जटिल प्रणाली: Difference between revisions

From Vigyanwiki
Line 110: Line 110:
जटिलता सिद्धांत अराजकता सिद्धांत में निहित है, जिसकी उत्पत्ति फ्रांसीसी गणितज्ञ हेनरी पोंकारे के काम में एक सदी से भी पहले हुई है। अराजकता को कभी-कभी आदेश की अनुपस्थिति के बजाय अत्यंत जटिल जानकारी के रूप में देखा जाता है।<ref>Hayles, N. K. (1991). ''[https://books.google.com/books?hl=en&lr=&id=9g9QDwAAQBAJ&oi=fnd&pg=PR7&dq=%22Chaos+Bound:+Orderly+Disorder+in+Contemporary+Literature+and+science%22&ots=1YiHUgn5wY&sig=sKu7-CerpexzdUT6o-PhVk_Ld9U#v=onepage&q=%22Chaos%20Bound%3A%20Orderly%20Disorder%20in%20Contemporary%20Literature%20and%20science%22&f=false Chaos Bound: Orderly Disorder in Contemporary Literature and Science]''. Cornell University Press, Ithaca, NY.</ref> अराजक प्रणालियां नियतात्मक रहती हैं, हालांकि उनके दीर्घकालिक व्यवहार का किसी भी सटीकता के साथ अनुमान लगाना मुश्किल हो सकता है। प्रारंभिक स्थितियों और अराजक प्रणाली के व्यवहार का वर्णन करने वाले प्रासंगिक समीकरणों के पूर्ण ज्ञान के साथ, कोई सैद्धांतिक रूप से सिस्टम की पूरी तरह से सटीक भविष्यवाणियां कर सकता है, हालांकि व्यवहार में यह मनमानी सटीकता के साथ करना असंभव है। [[:hi:इल्या प्रिगोगिन|इल्या प्रिगोगिन]] ने तर्क दिया <ref>Prigogine, I. (1997). ''The End of Certainty'', The Free Press, New York.</ref>  कि जटिलता गैर-नियतात्मक है और भविष्य की सटीक भविष्यवाणी करने का कोई रास्ता नहीं देती है।<ref>See also {{Cite journal|last=D. Carfì|year=2008|title=Superpositions in Prigogine approach to irreversibility|journal=AAPP: Physical, Mathematical, and Natural Sciences|volume=86|issue=1|pages=1–13|url=http://cab.unime.it/journals/index.php/AAPP/article/view/384/0}}.</ref>
जटिलता सिद्धांत अराजकता सिद्धांत में निहित है, जिसकी उत्पत्ति फ्रांसीसी गणितज्ञ हेनरी पोंकारे के काम में एक सदी से भी पहले हुई है। अराजकता को कभी-कभी आदेश की अनुपस्थिति के बजाय अत्यंत जटिल जानकारी के रूप में देखा जाता है।<ref>Hayles, N. K. (1991). ''[https://books.google.com/books?hl=en&lr=&id=9g9QDwAAQBAJ&oi=fnd&pg=PR7&dq=%22Chaos+Bound:+Orderly+Disorder+in+Contemporary+Literature+and+science%22&ots=1YiHUgn5wY&sig=sKu7-CerpexzdUT6o-PhVk_Ld9U#v=onepage&q=%22Chaos%20Bound%3A%20Orderly%20Disorder%20in%20Contemporary%20Literature%20and%20science%22&f=false Chaos Bound: Orderly Disorder in Contemporary Literature and Science]''. Cornell University Press, Ithaca, NY.</ref> अराजक प्रणालियां नियतात्मक रहती हैं, हालांकि उनके दीर्घकालिक व्यवहार का किसी भी सटीकता के साथ अनुमान लगाना मुश्किल हो सकता है। प्रारंभिक स्थितियों और अराजक प्रणाली के व्यवहार का वर्णन करने वाले प्रासंगिक समीकरणों के पूर्ण ज्ञान के साथ, कोई सैद्धांतिक रूप से सिस्टम की पूरी तरह से सटीक भविष्यवाणियां कर सकता है, हालांकि व्यवहार में यह मनमानी सटीकता के साथ करना असंभव है। [[:hi:इल्या प्रिगोगिन|इल्या प्रिगोगिन]] ने तर्क दिया <ref>Prigogine, I. (1997). ''The End of Certainty'', The Free Press, New York.</ref>  कि जटिलता गैर-नियतात्मक है और भविष्य की सटीक भविष्यवाणी करने का कोई रास्ता नहीं देती है।<ref>See also {{Cite journal|last=D. Carfì|year=2008|title=Superpositions in Prigogine approach to irreversibility|journal=AAPP: Physical, Mathematical, and Natural Sciences|volume=86|issue=1|pages=1–13|url=http://cab.unime.it/journals/index.php/AAPP/article/view/384/0}}.</ref>


जटिलता सिद्धांत का उद्भव नियतात्मक क्रम और यादृच्छिकता के बीच एक डोमेन को दर्शाता है जो जटिल है। <ref name="PC982">[[Paul Cilliers|Cilliers, P.]] (1998). ''Complexity and Postmodernism: Understanding Complex Systems'', Routledge, London.</ref> इसे " [[:hi:अराजकता की धार|अराजकता का किनारा]] " कहा जाता है। <ref>[[Per Bak]] (1996). ''How Nature Works: The Science of Self-Organized Criticality'', Copernicus, New York, U.S.</ref>
जटिलता सिद्धांत का उद्भव नियतात्मक क्रम और यादृच्छिकता के बीच एक डोमेन को दर्शाता है जो जटिल है। <ref name="PC982">[[Paul Cilliers|Cilliers, P.]] (1998). ''Complexity and Postmodernism: Understanding Complex Systems'', Routledge, London.</ref> इसे " [[:hi:अराजकता की धार|अराजकता का किनारा]] " कहा जाता है। <ref>[[Per Bak]] (1996). ''How Nature Works: The Science of Self-Organized Criticality'', Copernicus, New York, U.S.</ref>


[[File:Lorenz attractor yb.svg|thumb|200px| [[ लोरेंज अट्रैक्टर ]] का प्लॉट। ]]
[[File:Lorenz attractor yb.svg|thumb|200px| [[ लोरेंज अट्रैक्टर ]] का प्लॉट। ]]

Revision as of 10:41, 21 July 2022

जटिल प्रणाली कई घटकों से बनी है जो एक दूसरे के साथ बातचीत कर सकती है। जटिल प्रणालियों के उदाहरण पृथ्वी की वैश्विक जलवायु, जीव, मानव मस्तिष्क, बुनियादी ढांचा जैसे पावर ग्रिड, परिवहन या संचार प्रणाली, जटिल सॉफ्टवेयर और इलेक्ट्रॉनिक सिस्टम, सामाजिक और आर्थिक संगठन (जैसे शहर), एक पारिस्थितिकी तंत्र, एक जीवित कोशिका, और अंततः संपूर्ण ब्रह्मांड हैं।

जटिल प्रणालियाँ ऐसी प्रणालियाँ हैं जिनका व्यवहार निर्भरता, प्रतियोगिताओं, संबंधों, या उनके भागों के बीच या किसी दिए गए सिस्टम और उसके वातावरण के बीच अन्य प्रकार की बातचीत के कारण मॉडल के लिए आंतरिक रूप से कठिन है। सिस्टम जो "जटिल" हैं, उनमें अलग-अलग गुण होते हैं जो इन संबंधों से उत्पन्न होते हैं, जैसे कि गैर-रैखिकता, उद्भव, सहज क्रम, अनुकूलन और प्रतिक्रिया लूप, अन्य। चूंकि ऐसी प्रणालियां विभिन्न प्रकार के क्षेत्रों में दिखाई देती हैं, इसलिए उनमें समानताएं उनके स्वतंत्र शोध क्षेत्र का विषय बन गई हैं। कई मामलों में, ऐसी प्रणाली को नेटवर्क के रूप में प्रस्तुत करना उपयोगी होता है जहां नोड्स घटकों का प्रतिनिधित्व करते हैं और उनकी बातचीत के लिंक होते है।

जटिल प्रणाली शब्द अक्सर जटिल प्रणालियों के अध्ययन को संदर्भित करता है, जो विज्ञान के लिए एक दृष्टिकोण है जो इस बात की जांच करता है कि किसी प्रणाली के भागों के बीच के संबंध उसके सामूहिक व्यवहार को कैसे जन्म देते हैं और सिस्टम कैसे बातचीत करता है और अपने पर्यावरण के साथ संबंध बनाता है। [1] जटिल प्रणालियों का अध्ययन सामूहिक, या प्रणाली-व्यापी, व्यवहार को अध्ययन का मूल उद्देश्य मानता है, इस कारण से, जटिल प्रणालियों को न्यूनतावाद के वैकल्पिक प्रतिमान के रूप में समझा जा सकता है, जो सिस्टम को उनके घटक भागों और उनके बीच व्यक्तिगत बातचीत के संदर्भ में समझाने का प्रयास करता है।

एक अंतःविषय क्षेत्र के रूप में, जटिल प्रणालियां कई अलग-अलग क्षेत्रों से योगदान लेती हैं, जैसे कि आत्म-संगठन का अध्ययन और भौतिकी से महत्वपूर्ण घटना, सामाजिक विज्ञान से सहज क्रम, गणित से अराजकता, जीव विज्ञान से अनुकूलन, और कई अन्य। इसलिए जटिल प्रणालियों को अक्सर एक व्यापक शब्द के रूप में प्रयोग किया जाता है जिसमें सांख्यिकीय भौतिकी, सूचना सिद्धांत, गैर-रेखीय गतिशीलता, नृविज्ञान, कंप्यूटर विज्ञान, मौसम विज्ञान, समाजशास्त्र, अर्थशास्त्र, मनोविज्ञान और जीव विज्ञान सहित कई विविध विषयों में समस्याओं के लिए एक शोध दृष्टिकोण शामिल है।

महत्वपूर्ण अवधारणाएं

प्रणाली

ओपन सिस्टम्स में इनपुट और आउटपुट प्रवाह होते हैं, जो अपने परिवेश के साथ पदार्थ, ऊर्जा या सूचना के आदान-प्रदान का प्रतिनिधित्व करते हैं।

कॉम्प्लेक्स सिस्टम मुख्य रूप से सिस्टम के व्यवहार और गुणों से संबंधित हैं। एक प्रणाली, मोटे तौर पर परिभाषित, संस्थाओं का एक समूह है, जो अपनी बातचीत, संबंधों या निर्भरता के माध्यम से  संपूर्ण एकीकृत बनाता है। इसे हमेशा इसकी सीमा के संदर्भ में परिभाषित किया जाता है, जो उन संस्थाओं को निर्धारित करता है जो सिस्टम का हिस्सा हैं या नहीं हैं। सिस्टम के बाहर स्थित निकाय तब सिस्टम के वातावरण का हिस्सा बन जाते हैं।

एक प्रणाली उन गुणों को प्रदर्शित कर सकती है जो व्यवहार उत्पन्न करते हैं जो उसके भागों के गुणों और व्यवहारों से भिन्न होते हैं, ये सिस्टम-व्यापी या वैश्विक गुण और व्यवहार इस बात की विशेषताएं हैं कि सिस्टम कैसे अपने पर्यावरण के साथ इंटरैक्ट करता है या प्रकट होता है, या सिस्टम के भीतर होने के आधार पर इसके हिस्से कैसे व्यवहार करते हैं (कहते हैं, बाहरी उत्तेजनाओं के जवाब में)। व्यवहार की धारणा का तात्पर्य है कि सिस्टम का अध्ययन समय के साथ होने वाली प्रक्रियाओं से भी संबंधित है (या, गणित में, कुछ अन्य चरण अंतरिक्ष मानकीकरण)। उनकी व्यापक, अंतःविषय प्रयोज्यता के कारण, सिस्टम अवधारणाएं जटिल प्रणालियों में एक केंद्रीय भूमिका निभाती हैं।

अध्ययन के क्षेत्र के रूप में, जटिल प्रणाली सिस्टम सिद्धांत का एक सबसेट है। सामान्य प्रणाली सिद्धांत समान रूप से परस्पर क्रिया करने वाली संस्थाओं के सामूहिक व्यवहार पर ध्यान केंद्रित करता है, लेकिन यह गैर-जटिल प्रणालियों सहित प्रणालियों के एक व्यापक वर्ग का अध्ययन करता है, जहां पारंपरिक न्यूनतावादी दृष्टिकोण व्यवहार्य रह सकते हैं। दरअसल, सिस्टम सिद्धांत सिस्टम के सभी वर्गों का पता लगाने और उनका वर्णन करने का प्रयास करता है, और व्यापक रूप से भिन्न क्षेत्रों में शोधकर्ताओं के लिए उपयोगी श्रेणियों का आविष्कार सिस्टम सिद्धांत के मुख्य उद्देश्यों में से एक है।

चूंकि यह जटिल प्रणालियों से संबंधित है, सिस्टम सिद्धांत इस बात पर जोर देता है कि सिस्टम के भागों के बीच संबंध और निर्भरता सिस्टम-व्यापी गुणों को कैसे निर्धारित कर सकती है। यह जटिल प्रणालियों के अध्ययन के अंतःविषय परिप्रेक्ष्य में भी योगदान देता है: यह धारणा कि साझा गुण सभी विषयों में सिस्टम लिंक करते हैं, जहां कहीं भी वे जटिल सिस्टम पर लागू मॉडलिंग दृष्टिकोणों की खोज को उचित ठहराते हैं। जटिल प्रणालियों के लिए महत्वपूर्ण विशिष्ट अवधारणाएं, जैसे कि उद्भव, प्रतिक्रिया लूप और अनुकूलन, भी सिस्टम सिद्धांत में उत्पन्न होते हैं।

जटिलता

एक प्रणाली के लिए जटिलता प्रदर्शित करने का मतलब है कि सिस्टम के व्यवहार का या उसके गुणों का आसानी से अनुमान नहीं लगाया जा सकता है। कोई भी मॉडलिंग दृष्टिकोण जो ऐसी कठिनाइयों को अनदेखा करता है या उन्हें शोर के रूप में चित्रित करता है, अनिवार्य रूप से ऐसे मॉडल तैयार करेगा जो न तो सटीक हैं और न ही उपयोगी हैं। अभी तक इन समस्याओं के समाधान के लिए जटिल प्रणालियों का कोई पूर्ण सामान्य सिद्धांत सामने नहीं आया है, इसलिए शोधकर्ताओं को उन्हें डोमेन-विशिष्ट संदर्भों में हल करना चाहिए। जटिल प्रणालियों में शोधकर्ता इन समस्याओं का समाधान मॉडलिंग के मुख्य कार्य को कम करने के बजाय, उनकी संबंधित प्रणालियों की जटिलता को कम करने के लिए अधिकृत के रूप में देखते हैं।

हालांकि जटिलता की कोई आम तौर पर स्वीकृत सटीक परिभाषा अभी तक मौजूद नहीं है, जटिलता के कई आदर्श उदाहरण हैं। सिस्टम जटिल हो सकते हैं, उदाहरण के लिए, उनके पास अराजक व्यवहार है (व्यवहार जो प्रारंभिक स्थितियों के प्रति अत्यधिक संवेदनशीलता प्रदर्शित करता है, अन्य गुणों के बीच), या यदि उनके पास आकस्मिक गुण हैं (ऐसे गुण जो अलगाव में उनके घटकों से स्पष्ट नहीं हैं लेकिन इसके परिणामस्वरूप एक सिस्टम में एक साथ रखे जाने पर वे संबंध और निर्भरताएं बनाते हैं), या यदि वे मॉडल के लिए कम्प्यूटेशनल रूप से अट्रैक्टिव हैं (यदि वे कई मापदंडों पर निर्भर करते हैं जो संबंध में बहुत तेजी से बढ़ते हैं)।

नेटवर्क

एक जटिल प्रणाली के अंतःक्रियात्मक घटक एक नेटवर्क बनाते हैं, जो असतत वस्तुओं और उनके बीच संबंधों का एक संग्रह है, जिसे आमतौर पर किनारों से जुड़े कोने के ग्राफ के रूप में दर्शाया जाता है। नेटवर्क एक संगठन के भीतर व्यक्तियों के बीच, एक सर्किट में लॉजिक गेट्स के बीच, जीन नियामक नेटवर्क में जीन के बीच, या संबंधित संस्थाओं के किसी अन्य सेट के बीच संबंधों का वर्णन कर सकते हैं।

नेटवर्क अक्सर जटिल प्रणालियों में जटिलता के स्रोतों का वर्णन करते हैं। इसलिए नेटवर्क के रूप में जटिल प्रणालियों का अध्ययन, ग्राफ सिद्धांत और नेटवर्क विज्ञान के कई उपयोगी अनुप्रयोगों को सक्षम बनाता है। कई जटिल प्रणालियाँ, उदाहरण के लिए, जटिल नेटवर्क भी हैं, जिनमें चरण संक्रमण और शक्ति-कानून की डिग्री वितरण जैसे गुण होते हैं जो आसानी से खुद को आकस्मिक या अराजक व्यवहार के लिए उधार देते हैं। तथ्य यह है कि एक पूर्ण ग्राफ में किनारों की संख्या चतुर्भुज रूप से बढ़ती है, बड़े नेटवर्क में जटिलता के स्रोत पर अतिरिक्त प्रकाश डालती है: जैसे-जैसे नेटवर्क बढ़ता है, संस्थाओं के बीच संबंधों की संख्या जल्दी से नेटवर्क में संस्थाओं की संख्या को बौना कर देती है।

अरैखिकता

जटिल प्रणालियों में अक्सर गैर-रेखीय व्यवहार होता है, जिसका अर्थ है कि वे अपने राज्य या संदर्भ के आधार पर एक ही निविष्ट के लिए अलग-अलग तरीकों से प्रतिक्रिया दे सकते हैं। गणित और भौतिकी में, गैर-रैखिकता उन प्रणालियों का वर्णन करती है जिनमें निविष्ट के आकार में परिवर्तन से आउटपुट के आकार में आनुपातिक परिवर्तन नहीं होता है। निविष्ट में दिए गए परिवर्तन के लिए, इस तरह के सिस्टम सिस्टम की वर्तमान स्थिति या इसके पैरामीटर मानों के आधार पर प्रक्षेपण  में आनुपातिक परिवर्तनों से काफी अधिक या कम, या बिल्कुल भी  प्रक्षेपण नहीं दे सकते हैं।

जटिल प्रणालियों के लिए विशेष रुचि गैर-रेखीय गतिशील प्रणालियां हैं, जो अंतर समीकरणों की प्रणालियां हैं जिनमें एक या एक से अधिक गैर-रेखीय शब्द हैं। कुछ गैर-रेखीय गतिकीय तन्त्र, जैसे लोरेंज सिस्टम, एक गणितीय घटना उत्पन्न कर सकते हैं जिसे अराजकता के रूप में जाना जाता है। अराजकता, जैसा कि यह जटिल प्रणालियों पर लागू होता है, प्रारंभिक स्थितियों, या "तितली प्रभाव" पर संवेदनशील निर्भरता को संदर्भित करता है, जिसे एक जटिल प्रणाली प्रदर्शित हो सकती है। ऐसी प्रणाली, प्रारंभिक स्थितियों में छोटे परिवर्तन नाटकीय रूप से भिन्न परिणाम दे सकते हैं। अराजक व्यवहार, इसलिए, संख्यात्मक रूप से मॉडल करना बेहद कठिन हो सकता है, क्योंकि गणना के मध्यवर्ती चरण में छोटी गोल करने वाली त्रुटियां मॉडल को पूरी तरह से गलत  प्रक्षेपण उत्पन्न करने का कारण बन सकती हैं। इसके अलावा, यदि एक जटिल प्रणाली पहले की तरह एक राज्य में वापस आती है, तो यह उसी उत्तेजना के जवाब में पूरी तरह से अलग व्यवहार कर सकती है, इसलिए अराजकता भी अनुभव से निकालने के लिए चुनौतियों का सामना करती है।

उदगमन

जटिल प्रणालियों की एक अन्य सामान्य विशेषता आकस्मिक व्यवहार और गुणों की उपस्थिति है: ये एक प्रणाली के लक्षण हैं जो अलगाव में इसके घटकों से स्पष्ट नहीं होते हैं, लेकिन जो एक प्रणाली में एक साथ रखे जाने पर बातचीत, निर्भरता या संबंधों के परिणामस्वरूप बनते हैं। उदगमन मोटे तौर पर ऐसे व्यवहारों और गुणों की उपस्थिति का वर्णन करता है,जिसका सामाजिक और भौतिक विज्ञान दोनों में अध्ययन किए गए सिस्टम के लिए आवेदन करता है। जबकि उदगमन का उपयोग अक्सर केवल एक जटिल प्रणाली में अनियोजित संगठित व्यवहार की उपस्थिति को संदर्भित करने के लिए किया जाता है, उद्भव एक संगठन के टूटने का भी उल्लेख कर सकता है, यह किसी भी घटना का वर्णन करता है जो कि सिस्टम बनाने वाली छोटी संस्थाओं से भविष्यवाणी करना मुश्किल या असंभव है।

एक जटिल प्रणाली का एक उदाहरण  सेलुलर ऑटोमेटा है जिसके आकस्मिक गुणों का बड़े पैमाने पर अध्ययन किया गया है। एक सेलुलर ऑटोमेटन में, कोशिकाओं का एक ग्रिड, जिनमें से प्रत्येक में बहुत से राज्यों में से एक होता है, नियमों के एक साधारण सेट के अनुसार विकसित होता है। ये नियम प्रत्येक सेल के पड़ोसियों के साथ "इंटरैक्शन" का मार्गदर्शन करते हैं। हालांकि नियमों को केवल स्थानीय रूप से परिभाषित किया गया है, उन्हें विश्व स्तर पर दिलचस्प व्यवहार पैदा करने में सक्षम दिखाया गया है, उदाहरण के लिए कॉनवे के गेम ऑफ लाइफ है।

सहज क्रम और स्व-संगठन

जब उदगमन अनियोजित क्रम की उपस्थिति का वर्णन करता है, तो यह सहज क्रम (सामाजिक विज्ञान में) या स्व-संगठन (भौतिक विज्ञान में) होता है। झुंड के व्यवहार में सहज क्रम देखा जा सकता है, जिससे व्यक्तियों का एक समूह केंद्रीकृत योजना के बिना अपने कार्यों का समन्वय करता है। स्व-संगठन को कुछ क्रिस्टल की वैश्विक समरूपता में देखा जा सकता है, उदाहरण के लिए बर्फ के टुकड़ों की स्पष्ट रेडियल समरूपता, जो पानी के अणुओं और उनके आसपास के वातावरण के बीच विशुद्ध रूप से स्थानीय आकर्षक और प्रतिकारक बलों से उत्पन्न होती है।

अनुकूलन

जटिल अनुकूली प्रणालियाँ जटिल प्रणालियों के विशेष मामले हैं जो इस मायने में अनुकूली हैं कि उनमें अनुभव से बदलने और सीखने की क्षमता है। जटिल अनुकूली प्रणालियों के उदाहरणों में शेयर बाजार, सामाजिक कीट और चींटी उपनिवेश, जीवमंडल और पारिस्थितिकी तंत्र, मस्तिष्क और प्रतिरक्षा प्रणाली, कोशिका और विकासशील भ्रूण, शहर, विनिर्माण व्यवसाय और कोई भी मानव सामाजिक समूह-आधारित प्रयास एक सांस्कृतिक और सामाजिक व्यवस्था जैसे राजनीतिक दल या समुदाय  शामिल हैं। [2]

विशेषताएं

जटिल प्रणालियों की विशेषताएं निम्नलिखित हैं,

जटिल प्रणाली खुले हो सकते हैं
जटिल प्रणालियां आमतौर पर खुली प्रणाली होते हैं - यानी, वे उष्मागतिकी प्रवणता में मौजूद होते हैं और ऊर्जा को नष्ट कर देते हैं। दूसरे शब्दों में, जटिल प्रणालियां अक्सर ऊर्जावान संतुलन से दूर होती हैं, लेकिन इस प्रवाह के बावजूद, पैटर्न स्थिरता हो सकती है, [3] सहक्रियात्मकता को देख सकते है।

जटिल प्रणालियां महत्वपूर्ण बदलाव प्रदर्शित कर सकती हैं

वैकल्पिक स्थिर अवस्थाओं का चित्रमय प्रतिनिधित्व और एक महत्वपूर्ण संक्रमण से पहले महत्वपूर्ण धीमा होने की दिशा (लीवर एट अल। 2020 से ली गई)[4] शीर्ष पैनल (ए) विभिन्न स्थितियों में स्थिरता परिदृश्य दर्शाते हैं। मध्य पैनल (बी) स्थिरता परिदृश्य के ढलान के समान परिवर्तन की दरों को इंगित करते हैं, और नीचे के पैनल (सी) सिस्टम के भविष्य की स्थिति (सी.

महत्वपूर्ण बदलाव पारिस्थितिक तंत्र, जलवायु, वित्तीय प्रणालियों या अन्य जटिल प्रणालियों की स्थिति में अचानक बदलाव तब हो सकते हैं जब बदलती स्थितियां एक महत्वपूर्ण या द्विभाजन बिंदु से गुजरती हैं।[5] [6] [7] [8] सिस्टम के स्टेट स्पेस में 'क्रिटिकल स्लोडाउन की दिशा' इस तरह के बदलावों के बाद सिस्टम की भविष्य की स्थिति का संकेत हो सकती है, जब विलंबित नकारात्मक प्रतिक्रिया के कारण दोलन या अन्य जटिल गतिकी कमजोर होते हैं।[9]

जटिल प्रणाली स्थिर हो सकते हैं

एक जटिल प्रणाली के घटक स्वयं जटिल प्रणाली हो सकते हैं। उदाहरण के लिए, एक अर्थव्यवस्था संगठनों से बनी होती है, जो लोगों से बनी होती हैं, जो कोशिकाओं से बनी होती हैं - ये सभी जटिल प्रणालियाँ हैं। जटिल द्विदलीय नेटवर्क के भीतर अंतःक्रियाओं की व्यवस्था को भी नेस्ट किया जा सकता है। अधिक विशेष रूप से, पारस्परिक रूप से लाभकारी बातचीत के द्विदलीय पारिस्थितिक और संगठनात्मक नेटवर्क में एक नेस्टेड संरचना पाई गई। [10] [11] यह संरचना अप्रत्यक्ष सुविधा और तेजी से कठोर परिस्थितियों में बने रहने के लिए प्रणाली की क्षमता के साथ-साथ बड़े पैमाने पर प्रणालीगत शासन परिवर्तन की संभावना को बढ़ावा देती है।

विविधता का गतिशील नेटवर्क

साथ ही युग्मन नियम, एक जटिल प्रणाली का गतिशील नेटवर्क महत्वपूर्ण है। लघु-विश्व या स्केल-मुक्त नेटवर्क [12] [13] जिसमें कई स्थानीय इंटरैक्शन होते हैं और कम संख्या में अंतर-क्षेत्र कनेक्शन अक्सर नियोजित होते हैं। प्राकृतिक जटिल प्रणालियाँ अक्सर ऐसी टोपोलॉजी प्रदर्शित करती हैं। उदाहरण के लिए मानव प्रांतस्था में, हम घने स्थानीय संपर्क और प्रांतस्था के अंदर के क्षेत्रों और अन्य मस्तिष्क क्षेत्रों के बीच कुछ बहुत लंबे अक्षतंतु अनुमान देखते हैं।

आकस्मिक घटनाएं उत्पन्न कर सकते हैं

जटिल प्रणालियाँ ऐसे व्यवहार प्रदर्शित कर सकती हैं जो आकस्मिक हैं, जिसका अर्थ यह है कि जब परिणाम सिस्टम के मूल घटकों की गतिविधि द्वारा पर्याप्त रूप से निर्धारित किए जा सकते हैं, तो उनके पास ऐसे गुण हो सकते हैं जिनका अध्ययन केवल उच्च स्तर पर किया जा सकता है। उदाहरण के लिए, टीले में दीमक का शरीर विज्ञान, जैव रसायन और जैविक विकास होता है जो विश्लेषण के एक स्तर पर होता है, लेकिन उनका सामाजिक व्यवहार और टीला निर्माण एक ऐसी संपत्ति है जो दीमक के संग्रह से निकलती है और एक अलग स्तर पर विश्लेषण करने की आवश्यकता होती है।

संबंध गैर-रैखिक हैं

व्यावहारिक रूप से, इसका मतलब है कि एक छोटा सा परेशानी एक बड़ा प्रभाव ( तितली प्रभाव देखें), आनुपातिक प्रभाव, या यहां तक कि कोई प्रभाव नहीं पैदा कर सकता है। रैखिक प्रणालियों में, प्रभाव हमेशा कारण के सीधे आनुपातिक होता है। गैर-रैखिकता देखें।

संबंध में फीडबैक लूप होते हैं

नकारात्मक अवमंदक और सकारात्मक (एम्पलीफाइंग) फीडबैक हमेशा जटिल प्रणालियों में पाए जाते हैं। किसी तत्व के व्यवहार के प्रभावों को वापस इस तरह से फीड किया जाता है कि वह तत्व स्वयं बदल जाता है।

इतिहास

File:2018 Map of the Complexity Sciences HD.jpg
जटिलता विज्ञान के विकास पर एक परिप्रेक्ष्य (पढ़ने योग्य संस्करण के लिए संदर्भ देखें[14]

यद्यपि यकीनन, मनुष्य हजारों वर्षों से जटिल प्रणालियों का अध्ययन कर रहे हैं, जटिल प्रणालियों का आधुनिक वैज्ञानिक अध्ययन भौतिकी और रसायन विज्ञान जैसे विज्ञान के स्थापित क्षेत्रों की तुलना में अपेक्षाकृत युवा है। इन प्रणालियों के वैज्ञानिक अध्ययन का इतिहास कई अलग-अलग शोध प्रवृत्तियों का अनुसरण करता है।

गणित के क्षेत्र में, निश्चित रूप से जटिल प्रणालियों के अध्ययन में सबसे बड़ा योगदान नियतात्मक प्रणालियों में अराजकता की खोज था, कुछ गतिशील प्रणालियों की एक विशेषता जो दृढ़ता से गैर-रैखिकता से संबंधित है। [15] जटिल प्रणालियों का अध्ययन करने के लिए आवश्यक गणित को आगे बढ़ाने में तंत्रिका नेटवर्क का अध्ययन भी अभिन्न था।

स्व-आयोजन प्रणालियों की धारणा किसी भी संतुलन थर्मोडायनामिक्स में काम से जुड़ी हुई है, जिसमें रसायनज्ञ और नोबेल पुरस्कार विजेता इल्या प्रोगोगिन ने विघटनकारी संरचनाओं के अपने अध्ययन में अग्रणी भूमिका निभाई है। क्वांटम रसायन विज्ञान के समीकरणों और बाद में अणुओं की संरचना की गणना पर हार्ट्री-फॉक द्वारा किया गया काम और भी पुराना है, जिसे विज्ञान में उद्भव और आकस्मिक संपूर्ण के शुरुआती उदाहरणों में से एक माना जा सकता है।

मनुष्यों से युक्त एक जटिल प्रणाली स्कॉटिश प्रबुद्धता की शास्त्रीय राजनीतिक अर्थव्यवस्था है, जिसे बाद में ऑस्ट्रियाई स्कूल ऑफ इकोनॉमिक्स द्वारा विकसित किया गया था, जिसका तर्क है कि बाजार प्रणालियों में आदेश सहज (या आकस्मिक ) है, जिसमें यह मानव क्रिया का परिणाम है, लेकिन नहीं किसी भी मानव डिजाइन का निष्पादन। [16] [17]

इस पर, ऑस्ट्रियाई स्कूल ने 19 वीं से 20 वीं शताब्दी की शुरुआत में आर्थिक गणना की समस्या विकसित की, साथ ही बिखरे हुए ज्ञान की अवधारणा के साथ, जो तत्कालीन प्रमुख केनेसियन अर्थशास्त्र के खिलाफ बहस को बढ़ावा देने के लिए थे। यह बहस विशेष रूप से अर्थशास्त्रियों, राजनेताओं और अन्य दलों को कम्प्यूटेशनल जटिलता के प्रश्न का पता लगाने के लिए प्रेरित करेगी।

क्षेत्र में एक अग्रणी, और कार्ल पॉपर और वारेन वीवर के कार्यों से प्रेरित, नोबेल पुरस्कार अर्थशास्त्री और दार्शनिक फ्रेडरिक हायेक ने अपना अधिकांश काम, 20 वीं शताब्दी के अंत तक, जटिल घटनाओं के अध्ययन के लिए समर्पित किया, [18] अपने काम को मानव अर्थव्यवस्थाओं तक सीमित नहीं कर रहा है बल्कि मनोविज्ञान, [19] जीव विज्ञान और साइबरनेटिक्स जैसे अन्य क्षेत्रों में उद्यम कर रहा है। साइबरनेटिशियन ग्रेगरी बेटसन ने नृविज्ञान और सिस्टम सिद्धांत के बीच संबंध स्थापित करने में महत्वपूर्ण भूमिका निभाई; उन्होंने माना कि संस्कृतियों के अंतःक्रियात्मक भाग पारिस्थितिक तंत्र की तरह कार्य करते हैं।

जबकि जटिल प्रणालियों का स्पष्ट अध्ययन कम से कम 1970 के दशक का है, [20] जटिल प्रणालियों पर केंद्रित पहला शोध संस्थान, सांता फ़े संस्थान, 1984 में स्थापित किया गया था। [21] [22] प्रारंभिक सांता फ़े संस्थान के प्रतिभागियों में भौतिकी के नोबेल पुरस्कार विजेता मरे गेल-मान और फिलिप एंडरसन, अर्थशास्त्र के नोबेल पुरस्कार विजेता केनेथ एरो और मैनहट्टन परियोजना के वैज्ञानिक जॉर्ज कोवान और हर्ब एंडरसन शामिल थे। [23] आज, जटिल प्रणालियों पर ध्यान केंद्रित करने वाले 50 से अधिक संस्थान और अनुसंधान केंद्र हैं।

1990 के दशक के उत्तरार्ध से, आर्थिक घटनाओं पर शोध करने में गणितीय भौतिकविदों की रुचि बढ़ रही है। भौतिकी ज्ञानमीमांसा से उत्पन्न समाधानों के अनुप्रयोग के साथ क्रॉस-डिसिप्लिनरी अनुसंधान के प्रसार ने सैद्धांतिक अभिव्यक्ति और अर्थशास्त्र में पद्धतिगत दृष्टिकोणों में एक क्रमिक प्रतिमान बदलाव किया है, मुख्य रूप से वित्तीय अर्थशास्त्र में। विकास के परिणामस्वरूप अनुशासन की एक नई शाखा का उदय हुआ है, जिसका नाम है "इकोनोफिजिक्स", जिसे मोटे तौर पर एक क्रॉस-डिसिप्लिन के रूप में परिभाषित किया गया है जो सांख्यिकीय भौतिकी पद्धतियों को लागू करता है जो ज्यादातर जटिल सिस्टम सिद्धांत और अर्थशास्त्र विश्लेषण के लिए अराजकता सिद्धांत पर आधारित होते हैं। [24]

भौतिकी में 2021 का नोबेल पुरस्कार स्यूकुरो मनाबे, क्लाउस हैसलमैन और जियोर्जियो पेरिस को उनके जटिल प्रणालियों को समझने के लिए उनके काम के लिए दिया गया था। उनके काम का उपयोग पृथ्वी की जलवायु पर ग्लोबल वार्मिंग के प्रभाव के अधिक सटीक कंप्यूटर मॉडल बनाने के लिए किया गया था। [25]

अनुप्रयोग

कार्य में जटिलता

जटिलता से निपटने का पारंपरिक तरीका इसे कम करना या सीमित करना है। आमतौर पर, इसमें कंपार्टमेंटलाइज़ेशन शामिल होता है: एक बड़े सिस्टम को अलग-अलग हिस्सों में विभाजित करना। उदाहरण के लिए, संगठन अपने काम को उन विभागों में विभाजित करते हैं जो प्रत्येक अलग-अलग मुद्दों से निपटते हैं। इंजीनियरिंग सिस्टम अक्सर मॉड्यूलर घटकों का उपयोग करके डिज़ाइन किए जाते हैं। हालाँकि, मॉड्यूलर डिज़ाइन विफलता के लिए अतिसंवेदनशील हो जाते हैं जब समस्याएँ उत्पन्न होती हैं जो डिवीजनों को पाट देती हैं।

जटिलता प्रबंधन

जैसे-जैसे परियोजनाएं और अधिग्रहण तेजी से जटिल होते जा रहे हैं, कंपनियों और सरकारों को आर्मी फ्यूचर कॉम्बैट सिस्टम्स जैसे मेगा-अधिग्रहणों को प्रबंधित करने के प्रभावी तरीके खोजने के लिए चुनौती दी जाती है। एफसीएस जैसे अधिग्रहण परस्पर संबंधित भागों के एक वेब पर निर्भर करते हैं जो अप्रत्याशित रूप से परस्पर क्रिया करते हैं। जैसे-जैसे अधिग्रहण अधिक नेटवर्क-केंद्रित और जटिल होते जाएंगे, व्यवसायों को जटिलता का प्रबंधन करने के तरीके खोजने के लिए मजबूर किया जाएगा, जबकि सरकारों को लचीलापन और लचीलापन सुनिश्चित करने के लिए प्रभावी शासन प्रदान करने के लिए चुनौती दी जाएगी। [26]

जटिलता अर्थशास्त्र

पिछले दशकों में, जटिलता अर्थशास्त्र के उभरते हुए क्षेत्र के भीतर, आर्थिक विकास की व्याख्या करने के लिए नए भविष्य कहनेवाला उपकरण विकसित किए गए हैं। 1989 में सांता फ़े संस्थान द्वारा बनाए गए मॉडल और एमआईटी भौतिक विज्ञानी सीज़र ए। हिडाल्गो और हार्वर्ड अर्थशास्त्री रिकार्डो हॉसमैन द्वारा पेश किए गए हालिया आर्थिक जटिलता सूचकांक (ईसीआई) के मामले में ऐसा ही है। ईसीआई के आधार पर, हॉसमैन, हिडाल्गो और द ऑब्जर्वेटरी ऑफ इकोनॉमिक कॉम्प्लेक्सिटी की उनकी टीम ने वर्ष 2020 के लिए जीडीपी पूर्वानुमान तैयार किए हैं।  व्यावसायिक चक्रों और आर्थिक विकास की विशेषता का पता लगाने के लिए पुनरावृत्ति परिमाणीकरण विश्लेषण को नियोजित किया गया है। यह अंत करने के लिए, ऑरलैंडो एट अल। [27] एक नमूना संकेत पर आरक्यूए के सहसंबंधों का परीक्षण करने के लिए तथाकथित पुनरावृत्ति परिमाणीकरण सहसंबंध सूचकांक (आरक्यूसीआई) विकसित किया और फिर व्यावसायिक समय श्रृंखला के लिए आवेदन की जांच की। उक्त सूचकांक समय श्रृंखला में छिपे हुए परिवर्तनों का पता लगाने के लिए सिद्ध हुआ है। इसके अलावा, ऑरलैंडो एट अल।, [28] एक व्यापक डेटासेट पर, दिखाया गया है कि पुनरावृत्ति परिमाणीकरण विश्लेषण लामिना (यानी नियमित) से अशांत (यानी अराजक) चरणों जैसे 1949, 1953 में यूएसए जीडीपी, आदि में संक्रमण की आशंका में मदद कर सकता है। अंतिम लेकिन कम से कम, यह प्रदर्शित किया गया है कि पुनरावृत्ति परिमाणीकरण विश्लेषण मैक्रोइकॉनॉमिक चर के बीच अंतर का पता लगा सकता है और आर्थिक गतिशीलता की छिपी विशेषताओं को उजागर कर सकता है।

जटिलता और शिक्षा

अपने अध्ययन के साथ छात्र दृढ़ता के मुद्दों पर ध्यान केंद्रित करते हुए, फोर्समैन, मोल और लिंडर "भौतिकी शिक्षा अनुसंधान के लिए पद्धतिगत अनुप्रयोगों का विस्तार करने के लिए एक फ्रेम के रूप में जटिलता विज्ञान का उपयोग करने की व्यवहार्यता" का पता लगाते हैं, यह पाते हुए कि "एक जटिलता विज्ञान परिप्रेक्ष्य के भीतर एक सामाजिक नेटवर्क विश्लेषण तैयार करना प्रति विषयों की एक विस्तृत श्रृंखला में एक नई और शक्तिशाली प्रयोज्यता"। [29]

जटिलता और जीव विज्ञान

जीवित जीवों और विशेष रूप से जैविक प्रणालियों के लिए जटिलता विज्ञान लागू किया गया है। फ्रैक्टल फिजियोलॉजी के उभरते क्षेत्र के भीतर, शारीरिक संकेतों, जैसे कि हृदय गति या मस्तिष्क गतिविधि, को एन्ट्रापी या फ्रैक्टल इंडेक्स का उपयोग करने की विशेषता है। लक्ष्य अक्सर अंतर्निहित प्रणाली की स्थिति और स्वास्थ्य का आकलन करना और संभावित विकारों और बीमारियों का निदान करना होता है।

जटिलता और मॉडलिंग

प्रारंभिक जटिलता सिद्धांत में फ्रेडरिक हायेक के मुख्य योगदानों में से एक सरल प्रणालियों के व्यवहार की भविष्यवाणी करने की मानवीय क्षमता और मॉडलिंग के माध्यम से जटिल प्रणालियों के व्यवहार की भविष्यवाणी करने की क्षमता के बीच उनका अंतर है। उनका मानना था कि सामान्य रूप से जटिल घटनाओं के अर्थशास्त्र और विज्ञान, जिसमें उनके विचार में जीव विज्ञान, मनोविज्ञान, और इसी तरह शामिल थे, को उन विज्ञानों के बाद नहीं बनाया जा सकता है जो भौतिकी जैसी अनिवार्य रूप से सरल घटनाओं से निपटते हैं। [30] हायेक विशेष रूप से समझाएगा कि जटिल घटनाएं, मॉडलिंग के माध्यम से, केवल पैटर्न भविष्यवाणियों की अनुमति दे सकती हैं, सटीक भविष्यवाणियों की तुलना में जो गैर-जटिल घटनाओं से बाहर की जा सकती हैं। [31]

जटिलता और अक्रम सिद्धांत

जटिलता सिद्धांत अराजकता सिद्धांत में निहित है, जिसकी उत्पत्ति फ्रांसीसी गणितज्ञ हेनरी पोंकारे के काम में एक सदी से भी पहले हुई है। अराजकता को कभी-कभी आदेश की अनुपस्थिति के बजाय अत्यंत जटिल जानकारी के रूप में देखा जाता है।[32] अराजक प्रणालियां नियतात्मक रहती हैं, हालांकि उनके दीर्घकालिक व्यवहार का किसी भी सटीकता के साथ अनुमान लगाना मुश्किल हो सकता है। प्रारंभिक स्थितियों और अराजक प्रणाली के व्यवहार का वर्णन करने वाले प्रासंगिक समीकरणों के पूर्ण ज्ञान के साथ, कोई सैद्धांतिक रूप से सिस्टम की पूरी तरह से सटीक भविष्यवाणियां कर सकता है, हालांकि व्यवहार में यह मनमानी सटीकता के साथ करना असंभव है। इल्या प्रिगोगिन ने तर्क दिया [33] कि जटिलता गैर-नियतात्मक है और भविष्य की सटीक भविष्यवाणी करने का कोई रास्ता नहीं देती है।[34]

जटिलता सिद्धांत का उद्भव नियतात्मक क्रम और यादृच्छिकता के बीच एक डोमेन को दर्शाता है जो जटिल है। [35] इसे " अराजकता का किनारा " कहा जाता है। [36]

जब कोई जटिल प्रणालियों का विश्लेषण करता है, तो प्रारंभिक स्थितियों के प्रति संवेदनशीलता, उदाहरण के लिए, एक महत्वपूर्ण मुद्दा नहीं है क्योंकि यह अराजकता सिद्धांत के भीतर है, जिसमें यह प्रबल होता है। जैसा कि कोलंडर ने कहा है, [37] जटिलता का अध्ययन अराजकता के अध्ययन के विपरीत है। जटिलता इस बारे में है कि कैसे रिश्तों की एक बड़ी संख्या में अत्यधिक जटिल और गतिशील सेट कुछ सरल व्यवहार पैटर्न उत्पन्न कर सकते हैं, जबकि अराजक व्यवहार, नियतात्मक अराजकता के अर्थ में, अपेक्षाकृत कम संख्या में गैर-रैखिक बातचीत का परिणाम है। [38]

इसलिए, अराजक प्रणालियों और जटिल प्रणालियों के बीच मुख्य अंतर उनका इतिहास है। [39] अराजक प्रणालियाँ अपने इतिहास पर भरोसा नहीं करतीं, जैसा कि जटिल प्रणाली करती हैं। अराजक व्यवहार संतुलन में एक प्रणाली को अराजक क्रम में धकेलता है, जिसका अर्थ है, दूसरे शब्दों में, जिसे हम पारंपरिक रूप से 'आदेश' के रूप में परिभाषित करते हैं। दूसरी ओर, जटिल प्रणालियां अराजकता के किनारे पर संतुलन से बहुत दूर विकसित होती हैं। वे अपरिवर्तनीय और अप्रत्याशित घटनाओं के इतिहास द्वारा निर्मित एक महत्वपूर्ण स्थिति में विकसित होते हैं, जिसे भौतिक विज्ञानी मरे गेल-मान ने "जमे हुए दुर्घटनाओं का संचय" कहा। [40] एक अर्थ में अराजक प्रणालियों को जटिल प्रणालियों का एक उपसमूह माना जा सकता है जो ऐतिहासिक निर्भरता की इस अनुपस्थिति से सटीक रूप से प्रतिष्ठित हैं। कई वास्तविक जटिल प्रणालियां, व्यवहार में और लंबी लेकिन सीमित अवधि में, मजबूत होती हैं। हालांकि, उनके पास प्रणालीगत अखंडता को बनाए रखते हुए आमूल-चूल गुणात्मक परिवर्तन की क्षमता है। कायापलट इस तरह के परिवर्तनों के लिए एक रूपक से कहीं अधिक कार्य करता है।

जटिलता और नेटवर्क विज्ञान

एक जटिल प्रणाली आमतौर पर कई घटकों और उनकी बातचीत से बनी होती है। इस तरह की प्रणाली को एक नेटवर्क द्वारा दर्शाया जा सकता है जहां नोड्स घटकों का प्रतिनिधित्व करते हैं और लिंक उनकी बातचीत का प्रतिनिधित्व करते हैं। [41] [42] उदाहरण के लिए, इंटरनेट को नोड्स (कंप्यूटर) और लिंक (कंप्यूटर के बीच सीधा कनेक्शन) से बना नेटवर्क के रूप में दर्शाया जा सकता है। जटिल नेटवर्क के अन्य उदाहरणों में सामाजिक नेटवर्क, वित्तीय संस्थान अन्योन्याश्रितता, [43] एयरलाइन नेटवर्क, [44] और जैविक नेटवर्क शामिल हैं।

यह सभी देखें

संदर्भ

  1. Bar-Yam, Yaneer (2002). "General Features of Complex Systems" (PDF). Encyclopedia of Life Support Systems. Retrieved 16 September 2014.
  2. Skrimizea, Eirini; Haniotou, Helene; Parra, Constanza (2019). "On the 'complexity turn' in planning: An adaptive rationale to navigate spaces and times of uncertainty". Planning Theory. 18: 122–142. doi:10.1177/1473095218780515.
  3. Pokrovskii, Vladimir (2021). Thermodynamics of Complex Systems: Principles and applications (in English). IOP Publishing, Bristol, UK. Bibcode:2020tcsp.book.....P.
  4. {{cite journal |last1=Lever |first1=J. Jelle |last2=Leemput |first2=Ingrid A. |last3=Weinans |first3=Els |last4=Quax |first4=Rick |last5=Dakos |first5=Vasilis |last6=Nes |first6=Egbert H. |last7=Bascompte |first7=Jordi |last8=Scheffer |first8=Marten |title=Foreseeing the future of mutualistic communities beyond collapse |journal=Ecology Letters |volume=23 |issue=1 |pages=2–15 |doi=10. [[/ele.13401 |pmid=31707763 |pmc=6916369 |year=2020 }}
  5. Scheffer, Marten; Carpenter, Steve; Foley, Jonathan A.; Folke, Carl; Walker, Brian (October 2001). "Catastrophic shifts in ecosystems". Nature (in English). 413 (6856): 591–596. Bibcode:2001Natur.413..591S. doi:10.1038/35098000. ISSN 1476-4687. PMID 11595939.
  6. Scheffer, Marten (26 July 2009). Critical transitions in nature and society. Princeton University Press. ISBN 978-0691122045.
  7. Scheffer, Marten; Bascompte, Jordi; Brock, William A.; Brovkin, Victor; Carpenter, Stephen R.; Dakos, Vasilis; Held, Hermann; van Nes, Egbert H.; Rietkerk, Max (September 2009). "Early-warning signals for critical transitions". Nature (in English). 461 (7260): 53–59. Bibcode:2009Natur.461...53S. doi:10.1038/nature08227. ISSN 1476-4687. PMID 19727193.
  8. Scheffer, Marten; Carpenter, Stephen R.; Lenton, Timothy M.; Bascompte, Jordi; Brock, William; Dakos, Vasilis; Koppel, Johan van de; Leemput, Ingrid A. van de; Levin, Simon A. (19 October 2012). "Anticipating Critical Transitions". Science (in English). 338 (6105): 344–348. Bibcode:2012Sci...338..344S. doi:10.1126/science.1225244. ISSN 0036-8075. PMID 23087241. Archived from the original on 24 June 2020. Retrieved 10 June 2020. {{cite journal}}: |hdl-access= requires |hdl= (help)
  9. Lever, J. Jelle; Leemput, Ingrid A.; Weinans, Els; Quax, Rick; Dakos, Vasilis; Nes, Egbert H.; Bascompte, Jordi; Scheffer, Marten (2020). "Foreseeing the future of mutualistic communities beyond collapse". Ecology Letters. 23 (1): 2–15. doi:10.1111/ele.13401. PMC 6916369. PMID 31707763.
  10. Bascompte, J.; Jordano, P.; Melian, C. J.; Olesen, J. M. (24 July 2003). "The nested assembly of plant-animal mutualistic networks". Proceedings of the National Academy of Sciences. 100 (16): 9383–9387. Bibcode:2003PNAS..100.9383B. doi:10.1073/pnas.1633576100. PMC 170927. PMID 12881488.
  11. Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian (January 2009). "A simple model of bipartite cooperation for ecological and organizational networks". Nature (in English). 457 (7228): 463–466. Bibcode:2009Natur.457..463S. doi:10.1038/nature07532. ISSN 1476-4687. PMID 19052545.
  12. A. L. Barab´asi, R. Albert (2002). "Statistical mechanics of complex networks". Reviews of Modern Physics. 74 (1): 47–94. arXiv:cond-mat/0106096. Bibcode:2002RvMP...74...47A. CiteSeerX 10.1.1.242.4753. doi:10.1103/RevModPhys.74.47.
  13. M. Newman (2010). Networks: An Introduction. Oxford University Press. ISBN 978-0-19-920665-0.
  14. "complexity map castellani map of complexity science, complexity theory, complexity science, complexity, brian castellani, durham sociology complexity". www.art-sciencefactory.com.
  15. "History of Complex Systems". Archived from the original on November 23, 2007.
  16. Ferguson, Adam (1767). An Essay on the History of Civil Society. London: T. Cadell. Part the Third, Section II, p. 205. {{cite book}}: Unknown parameter |nopp= ignored (|no-pp= suggested) (help)
  17. Friedrich Hayek, "The Results of Human Action but Not of Human Design" in New Studies in Philosophy, Politics, Economics, Chicago: University of Chicago Press, 1978, pp. 96–105.
  18. Bruce J. Caldwell, Popper and Hayek: Who influenced whom? Archived 2018-12-11 at the Wayback Machine, Karl Popper 2002 Centenary Congress, 2002.
  19. Friedrich von Hayek, The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology, The University of Chicago Press, 1952.
  20. Vemuri, V. (1978). Modeling of Complex Systems: An Introduction. New York: Academic Press. ISBN 978-0127165509.
  21. Ledford, H (2015). "How to solve the world's biggest problems". Nature. 525 (7569): 308–311. Bibcode:2015Natur.525..308L. doi:10.1038/525308a. PMID 26381968.
  22. "History | Santa Fe Institute". www.santafe.edu (in English). Archived from the original on 2019-04-03. Retrieved 2018-05-17.
  23. Waldrop, M. M. (1993). Complexity: The emerging science at the edge of order and chaos. Simon and Schuster.
  24. Ho, Y. J.; Ruiz Estrada, M. A; Yap, S. F. (2016). "The evolution of complex systems theory and the advancement of econophysics methods in the study of stock market crashes". Labuan Bulletin of International Business & Finance. 14: 68–83.
  25. "Nobel in physics: Climate science breakthroughs earn prize". BBC News. 5 October 2021.
  26. "CSIS paper: "Organizing for a Complex World: The Way Ahead" (PDF).
  27. Orlando, Giuseppe; Zimatore, Giovanna (18 December 2017). "RQA correlations on real business cycles time series". Indian Academy of Sciences – Conference Series. 1 (1): 35–41. doi:10.29195/iascs.01.01.0009.
  28. Orlando, Giuseppe; Zimatore, Giovanna (1 May 2018). "Recurrence quantification analysis of business cycles". Chaos, Solitons & Fractals (in English). 110: 82–94. doi:10.1016/j.chaos.2018.02.032. ISSN 0960-0779.
  29. Forsman, Jonas; Moll, Rachel; Linder, Cedric (2014). "Extending the theoretical framing for physics education research: An illustrative application of complexity science". Physical Review Special Topics - Physics Education Research. 10 (2): 020122. Bibcode:2014PRPER..10b0122F. doi:10.1103/PhysRevSTPER.10.020122.
  30. "Reason Magazine - The Road from Serfdom". Archived from the original on 2007-03-10. Retrieved 2017-09-22.
  31. "The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1974". NobelPrize.org.
  32. Hayles, N. K. (1991). Chaos Bound: Orderly Disorder in Contemporary Literature and Science. Cornell University Press, Ithaca, NY.
  33. Prigogine, I. (1997). The End of Certainty, The Free Press, New York.
  34. See also D. Carfì (2008). "Superpositions in Prigogine approach to irreversibility". AAPP: Physical, Mathematical, and Natural Sciences. 86 (1): 1–13..
  35. Cilliers, P. (1998). Complexity and Postmodernism: Understanding Complex Systems, Routledge, London.
  36. Per Bak (1996). How Nature Works: The Science of Self-Organized Criticality, Copernicus, New York, U.S.
  37. Colander, D. (2000). The Complexity Vision and the Teaching of Economics, E. Elgar, Northampton, Massachusetts.
  38. Cilliers, P. (1998). Complexity and Postmodernism: Understanding Complex Systems, Routledge, London.
  39. Buchanan, M. (2000). Ubiquity : Why catastrophes happen, three river press, New-York.
  40. Gell-Mann, M. (1995). What is Complexity? Complexity 1/1, 16-19
  41. Dorogovtsev, S.N.; Mendes, J.F.F. (2003). Evolution of Networks. p. 1079. arXiv:cond-mat/0106144. doi:10.1093/acprof:oso/9780198515906.001.0001. ISBN 9780198515906. {{cite book}}: |work= ignored (help)
  42. Newman, Mark (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001. ISBN 9780199206650.[dead link]
  43. Battiston, Stefano; Caldarelli, Guido; May, Robert M.; Roukny, tarik; Stiglitz, Joseph E. (2016-09-06). "The price of complexity in financial networks". Proceedings of the National Academy of Sciences (in English). 113 (36): 10031–10036. Bibcode:2016PNAS..11310031B. doi:10.1073/pnas.1521573113. PMC 5018742. PMID 27555583.
  44. Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. (2004). "The architecture of complex weighted networks". Proceedings of the National Academy of Sciences. 101 (11): 3747–3752. arXiv:cond-mat/0311416. Bibcode:2004PNAS..101.3747B. doi:10.1073/pnas.0400087101. ISSN 0027-8424. PMC 374315. PMID 15007165.

External links

  • "द ओपन एजेंट-आधारित मॉडलिंग कंसोर्टियम"।
  • "जटिलता विज्ञान फोकस"। मूल से 2017-12-05 को संग्रहीत। 2017-09-22 को लिया गया।
  • "सांता फ़े संस्थान"।
  • "द सेंटर फॉर द स्टडी ऑफ कॉम्प्लेक्स सिस्टम्स, यूनिवर्सिटी ऑफ मिशिगन एन आर्बर"।
  • "इंडेक्स"। (जटिल प्रणालियों का अंतःविषय विवरण)
  • "जटिलता का परिचय - मेलानी मिशेल द्वारा मुफ्त ऑनलाइन पाठ्यक्रम"। मूल से 2018-08-30 को संग्रहीत। 2018-08-29 को लिया गया।
  • जेसी हेंशॉ (24 अक्टूबर, 2013)। "कॉम्प्लेक्स सिस्टम"। पृथ्वी का विश्वकोश।
  • स्कॉलरपीडिया में जटिल सिस्टम।
  • कॉम्प्लेक्स सिस्टम सोसाइटी
  • (ऑस्ट्रेलियाई) जटिल प्रणाली अनुसंधान नेटवर्क।
  • लुइस एम. रोचा, 1999 पर आधारित कॉम्प्लेक्स सिस्टम मॉडलिंग।
  • सीआरएम कॉम्प्लेक्स सिस्टम रिसर्च ग्रुप
  • जटिल प्रणाली अनुसंधान केंद्र, विश्वविद्यालय। अर्बाना-शैंपेन में इलिनोइस के