस सेप्टिक समीकरण {{math|''L''(3, 2)}} को अपने समाधान के लिए दीर्घवृत्तीय फलनो की आवश्यकता होती है, अतिपरवलयाकर फलनो की आवश्यकता नहीं होती है ।<ref name="BeyondQuartic" />
 
अन्यथा एक सेप्टिक का गैलोज़ समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।


== एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण ==
== एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण ==

Revision as of 13:52, 29 November 2022

डिग्री 7 के एक बहुपद का ग्राफ, 7 वास्तविक संख्या के साथ एक बहुपद का मूल (क्रॉसिंग) x अक्ष) और 6 महत्वपूर्ण बिंदु (गणित)न्यूनतम की संख्या और ऊर्ध्वाधर स्थान के आधार पर, सेप्टिक में उनकी बहुलता के साथ 7, 5, 3, या 1 वास्तविक मूल गिना जा सकता है; जटिल संख्या गैर-वास्तविक जड़ों की संख्या 7 माइनस वास्तविक जड़ों की संख्या है।

बीजगणित में, एक सेप्टिक समीकरण , नीचे लिखे रूप का एक समीकरण है

जहाँ पर a ≠ 0.

एक सेप्टिक फलन, निम्नलिखित रूप का एक फलन है

जहाँ पर a ≠ 0। दूसरे शब्दों में, यह 7 की घात का एक बहुपद है। यदि a = 0, तो f, 6 घात का एक फलन है (b ≠ 0), 5 घात का फलन (b = 0, c ≠ 0), आदि।

f(x) = 0 रखकर फलन से समीकरण प्राप्त किया जा सकता है :

गुणांक a, b, c, d, e, f, g, h या तो पूर्णांक, परिमेय संख्या, वास्तविक संख्या, जटिल संख्या या, अधिक सामान्यतः, किसी भी क्षेत्र के सदस्य हो सकते हैं।

क्योंकि उनके पास एक विषम डिग्री है। जब ग्राफ़ किया जाता है तो सेप्टिक फलन, क्विंटिक फलन या घन फलन के समान दिखाई देते हैं, केवल इसके कि उनके पास अतिरिक्त उच्चतम और निम्नतम और स्थानीय निम्न (तीन उच्च और तीन निम्न तक) हो सकते हैं। सेप्टिक फलन का व्युत्पन्न एक सेक्स्टिक फलन (6 घात का एक फलन) है।

हल करने योग्य सेप्टिक्स

कुछ सातवीं डिग्री के समीकरणों को मूल अभिव्यक्ति में गुणनखंड बनाकर हल किया जा सकता है, लेकिन अन्य सेप्टिक्स को नहीं कर सकते। इवरिस्ट गैलोइस ने यह निर्धारित करने के लिए कि क्या किसी दिए गए समीकरण को रेडिकल्स द्वारा हल किया जा सकता है, एक तकनीक विकसित की जिसने गैलोइस सिद्धांत के क्षेत्र को जन्म दिया। एक अलघुकरणीय लेकिन हल करने योग्य सेप्टिक का उदाहरण देने के लिए, कोई हल प्राप्त करने के लिए समाधेय डे मोइवर क्विंटिक का सामान्यीकरण कर सकता है,

,

जहाँ सहायक समीकरण है

.

इसका अर्थ है कि सेप्टिक को u तथा v के बीच x = u + v, uv + α = 0 तथा u7 + v7 + β = 0 से प्राप्त किया जाता है।

यह इस प्रकार है जिससे कि सेप्टिक की सात मूल को प्राप्त किया जा सकता है

जहाँ पर ωk इकाई के 7 सातवें मूल में से कोई भी है। इस सेप्टिक का गैलोज़ समूह क्रम 42 का अधिकतम हल करने योग्य समूह है। इसे आसानी से किसी भी अन्य डिग्री k के लिए सामान्यीकृत किया जाता है, जरूरी नहीं है कि प्रधान हो।

एक और समाधान परिवार है,

जिसके सदस्य संख्या क्षेत्रों के क्लूनर के डेटाबेस में दिखाई देते हैं। इसका विवेचक है

इन सेप्टिक्स का गैलोज़ समूह ऑर्डर 14 का डायहेड्रल समूह है।

सामान्य सेप्टिक समीकरण को वैकल्पिक या सममित गैलोइस समूह A7 या S7 के साथ हल किया जा सकता है। [1]इस तरह के समीकरणों को उनके समाधान के लिए जीनस 3 के हाइपरेलिप्टिक फलन और उससे संबंधित थीटा फलनो की आवश्यकता होती है।[1]चूंकि, उन्नीसवीं शताब्दी के गणितज्ञों द्वारा बीजीय समीकरणों के समाधान का अध्ययन करते इन समीकरणों का विशेष रूप से अध्ययन नहीं किया गया था, क्योंकि सेक्स्टिक समीकरणों के समाधान पहले से ही कंप्यूटर के बिना उनकी कम्प्यूटेशनल क्षमताओं की सीमा पर थे।[1]

सेप्टिक्स निम्नतम क्रम के समीकरण हैं जिनके लिए यह स्पष्ट नहीं है कि उनके समाधान दो चरों के निरंतर फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं। हिल्बर्ट की 13वीं समस्या अनुमान था, यह सातवें डिग्री के समीकरणों के सामान्य स्थिति में संभव नहीं था। व्लादिमीर अर्नोल्ड ने 1957 में यह प्रदर्शित करते हुए इसे हल किया कि यह हमेशा संभव था।[2] चूंकि, अर्नोल्ड ने खुद को वास्तविक हिल्बर्ट समस्या माना कि क्या सेप्टिक्स के लिए उनके समाधान दो चर के बीजगणितीय फलनो को अध्यारोपित करके प्राप्त किए जा सकते हैं (समस्या अभी भी बनी हुयी है)।[3]


गैलोइस समूह

रेडिकल्स द्वारा हल किए जा सकने वाले सेप्टिक समीकरणों में गैलोज़ समूह होता है जो या तो ऑर्डर 7 का चक्रीय समूह होता है, या ऑर्डर 14 का डायहेड्रल समूह या ऑर्डर 21 या 42 का मेटासाइक्लिक समूह होता है।[1]

L(3, 2) गाल्वा समूह (क्रम 168 का) 7 शीर्ष लेबल के क्रमपरिवर्तन से बनता है जो फ़ानो विमान में 7 पंक्तियों को संरक्षित करता है।[1] गैलोज़ समूह के साथ इस सेप्टिक समीकरण L(3, 2) को अपने समाधान के लिए दीर्घवृत्तीय फलनो की आवश्यकता होती है, अतिपरवलयाकर फलनो की आवश्यकता नहीं होती है ।[1]

अन्यथा एक सेप्टिक का गैलोज़ समूह या तो क्रम 2520 का वैकल्पिक समूह है या क्रम 5040 का सममित समूह है।

एक चक्रीय पंचभुज या षट्भुज के वर्ग क्षेत्र के लिए सेप्टिक समीकरण

चक्रीय पेंटागन के क्षेत्रफल का वर्ग एक सेप्टिक समीकरण का एक मूल है, जिसके गुणांक पंचभुज की भुजाओं के सममित फलन होते हैं।[4] चक्रीय षट्भुज के क्षेत्रफल के वर्ग के बारे में भी यही सच है।[5]


यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 R. Bruce King (16 January 2009), Beyond the Quartic Equation, Birkhaüser, p. 143 and 144, ISBN 9780817648497
  2. Vasco Brattka (13 September 2007), "Kolmogorov's Superposition Theorem", Kolmogorov's heritage in mathematics, Springer, ISBN 9783540363514
  3. V.I. Arnold, From Hilbert's Superposition Problem to Dynamical Systems, p. 4
  4. Weisstein, Eric W. "Cyclic Pentagon." From MathWorld--A Wolfram Web Resource. [1]
  5. Weisstein, Eric W. "Cyclic Hexagon." From MathWorld--A Wolfram Web Resource. [2]