डेटा अखंडता: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (14 revisions imported from alpha:डेटा_अखंडता) |
(No difference)
|
Revision as of 09:30, 13 December 2022
डेटा अखंडता का रखरखाव, और उसके संपूर्ण जीवनचक्र पर डेटा शुद्धता और स्थिरता का आश्वासन है |[1] और किसी भी प्रणाली के प्रारुप, कार्यान्वयन और प्रयोग के लिए एक महत्वपूर्ण दृष्टिकोण है जो डेटा का समान, प्रक्रियाओं या पुनर्प्राप्त करता है। शब्द का कार्यक्षेत्र व्यापक है और विशिष्ट संदर्भ के आधार पर व्यापक रूप से भिन्न अर्थ हो सकते हैं – यहाँ तक की कम्प्यूटिंग की एक ही सामान्य छतरी के नीचे भी। यह कभी-कभी डेटा गुणवत्ता के लिए प्रॉक्सी शब्द के रूप में प्रयोग किया जाता है,[2] जबकि डेटा सत्यापन डेटा अखंडता के लिए एक शर्त है।[3]
डेटा अखंडता और डेटा भ्रष्टाचार दोनों एक दूसरे के विपरीत है।[4] किसी भी डेटा अखंडता तकनीक का समग्र उद्देश्य समान है: सुनिश्चित यह करना होता है कि डेटा ठीक उसी तरह से रिकॉर्ड किया गया है (जैसे डेटाबेस परस्पर अनन्य संभावनाओं को सही विधि से अस्वीकार कर रहा है)। इसके अतिरिक्त, बाद में डेटा पुनर्प्राप्ति पर, सुनिश्चित करें कि डेटा वही है जब इसे मूल रूप से रिकॉर्ड किया गया था। संक्षेप में, डेटा अखंडता का उद्देश्य सूचना में अनजाने में परिवर्तन को रोकना है। डेटा अखंडता को डेटा सुरक्षा, अनधिकृत पार्टियों से डेटा की सुरक्षा के अनुशासन के साथ भ्रमित नहीं होना चाहिए।
दुर्भावनापूर्ण उद्देश्य, अप्रत्याशित हार्डवेयर विफलता और मानवीय त्रुटि सहित भंडारण, पुनर्प्राप्ति या प्रसंस्करण संचालन के परिणामस्वरूप डेटा में कोई भी अनपेक्षित परिवर्तन, डेटा अखंडता की विफलता है। यदि परिवर्तन अनधिकृत पहुंच का परिणाम हैं, तो यह डेटा सुरक्षा की विफलता भी हो सकती है। इसमें सम्मालित डेटा के आधार पर, यह खुद को सौम्य के रूप में प्रकट कर सकता है, क्योंकि एक छवि में एकल पिक्सेल एक अलग रंग दिखाई देता है जो मूल रूप से अँकित किया गया था, छुट्टियों की तस्वीरें या व्यवसाय का महत्वपूर्ण डेटाबेस की हानि, जीवन-महत्वपूर्ण प्रणाली में मानव जीवन के विनाशकारी नुकसान तक।।
अखंडता के प्रकार
भौतिक अखंडता
भौतिक अखंडता उन चुनौतियों से निपटती है जो डेटा को सही विधि से संग्रहीत करने और प्राप्त करने से जुड़ी होती हैं। भौतिक अखंडता के साथ चुनौतियों में वैद्युतयांत्रिकी दोष, डिज़ाइन दोष, भौतिक थकावट (सामग्री), संक्षारण, बिजली के कटौती का समय, प्राकृतिक आपदाएं, और अन्य विशेष पर्यावरणीय खतरे जैसे आयनीकरण विकिरण, अत्यधिक तापमान, दबाव और जी-बल सम्मालित हो सकते हैं। भौतिक अखंडता सुनिश्चित करने में अनावश्यक(इंजीनियरिंग) हार्डवेयर, एक निर्बाध बिजली आपूर्ति, कुछ प्रकार के आरऐआईडी सरणियाँ, विकिरण कठोर चिप्स, ईसीसी मेमोरी, त्रुटि-सुधार करने वाली मेमोरी, एक संकुल फाइल सिस्टम का प्रयोग, ब्लॉक स्तर को नियोजित करने वाली फ़ाइल सिस्टम का प्रयोग करने जैसी विधियाँ सम्मालित हैं। अंततः, जैसे कि जेडएफएस, स्टोरेज एरेज़ जो समान गणनाओं की गणना करते हैं जैसे अनन्य या क्रिप्टोग्राफ़िक हैश फ़लन का प्रयोग करते हैं और यहां तक कि महत्वपूर्ण उपव्यवस्था पर निगरानी घड़ी भी रखते हैं।
भौतिक अखंडता अधिकांश त्रुटि का पता लगाने वाले कलन विधि का व्यापक प्रयोग करती है जिसे त्रुटि-सुधार कोड के रूप में जाना जाता है। मानव-प्रेरित डेटा अखंडता त्रुटियों को अधिकांश सरल जांच और कलन विधि जैसे डैम कलन विधि या लुहान एल्गोरिथम के प्रयोग के माध्यम से पता लगाया जाता है। मानव मध्यस्थ (जैसे क्रेडिट कार्ड या बैंक रूटिंग नंबर) द्वारा एक कंप्यूटर सिस्टम से दूसरे में मानवीय प्रतिलेख के बाद डेटा अखंडता को बनाए रखने के लिए इनका प्रयोग किया जाता है। कंप्यूटर-प्रेरित प्रतिलेख त्रुटियों को हैश फलन के माध्यम से पता लगाया जा सकता है।
उत्पादन प्रणालियों में, डेटा अखंडता की विभिन्न डिग्री सुनिश्चित करने के लिए इन तकनीकों का एक साथ प्रयोग किया जाता है। उदाहरण के लिए, एक क्लस्टर फ़ाइल सिस्टम को दोष-सहिष्णु आरऐआईडी सरणी पर आकार दिया जा सकता है, लेकिन साइलेंट डेटा भ्रष्टाचार का पता लगाने और उसे रोकने के लिए ब्लॉक-स्तरीय चेकसम प्रदान नहीं कर सकता है। एक अन्य उदाहरण के रूप में, एक डेटाबेस प्रबंधन प्रणाली ऐसीआईडी गुणों के अनुरूप हो सकती है, लेकिन आरऐआईडी नियंत्रक या हार्ड डिस्क ड्राइव का आंतरिक राइट कैश नहीं हो सकता है।
तार्किक अखंडता
इस प्रकार की अखंडता का संबंध किसी विशेष संदर्भ में डेटा के एक टुकड़े की शुद्धता (कंप्यूटर विज्ञान) या तर्कसंगतता से है। इसमें संबंध का डेटाबेस में संदर्भित अखंडता और इकाई अखंडता जैसे विषय सम्मालित हैं या रोबोटिक सिस्टम में असंभव सेंसर डेटा को सही ढंग से अनदेखा करना सम्मालित है। इन चिंताओं में यह सुनिश्चित करना सम्मालित है कि डेटा "समझ में आता है" अपने पर्यावरण को देखते हुए। चुनौतियों में सॉफ्टवेयर बग, डिज़ाइन दोष और मानवीय त्रुटियाँ सम्मालित हैं। तार्किक अखंडता सुनिश्चित करने के सामान्य विधियो में चेक बाधा, विदेशी कुंजी बाधा, प्रोग्राम अभिकथन (कंप्यूटिंग) और अन्य रन-टाइम विवेक जांच जैसी चीजें सम्मालित हैं।
भौतिक और तार्किक अखंडता दोनों में अधिकांश कई आम चुनौतियां होती हैं जैसे मानवीय त्रुटियां और डिजाइन की खामियां, और दोनों का डेटा रिकॉर्ड करने और पुनर्प्राप्त करने के समवर्ती अनुरोधों से उचित रूप से निपटना चाहिए, जिनमें से बाद वाला पूरी तरह से अपने आप में एक विषय है।
यदि किसी डेटा सेक्टर में केवल तार्किक त्रुटि है, तो इसे नए डेटा के साथ अधिलेखित करके पुन: प्रयोग किया जा सकता है। भौतिक त्रुटि के स्थिति में, प्रभावित डेटा क्षेत्र स्थायी रूप से अनुपयोगी है।
डेटाबेस
डेटा अखंडता में डेटा प्रतिधारण के लिए दिशानिर्देश होते हैं, किसी विशेष डेटाबेस में डेटा को बनाए रखने की अवधि को निर्दिष्ट या गारंटी देना। डेटा अखंडता को प्राप्त करने के लिए, ये नियम लगातार और नियमित रूप से सिस्टम में प्रवेश करने वाले सभी डेटा पर लागू होते हैं, और प्रवर्तन में किसी भी तरह की छूट से डेटा में त्रुटि हो सकती है। इनपुट के स्रोत (जैसे मानव डेटा प्रविष्टि) के जितना संभव हो सके डेटा पर जांच लागू करने से सिस्टम में प्रवेश करने के लिए कम गलत डेटा का कारण बनता है। डेटा अखंडता नियमों के सख्त प्रवर्तन के परिणामस्वरूप कम त्रुटि दर होती है, और समय की बचत होती है और त्रुटिपूर्ण डेटा और कलन विधि के कारण होने वाली त्रुटियों का निवारण और पता चलता है।
डेटा अखंडता के संबंधों को परिभाषित करने वाले नियम भी सम्मालित हैं जो डेटा के एक हिस्से तथा अन्य डेटा के टुकड़ों के साथ हो सकते हैं, जैसे ग्राहक रिकॉर्ड को खरीदे गए उत्पादों से लिंक करने की अनुमति दी जा रही है, लेकिन कॉर्पोरेट संपत्ति जैसे असंबद्ध डेटा से नहीं। डेटा अखंडता में अधिकांश एक निश्चित डेटाबेस स्कीमा या नियमों के पूर्वनिर्धारित सेट के आधार पर अमान्य डेटा के लिए जाँच और सुधार सम्मालित होता है। एक उदाहरण टेक्स्टुअल डेटा दर्ज किया जा रहा है जहां दिनांक-समय मान आवश्यक है। डेटा व्युत्पत्ति के नियम भी लागू होते हैं, यह निर्दिष्ट करते हुए कि कलन विधि, योगदानकर्ताओं और शर्तों के आधार पर डेटा मान कैसे प्राप्त किया जाता है। यह शर्तों को भी निर्दिष्ट करता है कि डेटा मान को फिर से कैसे प्राप्त किया जा सकता है।
अखंडता बाधाओं के प्रकार
डेटा अखंडता को सामान्य रूप से डेटाबेस प्रणाली में अखंडता बाधाओं या नियमों की एक श्रृंखला द्वारा लागू किया जाता है। तीन प्रकार की अखंडता बाधाएँ संबंधपरक डेटा मॉडल का एक अंतर्निहित निम्नलिखित हिस्सा हैं: इकाई अखंडता, संदर्भात्मक अखंडता और डोमेन अखंडता।
- इकाई अखंडता एक प्राथमिक कुंजी की अवधारणा से संबंधित है। इकाई अखंडता एक अखंडता नियम है जो बताता है कि प्रत्येक तालिका में एक प्राथमिक कुंजी होनी चाहिए और प्राथमिक कुंजी के रूप में चुना गया स्तंभ या स्तंभ अद्वितीय होना चाहिए लेकिन शून्य नहीं होना चाहिए।
- संदर्भित अखंडता एक विदेशी कुंजी की अवधारणा से संबंधित है। संदर्भित अखंडता नियम बताता है कि कोई भी विदेशी-कुंजी मान केवल दो अवस्थाओ में से एक में हो सकता है। स्थितियो की सामान्य स्थिति यह है कि विदेशी-कुंजी मान डेटाबेस में किसी तालिका के प्राथमिक कुंजी मान को संदर्भित करता है। और कभी-कभी यह डेटा मालिक के नियमों पर निर्भर करेगा, एक विदेशी-कुंजी मान शून्य (एसक्यूएल) हो सकता है। इस स्थितिय में, हम स्पष्ट रूप से कह रहे हैं कि या तो डेटाबेस में प्रदर्शित वस्तुओं के बीच कोई संबंध नहीं है या तो यह संबंध अज्ञात होता है।
- डोमेन अखंडता निर्दिष्ट करती है कि रिलेशनल डेटाबेस में सभी स्तंभ परिभाषित डोमेन पर घोषित किए जाने चाहिए। रिलेशनल डेटा मॉडल में डेटा की प्राथमिक इकाई डेटा आइटम है। ऐसे डेटा आइटम को गैर-विघटनीय या परमाणु कहा जाता है। एक डोमेन एक ही प्रकार के मूल्यों का एक समूह है। इसलिए डोमेन मानों का पूल है जिससे तालिका के स्तंभ में दिखाई देने वाले वास्तविक मान निकाले जाते हैं।
- प्रयोगकर्ता-परिभाषित अखंडता एक प्रयोगकर्ता द्वारा निर्दिष्ट नियमों के एक सेट को संदर्भित करता है, जो इकाई डोमेन और संदर्भित अखंडता श्रेणियों से संबंधित नहीं है।
यदि कोई डेटाबेस इन सुविधाओं का समर्थन करता है, तो यह डेटाबेस की जिम्मेदारी है कि वह डेटा अखंडता के साथ-साथ डेटा भंडारण और पुनर्प्राप्ति के लिए निरंतरता मॉडल सुनिश्चित करे। यदि कोई डेटाबेस इन सुविधाओं का समर्थन नहीं करता है, तो यह डेटा अखंडता सुनिश्चित करने के लिए अनुप्रयोगों की ज़िम्मेदारी है जबकि डेटाबेस डेटा संग्रहण और पुनर्प्राप्ति के लिए स्थिरता मॉडल का समर्थन करता है।
एक एकल, अच्छी तरह से नियंत्रित और अच्छी तरह से परिभाषित डेटा-अखंडता प्रणाली बढ़ जाती है
- स्थिरता (एक केंद्रीकृत प्रणाली सभी डेटा अखंडता संचालन करती है)
- प्रदर्शन (सभी डेटा अखंडता संचालन एक ही स्तर पर संगति मॉडल के रूप में किए जाते हैं)
- पुन: प्रयोज्यता (सभी एप्लिकेशन एकल केंद्रीकृत डेटा अखंडता प्रणाली से लाभान्वित होते हैं)
- रख-रखाव (सभी डेटा अखंडता प्रशासन के लिए एक केंद्रीकृत प्रणाली)।
आधुनिक डेटाबेस इन सुविधाओं का समर्थन करते हैं (रिलेशनल डेटाबेस मैनेजमेंट सिस्टम की तुलना देखें), और यह डेटा अखंडता सुनिश्चित करने के लिए डेटाबेस की वास्तविक जिम्मेदारी बन गई है। कंपनियां, और वास्तव में कई डेटाबेस सिस्टम, विरासत प्रणालियों को आधुनिक डेटाबेस में विस्थापित करने के लिए उत्पादों और सेवाओं की पेशकश करते हैं।
उदाहरण
डेटा-अखंडता तंत्र का एक उदाहरण संबंधित अभिलेखों का अभिभावक-और-चाइल्ड संबंध है। यदि एक अभिभावक रिकॉर्ड एक या एक से अधिक संबंधित चाइल्ड रिकॉर्ड का मालिक है, तो सभी संदर्भित अखंडता प्रक्रियाओं को डेटाबेस द्वारा ही नियंत्रित किया जाता है, जो स्वचालित रूप से डेटा की सटीकता और अखंडता सुनिश्चित करता है ताकि माता-पिता के बिना कोई चाइल्ड रिकॉर्ड उपस्थित न हो (जिसे अनाथ भी कहा जाता है) और यह कि कोई भी माता-पिता अपने बच्चे के रिकॉर्ड को नहीं खोते हैं। यह यह भी सुनिश्चित करता है कि कोई पैरेंट रिकॉर्ड हटाया नहीं जा सकता है जबकि पैरेंट रिकॉर्ड किसी भी चाइल्ड रिकॉर्ड का स्वामी है। यह सब डेटाबेस स्तर पर संभाला जाता है और प्रत्येक एप्लिकेशन में कोडिंग अखंडता जांच की आवश्यकता नहीं होती है।
फाइल सिस्टम
विभिन्न शोध परिणाम बताते हैं कि न तो व्यापक फ़ाइल सिस्टम (यूनिक्स फाइल सिस्टम, विस्तारित फ़ाइल सिस्टम, एक्सएफएस, जेएफएस (फ़ाइल सिस्टम) और एनटीएफएस सहित) और न ही हार्डवेयर आरऐआईडी समाधान डेटा अखंडता समस्याओं के खिलाफ पर्याप्त सुरक्षा प्रदान करते हैं।।[5][6][7][8][9]
कुछ फाइलसिस्टम (बीटीआरएफएस और जेडएफएस सहित) आंतरिक डेटा और मेटा डेटा चेकसमिंग प्रदान करते हैं जिसका प्रयोग मूक डेटा भ्रष्टाचार का पता लगाने और डेटा अखंडता में सुधार के लिए किया जाता है। यदि किसी भ्रष्टाचार का पता चलता है तो उस तरह से और उन फाइल सिस्टम द्वारा प्रदान किए गए आंतरिक आरऐआईडी तंत्र का भी प्रयोग किया जाता है, ऐसे फाइल सिस्टम अतिरिक्त रूप से दूषित डेटा को पारदर्शी विधि से पुनर्निर्माण कर सकते हैं।[10] यह दृष्टिकोण पूरे डेटा पथ को कवर करने वाली बेहतर डेटा अखंडता सुरक्षा की अनुमति देता है, जिसे आमतौर पर एंड-टू-एंड डेटा सुरक्षा के रूप में जाना जाता है।[11]
विभिन्न उद्योगों पर लागू डेटा अखंडता
- यू.एस. खाद्य एवं औषधि प्रशासन ने फार्मास्युटिकल निर्माताओं के लिए यूएस कोड ऑफ फेडरल रेगुलेशन 21 सीएफआर पार्ट्स 210-212 का पालन करने के लिए आवश्यक डेटा अखंडता पर मसौदा मार्गदर्शन बनाया है।[12] यू.एस. के बाहर, यूनाइटेड किंगडम (2015), स्विट्ज़रलैंड (2016), और ऑस्ट्रेलिया (2017) द्वारा समान डेटा अखंडता मार्गदर्शन जारी किया गया है।[13]
- चिकित्सा उपकरणों के निर्माण के लिए विभिन्न मानक आईएसओ 13485, आईएसओ 14155 और आईएसओ 5840 सहित प्रत्यक्ष या अप्रत्यक्ष रूप से डेटा अखंडता को संबोधित करते हैं।[14]
- 2017 की प्रारंभ में, वित्तीय उद्योग नियामक प्राधिकरण (एफआईएनआरए) ने स्वचालित ट्रेडिंग और मनी मूवमेंट सर्विलांस सिस्टम के साथ डेटा अखंडता की समस्याओं को ध्यान में रखते हुए कहा कि यह सबमिट किए गए डेटा की सटीकता की निगरानी के लिए डेटा अखंडता कार्यक्रम के विकास को प्राथमिकता देगा।[15] 2018 की प्रारंभ में, एफआईएनआरए ने कहा कि यह फर्मों की प्रौद्योगिकी परिवर्तन प्रबंधन नीतियों और प्रक्रियाओं और ट्रेजरी सिक्योरिटीज समीक्षा के लिए डेटा अखंडता पर अपने दृष्टिकोण का विस्तार करेगा।[16] संबंधित स्वचालन और उत्पादन निगरानी संपत्तियों में डेटा अखंडता के महत्व पर तेजी से ध्यान केंद्रित कर रहे हैं।
- क्लाउड स्टोरेज प्रदाताओं ने लंबे समय से ग्राहक डेटा की अखंडता या उत्पत्ति सुनिश्चित करने और उल्लंघनों पर नज़र रखने के लिए महत्वपूर्ण चुनौतियों का सामना किया है। रेफ नाम= प्रियदर्शिनीडाट12 >प्रियदर्शिनीडाट, B.; पार्वती, P. (2012). "क्लाउड स्टोरेज में डेटा अखंडता". इंजीनियरिंग, विज्ञान और प्रबंधन में प्रगति पर 2012 अंतर्राष्ट्रीय सम्मेलन की कार्यवाही. ISBN 9788190904223.[17][18]
यह भी देखें
- एंड-टू-एंड डेटा अखंडता
- संदेश प्रमाणीकरण
- राष्ट्रीय सूचना आश्वासन शब्दावली
- सत्य का एकल संस्करण
- Optical disc § Surface error scanning
संदर्भ
- ↑ Boritz, J. "सूचना अखंडता की मूल अवधारणाओं पर आईएस चिकित्सकों के विचार". International Journal of Accounting Information Systems. Elsevier. Archived from the original on 5 October 2011. Retrieved 12 August 2011.
- ↑ What is Data Integrity? Learn How to Ensure Database Data Integrity via Checks, Tests, & Best Practices
- ↑ What is Data Integrity? Data Protection 101
- ↑ From the book: Uberveillance and the Social Implications of Microchip Implants: Emerging Page 40
- ↑ Vijayan Prabhakaran (2006). "IRON FILE SYSTEMS" (PDF). Doctor of Philosophy in Computer Sciences. University of Wisconsin-Madison. Archived (PDF) from the original on 2022-10-09. Retrieved 9 June 2012.
- ↑ "Parity Lost and Parity Regained".
- ↑ "An Analysis of Data Corruption in the Storage Stack" (PDF). Archived (PDF) from the original on 2022-10-09.
- ↑ "Impact of Disk Corruption on Open-Source DBMS" (PDF). Archived (PDF) from the original on 2022-10-09.
- ↑ "Baarf.com". Baarf.com. Retrieved November 4, 2011.
- ↑ Bierman, Margaret; Grimmer, Lenz (August 2012). "मैं Btrfs की उन्नत क्षमताओं का उपयोग कैसे करूँ". Retrieved 2014-01-02.
- ↑ No label or title -- debug: Q111972797, Wikidata Q111972797
{{citation}}
:|access-date=
requires|url=
(help) - ↑ "डेटा अखंडता और सीजीएमपी के साथ अनुपालन: उद्योग के लिए मार्गदर्शन" (PDF). U.S. Food and Drug Administration. April 2016. Archived (PDF) from the original on 2022-10-09. Retrieved 20 January 2018.
- ↑ Davidson, J. (18 July 2017). "दुनिया भर में डेटा अखंडता मार्गदर्शन". Contract Pharma. Rodman Media. Retrieved 20 January 2018.
- ↑ Scannel, P. (12 May 2015). "डेटा अखंडता: चिकित्सा उपकरण नियामक और मानक ढांचे से एक परिप्रेक्ष्य" (PDF). Data Integrity Seminar. Parenteral Drug Association. pp. 10–57. Retrieved 20 January 2018.
- ↑ Cook, R. (4 January 2017). "2017 विनियामक और परीक्षा प्राथमिकता पत्र". Financial Industry Regulatory Authority. Retrieved 20 January 2018.
- ↑ Cook, R. (8 January 2018). "2018 विनियामक और परीक्षा प्राथमिकता पत्र". Financial Industry Regulatory Authority. Retrieved 20 January 2018.</रेफरी>
- अन्य क्षेत्र जैसे खनन
- ↑ Zafar, F.; Khan, A.; Malik, S.U.R.; et al. (2017). "क्लाउड कंप्यूटिंग डेटा अखंडता योजनाओं का एक सर्वेक्षण: डिजाइन चुनौतियां, वर्गीकरण और भविष्य के रुझान". Computers & Security. 65 (3): 29–49. doi:10.1016/j.cose.2016.10.006.
- ↑ Imran, M.; Hlavacs, H.; Haq, I.U.I.; et al. (2017). "क्लाउड वातावरण में स्रोत आधारित डेटा अखंडता जाँच और सत्यापन". PLOS ONE. 12 (5): e0177576. Bibcode:2017PLoSO..1277576I. doi:10.1371/journal.pone.0177576. PMC 5435237. PMID 28545151.
इस पेज में लापता आंतरिक लिंक की सूची
- आधार सामग्री की गुणवत्ता
- आंकड़ा मान्यीकरण
- डेटा दूषण
- जीवन-महत्वपूर्ण प्रणाली
- डेटा की पुनःप्राप्ति
- मानव त्रुटि
- डाटा सुरक्षा
- अबाधित विद्युत आपूर्ति
- त्रुटि सुधार कोड
- जंग
- एकमात्र
- मूक डेटा भ्रष्टाचार
- जी बल
- ईसीसी मेमोरी
- धूल एल्गोरिथ्म
- बिजली चली गयी
- निर्देशात्मक अखंडता
- चेतना
- अभिकथन (कम्प्यूटिंग)
- जाँच बाधा
- संबंधपरक डेटाबेस प्रबंधन प्रणालियों की तुलना
- जेएफएस (फाइल सिस्टम)
अग्रिम पठन
- This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).
- Xiaoyun Wang; Hongbo Yu (2005). "How to Break MD5 and Other Hash Functions" (PDF). EUROCRYPT. ISBN 3-540-25910-4. Archived from the original (PDF) on 2009-05-21. Retrieved 2009-05-10.