हाइपरऑपरेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Generalization of addition, multiplication, exponentiation, tetration, etc.}}
{{short description|Generalization of addition, multiplication, exponentiation, tetration, etc.}}
{{about|the arithmetic concept|समूह सिद्धांत हाइपरऑपरेशन अवधारणा|अतिसंरचना}}
{{about|अंकगणितीय अवधारणा|समूह सिद्धांत हाइपरऑपरेशन अवधारणा|अतिसंरचना}}
गणित में, उच्च संक्रिया अनुक्रम {{refn| Sequences similar to the ''hyperoperation sequence'' have historically been referred to by many names, including: the ''[[Ackermann function]]'' {{sfn|Geisler|2003}} (3-argument), the ''Ackermann hierarchy'',{{sfn|Friedman|2001}} the ''[[Grzegorczyk hierarchy]]''{{sfn|Campagnola|Moore|Costa|2002}}{{sfn|Wirz|1999}} (which is more general), ''Goodstein's version of the Ackermann function'',{{sfn|Goodstein|1947}} ''operation of the nth grade'',{{sfn|Bennett|1915}} ''z-fold iterated exponentiation of x with y'',{{sfn|Black|2009}} ''[[Knuth's up-arrow notation|arrow]] operations'',{{sfn|Littlewood|1948}} ''reihenalgebra''{{sfn|Müller|1993}} and ''hyper-n''.{{sfn|Geisler|2003}}{{sfn|Müller|1993}}{{sfn|Munafo|1999a}}{{sfn|Robbins|2005}}{{sfn|Galidakis|2003}}|group="nb"}} अंकगणितीय संक्रियाओं का एक अनंत [[क्रम]] है(इस संदर्भ में उच्च संक्रिया कहा जाता है)|{{sfn|Geisler|2003}}{{sfn|Robbins|2005}}{{sfn|Rubtsov|Romerio|2005}} यह एक [[एकात्मक ऑपरेशन|एकात्मक]] संक्रिया(एन = 0 के साथ आनुक्रमिक फलन) से शुरू होता है। अनुक्रम जोड़(n = 1), गुणन(n = 2), और [[घातांक]](n = 3) के द्विआधारी संचालन के साथ जारी है।
गणित में, उच्च संक्रिया अनुक्रम {{refn| Sequences similar to the ''hyperoperation sequence'' have historically been referred to by many names, including: the ''[[Ackermann function]]'' {{sfn|Geisler|2003}} (3-argument), the ''Ackermann hierarchy'',{{sfn|Friedman|2001}} the ''[[Grzegorczyk hierarchy]]''{{sfn|Campagnola|Moore|Costa|2002}}{{sfn|Wirz|1999}} (which is more general), ''Goodstein's version of the Ackermann function'',{{sfn|Goodstein|1947}} ''operation of the nth grade'',{{sfn|Bennett|1915}} ''z-fold iterated exponentiation of x with y'',{{sfn|Black|2009}} ''[[Knuth's up-arrow notation|arrow]] operations'',{{sfn|Littlewood|1948}} ''reihenalgebra''{{sfn|Müller|1993}} and ''hyper-n''.{{sfn|Geisler|2003}}{{sfn|Müller|1993}}{{sfn|Munafo|1999a}}{{sfn|Robbins|2005}}{{sfn|Galidakis|2003}}|group="nb"}}अंकगणितीय संक्रियाओं का एक अनंत [[क्रम]] है(इस संदर्भ में उच्च संक्रिया कहा जाता है)|{{sfn|Geisler|2003}}{{sfn|Robbins|2005}}{{sfn|Rubtsov|Romerio|2005}} यह एक [[एकात्मक ऑपरेशन|एकात्मक]] संक्रिया(एन = 0 के साथ आनुक्रमिक फलन) से शुरू होता है। अनुक्रम जोड़(n = 1), गुणन(n = 2), और [[घातांक]](n = 3) के द्विआधारी संचालन के साथ जारी है।


उसके बाद संचालक सहयोगीता का उपयोग करते हुए अनुक्रम द्विआधारी संचालन के साथ आगे बढ़ता है, घातांक से आगे बढ़ता है। घातांक के बाहर के संचालन के लिए, इस क्रम के n वें सदस्य का नाम [[रूबेन गुडस्टीन]] द्वारा n के [[संख्यात्मक उपसर्ग]] के बाद -ation के साथ दिया गया है(जैसे कि [[टेट्रेशन]](n = 4), [[pentation]](n = 5), हेक्सेशन(n = 6) , आदि।) {{sfn|Goodstein|1947}} और नुथ के ऊपर(अप) - तीर संकेत पद्धति में n − 2 तीरों का उपयोग करके लिखा जा सकता है।
उसके बाद संचालक सहयोगिता का उपयोग करते हुए अनुक्रम द्विआधारी संचालन के साथ आगे बढ़ता है तथा घातांक से आगे बढ़ता है। घातांक के बाहर से संचालन के लिए, इस क्रम के n वें सदस्य का नाम [[रूबेन गुडस्टीन]] द्वारा n के [[संख्यात्मक उपसर्ग]] के बाद -ation के साथ दिया गया है(जैसे कि [[टेट्रेशन]](n = 4), [[pentation]](n = 5), हेक्सेशन(n = 6) , आदि।) {{sfn|Goodstein|1947}} और नुथ के ऊपर(अप) - तीर संकेत पद्धति में n − 2 तीरों का उपयोग करके लिखा जा सकता है।


प्रत्येक उच्चसंक्रिया को पिछले एक के संदर्भ में पुनरावर्तन(संगणकविज्ञान) समझा जा सकता है:
प्रत्येक उच्चसंक्रिया को पिछले एक के संदर्भ में पुनरावर्तन(संगणकविज्ञान) समझा जा सकता है:

Revision as of 16:30, 13 December 2022

गणित में, उच्च संक्रिया अनुक्रम [nb 1]अंकगणितीय संक्रियाओं का एक अनंत क्रम है(इस संदर्भ में उच्च संक्रिया कहा जाता है)|[1][11][13] यह एक एकात्मक संक्रिया(एन = 0 के साथ आनुक्रमिक फलन) से शुरू होता है। अनुक्रम जोड़(n = 1), गुणन(n = 2), और घातांक(n = 3) के द्विआधारी संचालन के साथ जारी है।

उसके बाद संचालक सहयोगिता का उपयोग करते हुए अनुक्रम द्विआधारी संचालन के साथ आगे बढ़ता है तथा घातांक से आगे बढ़ता है। घातांक के बाहर से संचालन के लिए, इस क्रम के n वें सदस्य का नाम रूबेन गुडस्टीन द्वारा n के संख्यात्मक उपसर्ग के बाद -ation के साथ दिया गया है(जैसे कि टेट्रेशन(n = 4), pentation(n = 5), हेक्सेशन(n = 6) , आदि।) [5] और नुथ के ऊपर(अप) - तीर संकेत पद्धति में n − 2 तीरों का उपयोग करके लिखा जा सकता है।

प्रत्येक उच्चसंक्रिया को पिछले एक के संदर्भ में पुनरावर्तन(संगणकविज्ञान) समझा जा सकता है:

इसे परिभाषा के पुनरावर्तन नियम भाग के अनुसार भी परिभाषित किया जा सकता है, जैसा कि एकरमैन फलन के नुथ के अप- तीर संस्करण में है:

इसका उपयोग उन संख्याओं की तुलना में बड़ी संख्या को आसानी से दिखाने के लिए किया जा सकता है जो वैज्ञानिक संकेत कर सकते हैं, जैसे स्क्यूज़ संख्या और googleplexplex(उदा. Skewes की संख्या और googolplexplex से बहुत बड़ी है), लेकिन कुछ संख्याएँ ऐसी हैं जिन्हें वे भी आसानी से नहीं दिखा सकते हैं, जैसे ग्राहम की संख्या और TREE(3)

यह पुनरावर्तन नियम उच्च संक्रिया के कई प्रकारों के लिए सामान्य है।

परिभाषा

परिभाषा, सबसे आम

उच्च संक्रिया अनुक्रम द्विआधारी संक्रियाओं का क्रम है , पुनरावर्तन इस प्रकार परिभाषित किया गया है :

(ध्यान दें कि n = 0 के लिए, द्विआधारी संक्रिया पहले तर्क को अनदेखा करके अनिवार्य रूप से एक एकाधारी संक्रिया(आनुक्रमिक फलन) को कम कर देता है।

n = 0, 1, 2, 3 के लिए, यह परिभाषा आनुक्रमिक फलन(जो कि एक एकल संक्रिया है), योग, गुणन और घातांक के मूल अंकगणितीय संक्रियाओं को क्रमशः पुन: प्रस्तुत करती है, जैसा कि

संक्रियाएं, n ≥ 3 के लिए नुथ के अप-तीर संकेत पद्धति में लिखी जा सकती हैं।

इस प्रकार घातांक के बाद अगला संक्रिया क्या होगा?

हमने गुणन को परिभाषित किया जिससे

और घातांक परिभाषित किया जिससे इसलिए अगले संक्रिया, टेट्रेशन को परिभाषित करना तर्कसंगत लगता है, इस प्रकार

तीन 'ए' के ​​स्तंभ के साथ। समान रूप से,(ए, 3) का पेंटेशन टेट्रेशन(ए, टेट्रेशन(ए, ए)) होगा, जिसमें तीन ए होंगे।

नुथ के अंकन को ऋणात्मक सूचकांकों ≥ -2 तक इस तरह बढ़ाया जा सकता है जैसे कि अनुक्रमण में अंतराल को छोड़कर पूरे उच्च संक्रिया अनुक्रम से सहमत होना:

उच्च संक्रियाओं को इस प्रकार प्रश्न के उत्तर के रूप में देखा जा सकता है कि अनुक्रम में अगला क्या है: अनुक्रमिक कार्य, जोड़, गुणन और घातांक इत्यादि। ध्यान देने योग्य बात यह है कि

मूलभूत अंकगणितीय संचालन के बीच संबंध को चित्रित किया गया है, जिससे उच्च संचालन को ऊपर के रूप में स्वाभाविक रूप से परिभाषित किया जा सकता है। उच्च संक्रिया पदानुक्रम के मापदंडों को कभी-कभी उनके अनुरूप घातांक शब्द द्वारा संदर्भित किया जाता है; [14] इसलिए a आधार' ,और b 'घातांक'(या उच्चघातांक) है,[12] और n 'क्रम '(या श्रेणी) है,[6] और इसके अलावा, को a के bth n-ation के रूप में पढ़ा जाता है, उदहारण ; 7 के 9वें टेट्रेशन के रूप में पढ़ा जाता है, और 456 के 789वें 123-एशन के रूप में पढ़ा जाता है।

सामान्य शब्दों में, उच्च संक्रिया समिश्र संख्याओं के तरीके हैं जो पिछले उच्च संक्रिया के पुनरावृत्ति के आधार पर वृद्धि में वृद्धि करते हैं। आनुक्रमिक , जोड़, गुणा और घातांक की अवधारणाएं सभी हाइप रसंक्रिया हैं; आनुक्रमिक संक्रिया(x से x + 1 का उत्पादन) सबसे साधारण है, अतिरिक्त संचालक निर्दिष्ट करता है कि अंतिम मूल्य का उत्पादन करने के लिए 1 को कितनी बार जोड़ा जाना है, गुणन निर्दिष्ट करता है कि किसी संख्या को स्वयं कितनी बार जोड़ा जाना है, और घातांक उस संख्या को संदर्भित करता है जिसे किसी संख्या को स्वयं से गुणा किया जाना है।

परिभाषा, पुनरावृत्ति का प्रयोग

किसी फलन f के पुनरावृत्ति को दो चर के रूप में इस प्रकार परिभाषित किया जाता है,

उच्च संक्रिया अनुक्रम को पुनरावृति के संदर्भ में निम्नानुसार परिभाषित किया जा सकता है। सभी पूर्णांकों के लिए परिभाषित करना

जैसा कि पुनरावृत्ति साहचर्य है, अंतिम पंक्ति को इसके द्वारा प्रतिस्थापित किया जा सकता है


संगणना

उच्च संक्रिया अनुक्रम की परिभाषाएँ स्वाभाविक रूप से पुनर्लेखन टर्म रीराइटिंग सिस्टम(TRS) में स्थानांतरित की जा सकती हैं।

=== टीआरएस परिभाषा उप 1.1 === पर आधारित है|

उच्च संक्रिया अनुक्रम की मूल परिभाषा निम्न नियमों से मिलती जुलती है

का गणना करना केलिए कोई ढेर(अमूर्त डेटा प्रकार) का उपयोग कर सकता है, जिसमें प्रारंभ में .तत्व होते हैं|

फिर, बार-बार जब तक संभव न हो, तीन तत्वों को पॉप किया जाता है और नियमों के अनुसार प्रतिस्थापित किया जाता है[nb 2]

योजनाबद्ध रूप से, से शुरू  :

जबकि ढेर की लंबाई <> 1
{
   पीओपी 3 तत्व;
   PUSH 1 या 5 तत्व नियमों के अनुसार r1, r2, r3, r4, r5;
}

उदाहरण

.[15]गणना करना

घटाव क्रम है[nb 2][16]

    
    
    
    
    
    
    
    
    

आगत(2, 2, 2) पर ढेर का उपयोग करते समय लागू किया गया

the stack configurations     represent the equations
         
         
         
         
         
         
         
         
    



टीआरएस परिभाषा उप 1.2 पर आधारित है

पुनरावृत्ति का उपयोग करने वाली परिभाषा में कमी के नियमों का एक अलग समुच्चय होता है

जैसा कि पुनरावृत्ति साहचर्य है, नियम r11 के बजाय इस प्रकार परिभाषित किया जा सकता है

पिछले खंड की तरह की गणना ढेर का उपयोग करके कार्यान्वित किया जा सकता है।

प्रारंभ में ढेर में चार तत्व .होते हैं

फिर, समाप्ति तक, चार तत्वों को पॉपअप किया जाता है और नियमों के अनुसार प्रतिस्थापित किया जाता है[nb 2]:

योजनाबद्ध रूप से, से शुरू  :

जबकि ढेर की लंबाई <> 1
{
   पीओपी 4 तत्व;
   पुश 1 या 7 तत्व नियम r6, r7, r8, r9, r10, r11 के अनुसार;
}

उदाहरण

गणना करना .

आगत पर क्रमिक ढेर विन्यास हैं

संगत समानताएं हैं

जब न्यूनीकरण नियम 11 को नियम r12 से बदल दिया जाता है, तो ढेर इस प्रकार रूपांतरित हो जाता है

क्रमिक ढेर संरूपण तब होगा

संगत समानताएं हैं

टिप्पणियां

  • एक विशेष मामला है। नीचे देखें।[nb 3][nb 4]* की गणना नियमों के मुताबिक {आर 6 - आर 10, आर 11} भारी पुनरावर्तन है। अभियुक्त वह क्रम है जिसमे.पुनरावृत्ति निष्पादित होती है, सबसे पहला पूरे क्रम के सामने आने के बाद ही गायब हो जाता है। उदाहरण के लिए, 2863311767 चरणों में 65536 में परिवर्तित हो जाता है, पुनरावर्तन की अधिकतम गहराई[17] 65534 है।
  • नियमों के अनुसार गणना {r6 - r10, r12} उस संबंध में अधिक कुशल है। पुनरावृत्ति का कार्यान्वयन जैसा एक प्रक्रिया एच के बार-बार निष्पादन की नकल करता है।[18] पुनरावर्तन की गहराई,(n+1), लूप नेस्टिंग से मेल खाती है। Meyer & Ritchie (1967) इस पत्राचार को औपचारिक रूप दिया। की गणना नियमों के अनुसार {r6-r10, r12} को भी 65536 पर अभिसरण करने के लिए 2863311767 चरणों की आवश्यकता होती है, लेकिन पुनरावर्तन की अधिकतम गहराई केवल 5 है, क्योंकि उच्च संक्रिया अनुक्रम में टेट्रेशन 5वां संचालक है।
  • उपरोक्त विचार केवल पुनरावर्ती गहराई से संबंधित हैं। पुनरावृति का कोई भी तरीका समान नियमों को शामिल करते हुए समान संख्या में कटौती चरणों की ओर ले जाता है(जब नियम r11 और r12 को समान माना जाता है)। जैसा कि उदाहरण की कमी दर्शाता है और 9 चरणों में परिवर्तित होता है: 1 X r7, 3 X r8, 1 X r9, 2 X r10, 2 X r11/r12। कार्यप्रणाली केवल उस क्रम को प्रभावित करती है जिसमें कटौती नियम लागू होते हैं।

उदाहरण

नीचे पहले सात(0वें से 6वें) उच्च संक्रिया की सूची दी गई है(0⁰ को 1 के रूप में परिभाषित किया गया है)।

n Operation,
Hn(a, b)
Definition Names Domain
0 or hyper0, increment, successor, zeration Arbitrary
1 or hyper1, addition Arbitrary
2 or hyper2, multiplication Arbitrary
3 or hyper3, exponentiation b real, with some multivalued extensions to complex numbers
4 or hyper4, tetration a ≥ 0 or an integer, b an integer ≥ −1 [nb 5](with some proposed extensions)
5 hyper5, pentation a, b integers ≥ −1 [nb 5]
6 hyper6, hexation a, b integers ≥ −1 [nb 5]


विशेष मामले

एचn(0, बी) =

बी + 1, जब एन = 0
बी, जब एन = 1
0, जब एन = 2
1, जब n = 3 और b = 0 [nb 3][nb 4]
0, जब n = 3 और b > 0 [nb 3][nb 4]:1, जब n > 3 और b सम हैं(0 सहित)
0, जब n > 3 और b विषम है

एचn(1, बी) =

बी, जब एन = 2
1, जब n ≥ 3

एचn(ए, 0) =

0, जब एन = 2
1, जब n = 0, या n ≥ 3
ए, जब एन = 1

एचn(ए, 1) =

ए, जब एन ≥ 2

एचn(ए, ए) =

एचn+1(ए, 2), जब एन ≥ 1

एचn(ए, -1) =[nb 5]: 0, जब n = 0, या n ≥ 4

ए - 1, जब एन = 1
−a, जब n = 2
1/a , जब एन = 3

एचn(2, 2) =

3, जब n = 0
4, जब n ≥ 1, पुनरावर्ती रूप से आसानी से प्रदर्शित होता है।

इतिहास

उच्च संक्रियाओं की शुरुआती चर्चाओं में से एक अल्बर्ट बेनेट की चर्चा थी [6] | 1914 में, जिन्होंने क्रम विनिमेय नियम के उच्च संक्रियाओं के कुछ सिद्धांत विकसित किए(देखें #क्रम विनिमेय नियम उच्च संक्रिया )। लगभग 12 साल बाद, विल्हेम एकरमैन ने फलन को परिभाषित किया [19] जो कुछ हद तक उच्च संक्रिया क्रम जैसा दिखता है।

अपने 1947 के कागज़ में,[5] रूबेन गुडस्टीन ने संचालन के विशिष्ट अनुक्रम की शुरुआत की, जिसे अब उच्च संक्रिया कहा जाता है, और एक्सपोनेंटिएशन से परे विस्तारित संचालन के लिए ग्रीक नाम टेट्राटेशन, पेंटेशन आदि का भी सुझाव दिया(क्योंकि वे सूचकांक 4, 5, आदि के अनुरूप हैं)। तीन-तर्क फलन के रूप में, उदाहरण के लिए, , संपूर्ण उच्च संक्रिया अनुक्रम को मूल एकरमैन फलन का एक संस्करण माना जाता है - संगणनीय कार्य लेकिन आदिम पुनरावर्ती नहीं - जैसा कि गुडस्टीन द्वारा आदिम आनुक्रमिक कार्य को अंकगणित(अतिरिक्त, गुणन, घातांक) के अन्य तीन मूलभूत कार्यों के साथ सम्मिलित करने के लिए संशोधित किया गया है, और घातांक के बाहर  इनका अधिक सहज विस्तार करने के लिए संशोधन किया गया ।

मूल तीन-तर्क वाला एकरमैन फलन उसी पुनरावर्तन नियम का उपयोग करता है जैसा कि गुडस्टीन के संस्करण(यानी, उच्चसंक्रिया अनुक्रम) करता है, लेकिन इससे दो तरह से भिन्न होता है। प्रथम, अनुक्रमिक फलन के बजाय जोड़(n = 0) से शुरू होने वाले संचालन के अनुक्रम को परिभाषित करता है, फिर गुणन(n = 1), घातांक(n = 2), आदि। दूसरे, के लिए प्रारंभिक शर्तें परिणाम होना , इस प्रकार घातांक के बाहर उच्च संक्रिया से भिन्न।[7][20][21] पिछले व्यंजक में b + 1 का महत्व यही है = , जहाँ b ऑपरेंड(a s) की संख्या की गणना करने के बजाय संचालको(घातांक) की संख्या की गणना करता है, जैसा कि b में ,होता है और इसी तरह उच्च-स्तरीय संचालन के लिए।(विवरण के लिए एकरमैन फलन आलेख देखें।)

संकेत पद्धति

यह संकेत पद्धति की एक सूची है जिसका उपयोग उच्च संक्रिया के लिए किया गया है।

Name Notation equivalent to Comment
Knuth's up-arrow notation Used by Knuth [22](for n ≥ 3), and found in several reference books.[23][24]
Hilbert's notation Used by David Hilbert.[25]
Goodstein's notation Used by Reuben Goodstein.[5]
Original Ackermann function Used by Wilhelm Ackermann(for n ≥ 1)[19]
Ackermann–Péter function This corresponds to hyperoperations for base 2(a = 2)
Nambiar's notation Used by Nambiar(for n ≥ 1) [26]
Superscript notation Used by Robert Munafo.[20]
Subscript notation(for lower hyperoperations) Used for lower hyperoperations by Robert Munafo.[20]
Operator notation(for "extended operations") Used for lower hyperoperations by John Doner and Alfred Tarski(for n ≥ 1).[27]
Square bracket notation Used in many online forums; convenient for ASCII.
Conway chained arrow notation Used by John Horton Conway(for n ≥ 3)



एक से शुरू होने वाला संस्करण

1928 में, विल्हेम एकरमैन ने एक 3-तर्क फलन को परिभाषित किया जो धीरे-धीरे एक 2-तर्क फलन में विकसित हुआ जिसे एकरमैन फलन के रूप में जाना जाता है। मूल एकरमैन फलन आधुनिक उच्च संक्रियाओं के समान कम था, क्योंकि उसकी शुरुआती स्थितियां सभी n > 2 के लिए शुरू होती हैं। साथ ही उन्होंने n = 0, गुणा को n = 1 और घातांक को n = 2 के लिए जोड़ दिया, इसलिए प्रारंभिक स्थितियां टेट्राटेशन और उससे आगे के लिए बहुत अलग संचालन उत्पन्न करती हैं।

n Operation Comment
0
1
2
3 An offset form of tetration. The iteration of this operation is different than the iteration of tetration.
4 Not to be confused with pentation.


एक अन्य प्रारंभिक स्थिति जिसका उपयोग (जहां आधार स्थिर है )किया गया है , Rózsa Péter के कारण, जो उच्चसंक्रिया पदानुक्रम नहीं बनाता है।0 से शुरू होने वाला संस्करण है|

1984 में, C. W. Clenshaw और F. W. J. Olver ने संगणक तैरनेवाला स्थल या फ़्लोटिंग-पॉइंट ओवरफ़्लो को रोकने के लिए उच्च संक्रिया का उपयोग करने की चर्चा शुरू की।[28]

तब से, कई अन्य लेखक [29][30][31] फ़्लोटिंग पॉइंट | फ़्लोटिंग-पॉइंट प्रतिनिधित्व के लिए उच्चसंक्रिया के अनुप्रयोग में नए सिरे से रुचि है।(चूंकि एचn(ए, बी) सभी बी = -1 के लिए परिभाषित हैं।) टेट्रेशन पर चर्चा करते समय, क्लेंशॉ एट अल। प्रारंभिक स्थिति मान ली , जो एक और उच्चसंक्रिया पदानुक्रम बनाता है। पिछले संस्करण की तरह, चौथा संक्रिया टेट्रेशन के समान ही है, लेकिन एक प्रतिसंतुलन समुच्चय होता है।

n Operation Comment
0
1
2
3
4 An offset form of tetration. The iteration of this operation is much different than the iteration of tetration.
5 Not to be confused with pentation.


निम्न उच्चसंक्रिया

इन उच्चसंक्रिया के लिए एक विकल्प बाएं से दाएं मूल्यांकन द्वारा प्राप्त किया जाता है।[9] तब से

(° या सबस्क्रिप्ट के साथ) परिभाषित किया जाता है

साथ

इसे डोनर और टार्स्की द्वारा क्रमिक संख्याओं तक बढ़ाया गया था,[32]

जिससे :

परिभाषा 1(i), उपप्रमेय 2(ii), और प्रमेय 9 से यह पता चलता है कि, a ≥ 2 और b ≥ 1 के लिए, कि[original research?]

लेकिन यह एक प्रकार के पतन से ग्रस्त है, पारंपरिक रूप से उच्च संचालको से अपेक्षित पावर टावर बनाने में विफल है:[33][nb 6]

यदि α ≥ 2 और γ ≥ 2,[27][परिणाम 33(i)][nb 6]:

n Operation Comment
0 increment, successor, zeration
1
2
3
4 Not to be confused with tetration.
5 Not to be confused with pentation.
Similar to tetration.

क्रम विनिमेय उच्चसंक्रिया

1914 की शुरुआत में अल्बर्ट बेनेट द्वारा क्रम विनिमेय उच्चसंक्रिया ओं पर विचार किया गया था,[6] जो संभवतः किसी भी उच्चसंक्रिया क्रम के बारे में सबसे पहली टिप्पणी है। क्रम विनिमेय उच्चसंक्रिया को पुनरावर्तन नियम द्वारा परिभाषित किया गया है

जो ए और बी में सममित है, जिसका अर्थ है कि सभी उच्चसंक्रिया क्रम विनिमेय हैं। इस क्रम में घातांक सम्मिलित नहीं है, और इसलिए यह उच्चसंक्रिया पदानुक्रम नहीं बनाता है।

n Operation Comment
0 Smooth maximum
1
2 This is due to the properties of the logarithm.
3
4 Not to be confused with tetration.


उच्चसंक्रिया अनुक्रम पर आधारित संख्या प्रणाली


रूबेन गुडस्टीन आर. एल गुडस्टीन [5] गैर-नकारात्मक पूर्णांकों के लिए अंकन की प्रणाली बनाने के लिए उच्च संचालको के अनुक्रम का उपयोग किया। स्तर k और बेस b पर पूर्णांक n का तथाकथित पूर्ण वंशानुगत प्रतिनिधित्व, केवल पहले k उच्च संचालको का उपयोग करके और आधार के साथ केवल 0, 1, ..., b - 1 अंकों के रूप में उपयोग करके व्यक्त किया जा सकता है। बी ही:

  • 0 ≤ n ≤ b − 1 के लिए, n को केवल संबंधित अंक द्वारा दर्शाया जाता है।
  • n > b − 1 के लिए, n का निरूपण पुनरावर्ती रूप से पाया जाता है, पहले रूप में n का प्रतिनिधित्व करता है
बी [के] एक्सk [के - 1] एक्सk − 1 [के - 2] ... [2] एक्स2 [1] एक्स1
जहां एक्सk, ..., एक्स1 संतोषजनक सबसे बड़े पूर्णांक हैं(बदले में)
बी [के] एक्सk ≤ एन
बी [के] एक्सk [के - 1] एक्सk − 1 ≤ एन
...
बी [के] एक्सk [के - 1] एक्सk − 1 [के - 2] ... [2] एक्स2 [1] एक्स1 ≤ एन
कोई एक्सi b − 1 से अधिक होने पर उसी तरीके से फिर से व्यक्त किया जाता है, और इसी तरह, इस प्रक्रिया को तब तक दोहराया जाता है जब तक परिणामी रूप में केवल अंक 0, 1, ..., b − 1, आधार b के साथ न हो।

मूल्यांकन के क्रम में उच्च स्तरीय संचालको को उच्च प्राथमिकता देकर अनावश्यक कोष्ठकों से बचाया जा सकता है; इस प्रकार,

स्तर -1 अभ्यावेदन का रूप b [1] X है, जिसमें X भी इसी रूप का है;
स्तर -2 अभ्यावेदन का रूप b [2] X [1] Y है, जिसमें X, Y भी इसी रूप का है;
स्तर -3 अभ्यावेदन का रूप b [3] X [2] Y [1] Z है, जिसमें X, Y, Z भी इसी रूप का है;
स्तर -4 अभ्यावेदन का रूप b [4] X [3] Y [2] Z [1] W है, जिसमें X,Y,Z,W भी इसी रूप का है;

और इसी तरह।

इस प्रकार के आधार-बी वंशानुगत प्रतिनिधित्व में, आधार स्वयं अभिव्यक्तियों में प्रकट होता है, साथ ही समुच्चय {0, 1, ..., बी - 1} से अंक भी प्रकट होता है। यह सामान्य आधार-2 प्रतिनिधित्व की तुलना करता है जब उत्तरार्द्ध आधार बी के संदर्भ में लिखा जाता है; उदाहरण के लिए, सामान्य आधार-2 अंकन में, 6 =(110)2 = 2 [3] 2 [2] 1 [1] 2 [3] 1 [2] 1 [1] 2 [3] 0 [2] 0, जबकि स्तर-3 आधार-2 वंशानुगत प्रतिनिधित्व 6 = 2 है [ 3](2 [3] 1 [2] 1 [1] 0) [2] 1 [1](2 [3] 1 [2] 1 [1] 0)। [1] 0, [2] 1, [3] 1, [4] 1, आदि के किसी भी उदाहरण को छोड़ कर वंशानुगत अभ्यावेदन को संक्षिप्त किया जा सकता है; उदाहरण के लिए, उपरोक्त स्तर -3 आधार -2 6 का प्रतिनिधित्व 2 [3] 2 [1] 2 को संक्षिप्त करता है।

उदाहरण: 1, 2, 3, 4 और 5 के स्तर पर संख्या 266(संख्या) का अद्वितीय आधार-2 निरूपण इस प्रकार है:

स्तर 1: 266 = 2 [1] 2 [1] 2 [1] ... [1] 2(133 2s के साथ)
स्तर 2: 266 = 2 [2](2 [2](2 [2](2 [2] 2 [2] 2 [2] 2 [2] 2 [1] 1)) [1] 1)
स्तर 3: 266 = 2 [3] 2 [3](2 [1] 1) [1] 2 [3](2 [1] 1) [1] 2
स्तर 4: 266 = 2 [4](2 [1] 1) [3] 2 [1] 2 [4] 2 [2] 2 [1] 2
स्तर 5: 266 = 2 [5] 2 [4] 2 [1] 2 [5] 2 [2] 2 [1] 2

यह भी देखें


टिप्पणियाँ

  1. Sequences similar to the hyperoperation sequence have historically been referred to by many names, including: the Ackermann function [1] (3-argument), the Ackermann hierarchy,[2] the Grzegorczyk hierarchy[3][4] (which is more general), Goodstein's version of the Ackermann function,[5] operation of the nth grade,[6] z-fold iterated exponentiation of x with y,[7] arrow operations,[8] reihenalgebra[9] and hyper-n.[1][9][10][11][12]
  2. 2.0 2.1 2.2 This implements the leftmost-innermost (one-step) strategy.
  3. 3.0 3.1 3.2 For more details, see Powers of zero.
  4. 4.0 4.1 4.2 For more details, see Zero to the power of zero.
  5. 5.0 5.1 5.2 5.3 Let x = a[n](−1). By the recursive formula, a[n]0 = a[n − 1](a[n](−1)) ⇒ 1 = a[n − 1]x. One solution is x = 0, because a[n − 1]0 = 1 by definition when n ≥ 4. This solution is unique because a[n − 1]b > 1 for all a > 1, b > 0 (proof by recursion).
  6. 6.0 6.1 Ordinal addition is not commutative; see ordinal arithmetic for more information


संदर्भ

  1. 1.0 1.1 1.2 Geisler 2003.
  2. Friedman 2001.
  3. Campagnola, Moore & Costa 2002.
  4. Wirz 1999.
  5. 5.0 5.1 5.2 5.3 5.4 Goodstein 1947.
  6. 6.0 6.1 6.2 6.3 Bennett 1915.
  7. 7.0 7.1 Black 2009.
  8. Littlewood 1948.
  9. 9.0 9.1 9.2 Müller 1993.
  10. Munafo 1999a.
  11. 11.0 11.1 Robbins 2005.
  12. 12.0 12.1 Galidakis 2003.
  13. Rubtsov & Romerio 2005.
  14. Romerio 2008.
  15. Bezem, Klop & De Vrijer 2003.
  16. In each step the underlined redex is rewritten.
  17. The maximum depth of recursion refers to the number of levels of activation of a procedure which exist during the deepest call of the procedure. Cornelius & Kirby (1975)
  18. LOOP n TIMES DO H.
  19. 19.0 19.1 Ackermann 1928.
  20. 20.0 20.1 20.2 Munafo 1999b.
  21. Cowles & Bailey 1988.
  22. Knuth 1976.
  23. Zwillinger 2002.
  24. Weisstein 2003.
  25. Hilbert 1926.
  26. Nambiar 1995.
  27. 27.0 27.1 Doner & Tarski 1969.
  28. Clenshaw & Olver 1984.
  29. Holmes 1997.
  30. Zimmermann 1997.
  31. Pinkiewicz, Holmes & Jamil 2000.
  32. Doner & Tarski 1969, Definition 1.
  33. Doner & Tarski 1969, Theorem 3(iii).


ग्रन्थसूची

  • Ackermann, Wilhelm (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen. 99: 118–133. doi:10.1007/BF01459088. S2CID 123431274.
  • Bennett, Albert A. (Dec 1915). "Note on an Operation of the Third Grade". Annals of Mathematics. Second Series. 17 (2): 74–75. doi:10.2307/2007124. JSTOR 2007124.
  • Bezem, Marc; Klop, Jan Willem; De Vrijer, Roel (2003). "First-order term rewriting systems". Term Rewriting Systems by "Terese". Cambridge University Press. pp. 38–39. ISBN 0-521-39115-6.
  • Pinkiewicz, T.; Holmes, N.; Jamil, T. (2000). "Design of a composite arithmetic unit for rational numbers". Proceedings of the IEEE Southeast Con 2000. 'Preparing for the New Millennium' (Cat. No.00CH37105). Proceedings of the IEEE. pp. 245–252. doi:10.1109/SECON.2000.845571. ISBN 0-7803-6312-4. S2CID 7738926.
  • Weisstein, Eric W. (2003). CRC concise encyclopedia of mathematics, 2nd Edition. CRC Press. pp. 127–128. ISBN 1-58488-347-2.
  • Zwillinger, Daniel (2002). CRC standard mathematical tables and formulae, 31st Edition. CRC Press. p. 4. ISBN 1-58488-291-3.