रेखीय मानचित्र: Difference between revisions

From Vigyanwiki
Line 53: Line 53:
=== रेखीय विस्तार ===
=== रेखीय विस्तार ===


अक्सर, एक सदिश समष्टि के उपसमुच्चय पर इसे परिभाषित करके और फिर एक रेखीय मानचित्र का निर्माण किया जाता है {{em|इसे रैखिकता द्वारा}}  प्रक्षेत्र के [[रैखिक अवधि]] तक विस्तारित किया जाता है। फलन <math>f</math>  का एक {{visible anchor|रैखिक विस्तार}} कुछ सदिश समष्टि के लिए <math>f</math>  का विस्तार है जो एक रैखिक मानचित्र है।<ref name="Kubrusly 2001 p. 57">{{cite book|last=Kubrusly|first=Carlos|title=ऑपरेटर सिद्धांत के तत्व|publisher=Birkhäuser|publication-place=Boston|year=2001|isbn=978-1-4757-3328-0|oclc=754555941|page=57}}</ref>  
अक्सर, एक सदिश समष्टि के उपसमुच्चय पर इसे परिभाषित करके और फिर एक रेखीय मानचित्र का निर्माण किया जाता है {{em|इसे रैखिकता द्वारा}}  प्रक्षेत्र के [[रैखिक अवधि]] तक विस्तारित किया जाता है। [[फलन]] <math>f</math>  का एक {{visible anchor|रैखिक विस्तार}} कुछ [[सदिश समष्टि]] के लिए <math>f</math>  का [[विस्तार]] है जो एक रैखिक मानचित्र है।<ref name="Kubrusly 2001 p. 57">{{cite book|last=Kubrusly|first=Carlos|title=ऑपरेटर सिद्धांत के तत्व|publisher=Birkhäuser|publication-place=Boston|year=2001|isbn=978-1-4757-3328-0|oclc=754555941|page=57}}</ref>  


मान लीजिए <math>X</math> तथा <math>Y</math> वेक्टर रिक्त समष्टि हैं और <math>f : S \to Y</math> कुछ सबसेट पर परिभाषित एक फ़ंक्शन है <math>S \subseteq X.</math> फिर <math>f</math> एक रेखीय मानचित्र तक बढ़ाया जा सकता है <math>F : \operatorname{span} S \to Y</math> अगर और केवल अगर जब भी <math>n > 0</math> एक पूर्णांक है, <math>c_1, \ldots, c_n</math> अदिश हैं, और <math>s_1, \ldots, s_n \in S</math> ऐसे सदिश हैं <math>0 = c_1 s_1 + \cdots + c_n s_n,</math> तो अनिवार्य रूप से <math>0 = c_1 f\left(s_1\right) + \cdots + c_n f\left(s_n\right).</math>{{sfn|Schechter|1996|pp=277–280}} यदि का रैखिक विस्तार <math>f : S \to Y</math> मौजूद है तो रैखिक विस्तार <math>F : \operatorname{span} S \to Y</math> अद्वितीय है और
मान लीजिए <math>X</math> तथा <math>Y</math> सदिश समष्टियाँ हैं और <math>f : S \to Y</math> किसी उपसमुच्चय <math>S \subseteq X</math> पर परिभाषित फलन है। फिर <math>f</math> एक रेखीय मानचित्र तक बढ़ाया जा सकता है <math>F : \operatorname{span} S \to Y</math> अगर और केवल अगर जब भी <math>n > 0</math> एक पूर्णांक है, <math>c_1, \ldots, c_n</math> अदिश हैं, और <math>s_1, \ldots, s_n \in S</math> ऐसे सदिश हैं <math>0 = c_1 s_1 + \cdots + c_n s_n,</math> तो अनिवार्य रूप से <math>0 = c_1 f\left(s_1\right) + \cdots + c_n f\left(s_n\right).</math>{{sfn|Schechter|1996|pp=277–280}} यदि का रैखिक विस्तार <math>f : S \to Y</math> मौजूद है तो रैखिक विस्तार <math>F : \operatorname{span} S \to Y</math> अद्वितीय है और
<math display="block">F\left(c_1 s_1 + \cdots c_n s_n\right) = c_1 f\left(s_1\right) + \cdots + c_n f\left(s_n\right)</math>
<math display="block">F\left(c_1 s_1 + \cdots c_n s_n\right) = c_1 f\left(s_1\right) + \cdots + c_n f\left(s_n\right)</math>
सभी के लिए रखता है <math>n, c_1, \ldots, c_n,</math> तथा <math>s_1, \ldots, s_n</math> ऊपरोक्त अनुसार।{{sfn|Schechter|1996|pp=277–280}} यदि <math>S</math> रैखिक रूप से स्वतंत्र है तो प्रत्येक कार्य <math>f : S \to Y</math> किसी भी वेक्टर अंतरिक्ष में एक (रैखिक) मानचित्र के लिए एक रैखिक विस्तार होता है <math>\;\operatorname{span} S \to Y</math> (इसका उलटा भी सच है)।
सभी के लिए रखता है <math>n, c_1, \ldots, c_n,</math> तथा <math>s_1, \ldots, s_n</math> ऊपरोक्त अनुसार।{{sfn|Schechter|1996|pp=277–280}} यदि <math>S</math> रैखिक रूप से स्वतंत्र है तो प्रत्येक कार्य <math>f : S \to Y</math> किसी भी वेक्टर अंतरिक्ष में एक (रैखिक) मानचित्र के लिए एक रैखिक विस्तार होता है <math>\;\operatorname{span} S \to Y</math> (इसका उलटा भी सच है)।

Revision as of 20:59, 3 December 2022

गणित में, और अधिक विशेष रूप से रैखिक बीजगणित में, एक रेखीय मानचित्र (जिसे एक रेखीय मानचित्रण, रैखिक रूपांतरण, सदिश समष्टि समरूपता या कुछ संदर्भों में रैखिक फलन भी कहा जाता है) दो सदिश समष्टिों के बीच एक मानचित्रण है जो सदिश जोड़ और अदिश गुणज के संचालन को संरक्षित करता है। रिंग (गणित) पर इकाई (गणित) के अधिक सामान्य मामले के लिए समान नाम और समान परिभाषा का भी उपयोग किया जाता है, उदहारण के लिए इकाई समरूपता देखें।

यदि एक रेखीय मानचित्र एक आक्षेप है तो इसे रेखीय समरूपता कहा जाता है। ऐसे मामले में जहां , एक रेखीय मानचित्र को (रैखिक) अंतःरूपांतरण कहा जाता है। कभी-कभी 'रैखिक प्रचालक' शब्द इस मामले को संदर्भित करता है,[1] लेकिन रैखिक प्रचालक शब्द के विभिन्न सम्मेलनों के लिए अलग-अलग अर्थ हो सकते हैं, उदाहरण के लिए, इसका उपयोग इस बात पर जोर देने के लिए किया जा सकता है कि तथा वास्तविक संख्या सदिश समष्टि हैं (जरूरी नहीं कि के साथ) ),[citation needed] या इसका उपयोग इस बात पर जोर देने के लिए किया जा सकता है कि एक फलन समष्टि है, जो कार्यात्मक विश्लेषण में एक सामान्य सम्मेलन है।[2] कभी-कभी रेखीय फलन शब्द का वही अर्थ होता है जो रेखीय मानचित्र का होता है, जबकि गणितीय विश्लेषण में ऐसा नहीं होता।

V से W तक का एक रेखीय मानचित्र हमेशा V की उत्पत्ति को W की उत्पत्ति के लिए मानचित्रित करता है। इसके अलावा, यह V में रैखिक उपसमष्‍टि को तथा W में रैखिक उपसमष्‍टि दोनों को मानचित्रित करता है (संभवतः एक निम्न आयाम (सदिश समष्‍टि) का),[3] उदाहरण के लिए, यह V में उत्पत्ति (ज्यामिति) के माध्यम से एक तल (ज्यामिति) को मानचित्रित करता है या तो W डब्ल्यू में उत्पत्ति के माध्यम से एक तल मानचित्रित करता है, डब्ल्यू में उत्पत्ति के माध्यम से एक रेखा, या सिर्फ डब्ल्यू में उत्पत्ति के माध्यम से एक तल को मानचित्रित करता है। रेखीय मानचित्रो को अक्सर आव्यूह के रूप में दर्शाया जा सकता है, और जिसमे सरल उदाहरणों में परिक्रमण और रेखीय रूपांतरण शामिल हैं।

श्रेणी सिद्धांत की भाषा में, रेखीय मानचित्र सदिश समष्‍टिको के रूपवाद हैं।

परिभाषा और प्रथम परिणाम

मान लीजिए कि और एक ही क्षेत्र (गणित) पर सदिश रिक्त समष्टियाँ हैं। किसी फलन को एक रेखीय मानचित्र कहा जाता है यदि किन्हीं दो सदिशों और किसी अदिश के लिए निम्नलिखित दो शर्तें पूरी होती हैं तो ,

  • योगात्मकता / जोड़ का संचालन
  • डिग्री 1 की एकरूपता / अदिश गुणन की संक्रिया

इस प्रकार, एक रेखीय मानचित्र को संचालन संरक्षण कहा जाता है। दूसरे शब्दों में, इससे कोई फर्क नहीं पड़ता कि रैखिक मानचित्र पहले (उपरोक्त उदाहरणों के दाहिने हाथ की ओर) या बाद में (उदाहरणों के बाएं हाथ की ओर) जोड़ और अदिश गुणन के संचालन के लिए लागू किया गया है।

किसी भी सदिश और अदिश के लिए जोड़ संक्रिया की साहचर्यता से + के रूप में निरूपित किया जाता है , जो निम्नलिखित समानताए रखती है,[4][5]


इस प्रकार एक रैखिक मानचित्र वह है जो रैखिक संयोजन को संरक्षित करता है।

सदिश समष्टियों के शून्य तत्वों और को क्रमशः और से प्रकट करने पर यह का अनुसरण करता है। मान लीजिये तथा डिग्री 1 की एकरूपता के समीकरण में,


एक रेखीय मानचित्र जिसमें को एक आयामी सदिश समष्टि के के रूप में देखा जाता है, उसे एक रेखीय फलन कहा जाता है।[6] अदिश गुणन को उलटने पर किसी भी सही-मापांक में, ये कथन बिना किसी भी बाएं-मापांक को रिंग पर सामान्यीकृत करते हैं।

उदाहरण

  • एक आद्य उदाहरण जो रैखिक मानचित्रों को उनका नाम देता है, एक फलन है , जिनमें से आलेख मूल बिंदु से होकर जाने वाली एक रेखा है।[7]
  • आम तौर पर अधिकतर, कोई भी समरूपता है जहां पर एक सदिश समष्टि के मूल में केन्द्रित एक रेखीय मानचित्र है।
  • शून्य मानचित्र दो सदिश समष्टि (एक ही क्षेत्र (गणित) में) के बीच रैखिक है।
  • किसी भी मापांक पर तत्समक मानचित्र एक रैखिक प्रचालक है।
  • वास्तविक संख्याओं के लिए, मानचित्र रेखीय नहीं है।
  • वास्तविक संख्या के लिए, मानचित्र रैखिक नहीं है (लेकिन एक परिशोधन परिवर्तन है)।
  • यदि एक वास्तविक आव्यूह है, तो स्तंभ सदिश को स्तंभ सदिश में प्रेषित करके प्रति एक रैखिक मानचित्र को परिभाषित करता है। इसके विपरीत, परिमित-आयामी सदिश समष्टिको के बीच किसी भी रेखीय मानचित्र को इस तरीके से प्रदर्शित किया जा सकता है, नीचे, देखें § आव्यूह
  • यदि वास्तविक मानक समष्टि के बीच एक समदूरीकता है तो अतः एक रैखिक मानचित्र होगा। यह परिणाम आवश्यक रूप से सम्मिश्र मानदंड वाले समष्टि के लिए सही नहीं है।[8]
  • अवकलन सभी भिन्न फलनो के समष्टि से लेकर सभी फलनो के समष्टि तक एक रेखीय मानचित्र को परिभाषित करता है। यह सभी सहज फलनो के समष्टि पर एक रैखिक प्रचालक को भी परिभाषित करता है (एक रैखिक प्रचालक एक रैखिक अंतःरूपांतरण है, जो कि एक ही प्रक्षेत्र और सहप्रांत वाला एक रैखिक मानचित्र है)। जिसक यह एक उदाहरण है,
  • कुछ अंतराल पर एक निश्चित पूर्णांकीय (गणित) I पर सभी वास्तविक-मूल्यवान पूर्णांक फलनों के समष्टि से एक रेखीय मानचित्र I प्रति है। उदाहरण के लिए,
  • एक निश्चित एकीकरण प्रारंभिक बिंदु के साथ एक अनिश्चित पूर्णांकीय (या प्रतिअवकलज) पर सभी वास्तविक-मूल्यवान, अलग-अलग फलनो के समष्टि पर सभी वास्तविक-मूल्यवान पूर्णांक फलनो के समष्टि से एक रैखिक मानचित्र को परिभाषित करते है। एक निश्चित प्रारंभिक बिंदु के बिना, निरंतर फलनो के रैखिक समष्टि द्वारा अलग-अलग फलनो के भागफल समष्टि (रैखिक बीजगणित) के लिए प्रतिपक्षी मानचित्र को परिभाषित करता है।
  • यदि तथा संबंधित आयामों m तथा n के एक क्षेत्र F पर परिमित-आयामी सदिश समष्टि हैं , तो वह फलन जो § आव्यूह (नीचे) में वर्णित तरीके से से n × m आव्यूह को मानचित्रित करता है, तथा एक रैखिक मानचित्र है, और यहां तक ​​कि एक रेखीय समरूपता भी है।
  • एक यादृच्छिक चर का अपेक्षित मान (जो वास्तव में एक फलन है, और एक सदिश समष्टि का एक तत्व है) रैखिक है, जैसा कि यादृच्छिक चर तथा के लिए हमारे पास चर तथा चर है , लेकिन एक यादृच्छिक चर का प्रसरण रैखिक नहीं होता है।


रेखीय विस्तार

अक्सर, एक सदिश समष्टि के उपसमुच्चय पर इसे परिभाषित करके और फिर एक रेखीय मानचित्र का निर्माण किया जाता है इसे रैखिकता द्वारा प्रक्षेत्र के रैखिक अवधि तक विस्तारित किया जाता है। फलन का एक रैखिक विस्तार कुछ सदिश समष्टि के लिए का विस्तार है जो एक रैखिक मानचित्र है।[9]

मान लीजिए तथा सदिश समष्टियाँ हैं और किसी उपसमुच्चय पर परिभाषित फलन है। फिर एक रेखीय मानचित्र तक बढ़ाया जा सकता है अगर और केवल अगर जब भी एक पूर्णांक है, अदिश हैं, और ऐसे सदिश हैं तो अनिवार्य रूप से [10] यदि का रैखिक विस्तार मौजूद है तो रैखिक विस्तार अद्वितीय है और

सभी के लिए रखता है तथा ऊपरोक्त अनुसार।[10] यदि रैखिक रूप से स्वतंत्र है तो प्रत्येक कार्य किसी भी वेक्टर अंतरिक्ष में एक (रैखिक) मानचित्र के लिए एक रैखिक विस्तार होता है (इसका उलटा भी सच है)।

उदाहरण के लिए, यदि तथा फिर असाइनमेंट तथा सदिशों के रैखिक रूप से स्वतंत्र सेट से रैखिक रूप से बढ़ाया जा सकता है पर एक रेखीय मानचित्र के लिए अद्वितीय रैखिक विस्तार वह मानचित्र है जो भेजता है प्रति

प्रत्येक (अदिश-मूल्यवान) रैखिक कार्यात्मक एक वास्तविक या जटिल सदिश समष्टि के सदिश उप-समष्टि पर परिभाषित सभी के लिए एक रैखिक विस्तार है वास्तव में, हन-बनच प्रमेय | हन-बनच प्रभुत्व विस्तार प्रमेय यह भी गारंटी देता है कि जब यह रैखिक कार्य करता है कुछ दिए गए सेमिनॉर्म का प्रभुत्व है (जिसका अर्थ है कि सभी के लिए धारण करता है के क्षेत्र में ) तो . के लिए एक रैखिक विस्तार मौजूद है उस पर भी हावी है


मैट्रिक्स

यदि तथा परिमित-आयामी वेक्टर रिक्त समष्टि हैं और वेक्टर अंतरिक्ष का आधार प्रत्येक वेक्टर अंतरिक्ष के लिए परिभाषित किया गया है, फिर प्रत्येक रैखिक मानचित्र से प्रति एक मैट्रिक्स (गणित) द्वारा दर्शाया जा सकता है।[11] यह उपयोगी है क्योंकि यह ठोस गणना की अनुमति देता है। मैट्रिसेस रैखिक मानचित्रों के उदाहरण देते हैं: if एक वास्तविक है मैट्रिक्स, फिर एक रैखिक मानचित्र का वर्णन करता है (यूक्लिडियन स्पेस देखें)।

होने देना का आधार हो . फिर हर वेक्टर गुणांक द्वारा विशिष्ट रूप से निर्धारित किया जाता है क्षेत्र में :

यदि एक रैखिक मानचित्र है,
जिसका अर्थ है कि फलन f पूर्णतया सदिशों द्वारा निर्धारित होता है . अब चलो का आधार हो . फिर हम प्रत्येक वेक्टर का प्रतिनिधित्व कर सकते हैं जैसा
इस प्रकार, समारोह पूरी तरह से के मूल्यों से निर्धारित होता है . यदि हम इन मानों को a में रखते हैं आव्यूह , तो हम आसानी से इसका उपयोग वेक्टर आउटपुट की गणना करने के लिए कर सकते हैं किसी भी वेक्टर के लिए . लेना , हर कॉलम का एक वेक्टर है
तदनुसार जैसा कि ऊपर परिभाषित किया गया है। इसे और स्पष्ट रूप से परिभाषित करने के लिए, कुछ कॉलम के लिए जो मानचित्र से मेल खाती है ,
कहाँ पे का मैट्रिक्स है . दूसरे शब्दों में, प्रत्येक स्तंभ एक संबंधित वेक्टर है जिसके निर्देशांक स्तंभ के तत्व हैं . एक एकल रैखिक मानचित्र को कई आव्यूहों द्वारा दर्शाया जा सकता है। ऐसा इसलिए है क्योंकि मैट्रिक्स के तत्वों के मान चुने गए आधारों पर निर्भर करते हैं।

एक रैखिक परिवर्तन के मैट्रिक्स को नेत्रहीन रूप से दर्शाया जा सकता है:

  1. मैट्रिक्स के लिए के सापेक्ष :
  2. मैट्रिक्स के लिए के सापेक्ष :
  3. संक्रमण मैट्रिक्स से प्रति :
  4. संक्रमण मैट्रिक्स से प्रति :

ऐसा कि नीचे बाएँ कोने में शुरू और निचले दाएं कोने की तलाश में , कोई बायें-गुणा करेगा—अर्थात्, . समतुल्य विधि एक ही बिंदु से दक्षिणावर्त जाने वाली लंबी विधि होगी जैसे कि के साथ वाम-गुणा किया जाता है , या .

दो आयामों में उदाहरण

द्वि-आयामी अंतरिक्ष में R2 रैखिक मानचित्रों का वर्णन 2 × 2 मैट्रिक्स (गणित) द्वारा किया जाता है। ये कुछ उदाहरण हैं:

  • रोटेशन (गणित)
    • 90 डिग्री वामावर्त:
    • θ वामावर्त कोण से:
  • प्रतिबिंब (गणित)
    • एक्स अक्ष के माध्यम से:
    • वाई अक्ष के माध्यम से:
    • मूल बिंदु से θ कोण बनाने वाली रेखा के माध्यम से:
      * सभी दिशाओं में 2 से स्केलिंग (ज्यामिति):
  • कतरनी मानचित्र:
  • निचोड़ मैपिंग:
  • y अक्ष पर प्रक्षेपण (रैखिक बीजगणित):


रैखिक मानचित्रों का वेक्टर समष्टि

रेखीय नक्शों की संरचना रेखीय है: यदि तथा रैखिक हैं, तो उनकी संबंध रचना भी है . यह इस प्रकार है कि किसी दिए गए क्षेत्र K पर सभी वेक्टर रिक्त समष्टि का वर्ग (सेट सिद्धांत), K-रैखिक मानचित्रों के साथ-साथ आकारिकी के रूप में, एक श्रेणी (गणित) बनाता है।

एक रेखीय मानचित्र का प्रतिलोम फलन, जब परिभाषित किया जाता है, फिर से एक रेखीय मानचित्र होता है।

यदि तथा रैखिक हैं, तो उनका बिंदुवार योग भी उतना ही है , जिसे द्वारा परिभाषित किया गया है .

यदि रैखिक है और जमीनी क्षेत्र का एक तत्व है , फिर मानचित्र , द्वारा परिभाषित , रैखिक भी है।

इस प्रकार सेट से रेखीय मानचित्रों का प्रति स्वयं एक सदिश समष्टि बनाता है ,[12] कभी-कभी निरूपित .[13] इसके अलावा, उस मामले में , यह सदिश समष्टि, निरूपित , नक्शों की रचना के तहत एक साहचर्य बीजगणित है, क्योंकि दो रेखीय नक्शों की रचना फिर से एक रेखीय मानचित्र है, और नक्शों की रचना हमेशा साहचर्य होती है। इस मामले पर नीचे और अधिक विस्तार से चर्चा की गई है।

फिर से परिमित-आयामी मामले को देखते हुए, यदि आधारों को चुना गया है, तो रैखिक मानचित्रों की संरचना मैट्रिक्स गुणन से मेल खाती है, रैखिक मानचित्रों का जोड़ मैट्रिक्स जोड़ से मेल खाता है, और स्केलर के साथ रैखिक मानचित्रों का गुणन के गुणन से मेल खाता है स्केलर के साथ आव्यूह।

एंडोमोर्फिज्म और ऑटोमोर्फिज्म

एक रैखिक परिवर्तन का एंडोमोर्फिज्म है ; ऐसे सभी एंडोमोर्फिज्म का सेट योग, संघटन और अदिश गुणन के साथ जैसा कि ऊपर परिभाषित किया गया है, क्षेत्र पर पहचान तत्व के साथ एक साहचर्य बीजगणित बनाता है (और विशेष रूप से एक अंगूठी (बीजगणित))। इस बीजगणित का गुणक पहचान तत्व पहचान कार्य है .

का एंडोमोर्फिज्म वह भी एक समरूपता है जिसे ऑटोमोर्फिज्म कहा जाता है . दो ऑटोमोर्फिज्म की संरचना फिर से एक ऑटोमोर्फिज्म है, और सभी ऑटोमोर्फिज्म का सेट है एक समूह (गणित) बनाता है, का ऑटोमोर्फिज्म समूह जिसे द्वारा दर्शाया गया है या . चूंकि ऑटोमोर्फिज्म ठीक वे एंडोमोर्फिज्म हैं, जिनमें रचना के तहत व्युत्क्रम होते हैं, रिंग में यूनिट (रिंग थ्योरी) का समूह है .

यदि परिमित आयाम है , फिर सभी के साहचर्य बीजगणित के लिए समरूपता है प्रविष्टियों के साथ आव्यूह . ऑटोमोर्फिज्म ग्रुप ऑफ सामान्य रैखिक समूह के लिए समूह समरूपता है के सभी प्रविष्टियों के साथ उलटा मैट्रिक्स .

कर्नेल, छवि और रैंक-शून्यता प्रमेय

यदि रैखिक है, हम कर्नेल (रैखिक ऑपरेटर) और छवि (गणित) या किसी फ़ंक्शन की श्रेणी को परिभाषित करते हैं द्वारा

की एक रेखीय उपसमष्टि है तथा की एक उपसमष्टि है . निम्नलिखित आयाम सूत्र को रैंक-शून्यता प्रमेय के रूप में जाना जाता है:[14]

जो नंबर के मैट्रिक्स की कोटि भी कहलाती है और के रूप में लिखा , या कभी कभी, ;[15][16] संख्या कर्नेल (मैट्रिक्स) को कहा जाता है# . के सबस्पेस गुण और के रूप में लिखा गया है या .[15][16]यदि तथा परिमित-आयामी हैं, आधार चुने गए हैं और मैट्रिक्स द्वारा दर्शाया गया है , फिर की रैंक और शून्यता मैट्रिक्स के रैंक और शून्यता के बराबर हैं , क्रमश।

कोकरनेल

एक रेखीय परिवर्तन का एक सूक्ष्मतर अपरिवर्तनीय कोकरनेल है, जिसे इस रूप में परिभाषित किया गया है

यह कर्नेल के लिए दोहरी धारणा है: जैसे कर्नेल डोमेन का एक उप-समष्टि है, सह-कर्नेल लक्ष्य का एक भागफल समष्टि (रैखिक बीजगणित) है। औपचारिक रूप से, किसी का सटीक क्रम होता है
इनकी व्याख्या इस प्रकार की जा सकती है: हल करने के लिए एक रैखिक समीकरण f('v') = 'w' दिया गया है,

  • कर्नेल सजातीय समीकरण f('v') = 0 के समाधान का समष्टि है, और इसका आयाम समाधान के समष्टि में स्वतंत्रता की डिग्री की संख्या है, यदि यह खाली नहीं है;
  • सह-कर्नेल विकट का समष्टि है: बाधा जिसे समाधान संतुष्ट करना चाहिए, और इसका आयाम स्वतंत्र बाधाओं की अधिकतम संख्या है।

सह-कर्नेल का आयाम और छवि का आयाम (रैंक) लक्ष्य समष्टि के आयाम तक जुड़ जाता है। परिमित आयामों के लिए, इसका अर्थ है कि भागफल समष्टि W/f(V) का आयाम लक्ष्य समष्टि का आयाम घटा छवि का आयाम है।

एक साधारण उदाहरण के रूप में, मानचित्र पर विचार करें f: 'R'2 → आर2, f(x, y) = (0, y) द्वारा दिया गया है। फिर एक समीकरण f(x, y) = (a, b) के हल के लिए, हमारे पास a = 0 (एक बाधा) होना चाहिए, और उस स्थिति में समाधान समष्टि (x, b) या समकक्ष रूप से कहा गया है, ( 0, बी) + (एक्स, 0) (स्वतंत्रता की एक डिग्री)। कर्नेल को सबस्पेस (x, 0) <V के रूप में व्यक्त किया जा सकता है: x का मान समाधान में स्वतंत्रता है - जबकि कोकर्नेल को मानचित्र W → 'R' के माध्यम से व्यक्त किया जा सकता है, : एक वेक्टर (ए, बी) दिया गया है, ए का मान समाधान होने में बाधा है।

अनंत-आयामी मामले को दर्शाने वाला एक उदाहरण मानचित्र f: 'R' द्वारा वहन किया जाता है → आर, बी के साथ1 = 0 और बीn + 1 = एnn> 0 के लिए। इसकी छवि में पहले तत्व 0 के साथ सभी अनुक्रम होते हैं, और इस प्रकार इसके कोकर्नेल में समान प्रथम तत्व वाले अनुक्रमों के वर्ग होते हैं। इस प्रकार, जबकि इसके कर्नेल का आयाम 0 है (यह केवल शून्य अनुक्रम को शून्य अनुक्रम में मैप करता है), इसके सह-कर्नेल का आयाम 1 है। चूंकि डोमेन और लक्ष्य समष्टि समान हैं, कर्नेल का रैंक और आयाम जुड़ जाता है एक ही कार्डिनल नंबर के लिए # को-कर्नेल के रैंक और आयाम के रूप में कार्डिनल जोड़ (), लेकिन अनंत-आयामी मामले में यह अनुमान नहीं लगाया जा सकता है कि एंडोमोर्फिज्म के कर्नेल और सह-कर्नेल का एक ही आयाम (0 ≠ 1) है। मानचित्र h: 'R' के लिए विपरीत स्थिति प्राप्त होती है → आर, सी के साथn= एn + 1. इसकी छवि संपूर्ण लक्ष्य समष्टि है, और इसलिए इसके सह-कर्नेल का आयाम 0 है, लेकिन चूंकि यह सभी अनुक्रमों को मैप करता है जिसमें केवल पहला तत्व गैर-शून्य से शून्य अनुक्रम होता है, इसके कर्नेल का आयाम 1 होता है।

सूचकांक

परिमित-आयामी कर्नेल और सह-कर्नेल वाले एक रैखिक ऑपरेटर के लिए, इंडेक्स को इस प्रकार परिभाषित किया जा सकता है:

अर्थात् स्वतंत्रता की डिग्री ऋण बाधाओं की संख्या।

परिमित-आयामी वेक्टर रिक्त समष्टि के बीच परिवर्तन के लिए, यह रैंक-शून्यता द्वारा मंद (वी) - मंद (W) का अंतर है। यह इस बात का संकेत देता है कि किसी के पास कितने समाधान या कितनी बाधाएं हैं: यदि बड़े समष्टि से छोटे समष्टि पर मानचित्र किया जाता है, तो मानचित्र चालू हो सकता है, और इस प्रकार बाधाओं के बिना भी स्वतंत्रता की डिग्री होगी। इसके विपरीत, यदि छोटे समष्टि से बड़े समष्टि पर मानचित्र किया जाता है, तो मानचित्र पर नहीं हो सकता है, और इस प्रकार स्वतंत्रता की डिग्री के बिना भी बाधाएँ होंगी।

एक ऑपरेटर का सूचकांक ठीक 2-टर्म कॉम्प्लेक्स 0 → V → W → 0 की यूलर विशेषता है। ऑपरेटर सिद्धांत में, फ्रेडहोम ऑपरेटरों का सूचकांक अध्ययन का एक उद्देश्य है, जिसका प्रमुख परिणाम अतियाह-सिंगर इंडेक्स प्रमेय है। .[17]


रैखिक परिवर्तनों का बीजगणितीय वर्गीकरण

रेखीय मानचित्रों का कोई वर्गीकरण संपूर्ण नहीं हो सकता। निम्नलिखित अधूरी सूची कुछ महत्वपूर्ण वर्गीकरणों की गणना करती है जिन्हें सदिश समष्टि पर किसी अतिरिक्त संरचना की आवश्यकता नहीं होती है।

होने देना V तथा W एक क्षेत्र पर वेक्टर रिक्त समष्टि को निरूपित करें F और जाने T: VW एक रेखीय मानचित्र बनें।

मोनोमोर्फिज्म

T इंजेक्शन या मोनोमोर्फिज्म कहा जाता है यदि निम्नलिखित समकक्ष शर्तों में से कोई भी सत्य है:

  1. T सेट (गणित) के मानचित्र के रूप में एक-से-एक इंजेक्शन है।
  2. ker T = {0V}
  3. dim(ker T) = 0
  4. T मोनिक मॉर्फिज्म या लेफ्ट-कैंसलेबल है, जिसका अर्थ है, किसी भी वेक्टर स्पेस के लिए U और रैखिक मानचित्रों की कोई भी जोड़ी R: UV तथा S: UV, समीकरण TR = TS तात्पर्य R = S.
  5. T उलटा है (रिंग थ्योरी)|बाएं-उलटा, जिसका कहना है कि एक रैखिक मानचित्र मौजूद है S: WV ऐसा है कि ST आइडेंटिटी फंक्शन चालू है V.

एपिमोर्फिज्म

T यदि निम्नलिखित समतुल्य स्थितियों में से कोई भी सत्य है, तो उसे विशेषण या एपिमोर्फिज्म कहा जाता है:

  1. T समुच्चय के मानचित्र के रूप में विशेषण है।
  2. coker T = {0W}
  3. T एपिमोर्फिज्म या राइट-कैंसलेबल है, जो किसी भी वेक्टर स्पेस के लिए कहना है U और रैखिक मानचित्रों का कोई भी जोड़ा R: WU तथा S: WU, समीकरण RT = ST तात्पर्य R = S.
  4. T उलटा है (रिंग थ्योरी) | सही-उलटा, जिसका कहना है कि एक रैखिक मानचित्र मौजूद है S: WV ऐसा है कि TS आइडेंटिटी फंक्शन चालू है W.

समरूपता

T एक आइसोमोर्फिज्म कहा जाता है यदि यह बाएं और दाएं-उलटा दोनों है। यह बराबर है T एक-से-एक और आच्छादित (सेटों का एक आक्षेप) या भी होने के नाते T महाकाव्य और अलौकिक दोनों होने के नाते, और इसलिए एक द्विरूपता है।

यदि T: VV एक एंडोमोर्फिज्म है, तो:

  • यदि, किसी धनात्मक पूर्णांक के लिए n, द n- का पुनरावृति T, Tn, समान रूप से शून्य है, तो T शक्तिहीन बताया गया है।
  • यदि T2 = T, फिर T निरंकुश कहा जाता है
  • यदि T = kI, कहाँ पे k कुछ अदिश है, फिर T स्केलिंग रूपांतरण या अदिश गुणन मानचित्र कहा जाता है; स्केलर मैट्रिक्स देखें।

आधार का परिवर्तन

एक रैखिक मानचित्र दिया गया है जो एक एंडोमोर्फिज्म है जिसका मैट्रिक्स ए है, अंतरिक्ष के आधार बी में यह वेक्टर निर्देशांक [यू] को [वी] = ए [यू] के रूप में बदलता है। चूंकि सदिश बी के व्युत्क्रम के साथ बदलते हैं (वैक्टर सहप्रसरण और सदिशों के प्रतिप्रसरण हैं) इसका व्युत्क्रम रूपांतरण [v] = B[v'] है।

इसे पहली अभिव्यक्ति में प्रतिस्थापित करना

इसलिये
इसलिए, नए आधार में आव्यूह A' = B है−1AB, दिए गए आधार का मैट्रिक्स B होने के कारण।

इसलिए, रेखीय मानचित्रों को 1-सह- 1-कॉन्ट्रा-सहप्रसरण और वेक्टर वस्तुओं के विपरीत, या प्रकार (1, 1) टेंसर कहा जाता है।

निरंतरता

टोपोलॉजिकल वेक्टर रिक्त समष्टि के बीच एक रैखिक परिवर्तन, उदाहरण के लिए आदर्श समष्टि, निरंतर कार्य (टोपोलॉजी) हो सकता है। यदि इसका डोमेन और कोडोमेन समान हैं, तो यह एक सतत रैखिक संकारक होगा। एक आदर्श रेखीय समष्टि पर एक रेखीय संकारक निरंतर होता है यदि और केवल यदि यह परिबद्ध संकारक है, उदाहरण के लिए, जब डोमेन परिमित-आयामी है।[18] एक अनंत-आयामी डोमेन में असंतत रैखिक ऑपरेटर हो सकते हैं।

एक असीमित, इसलिए असंतत, रैखिक परिवर्तन का एक उदाहरण सर्वोच्च मानदंड से सुसज्जित सुचारू कार्यों के समष्टि पर भिन्नता है (छोटे मानों वाले फ़ंक्शन में बड़े मानों के साथ व्युत्पन्न हो सकता है, जबकि 0 का व्युत्पन्न 0 है)। एक विशिष्ट उदाहरण के लिए, sin(nx)/n 0 में परिवर्तित होता है, लेकिन इसका व्युत्पन्न cos(nx) नहीं है, इसलिए भेदभाव 0 पर निरंतर नहीं है (और इस तर्क की भिन्नता से, यह कहीं भी निरंतर नहीं है)।

अनुप्रयोग

रेखीय मानचित्रों का एक विशिष्ट अनुप्रयोग ज्यामितीय परिवर्तनों के लिए है, जैसे कि कंप्यूटर ग्राफिक्स में किया जाता है, जहाँ 2डी या 3डी वस्तुओं का अनुवाद, परिक्रमण और प्रवर्धन रूपांतरण आव्यूह के उपयोग द्वारा किया जाता है। रेखीय मानचित्रण का उपयोग परिवर्तन का वर्णन करने के लिए एक तंत्र के रूप में भी किया जाता है, उदाहरण के लिए कलन में व्युत्पन्न (शब्द) के अनुरूप, या सापेक्षता में, संदर्भ फ्रेम के समष्टिीय परिवर्तनों का तरीका रखने के लिए एक उपकरण के रूप में उपयोग किया जाता है।

इन परिवर्तनों का एक अन्य अनुप्रयोग नेस्टेड-लूप कोड के संकलक अनुकूलन में है, और संकलक तकनीकों को समानांतर करने में है।

यह भी देखें

|परिबद्ध संचालिका - टीवीएस के बीच रैखिक परिवर्तन ]]


टिप्पणियाँ

  1. "Linear transformations of V into V are often called linear operators on V." Rudin 1976, p. 207
  2. Let V and W be two real vector spaces. A mapping a from V into W Is called a 'linear mapping' or 'linear transformation' or 'linear operator' [...] from V into W, if
    for all ,
    for all and all real λ. Bronshtein & Semendyayev 2004, p. 316
  3. Rudin 1991, p. 14
    Here are some properties of linear mappings whose proofs are so easy that we omit them; it is assumed that and :
    1. If A is a subspace (or a convex set, or a balanced set) the same is true of
    2. If B is a subspace (or a convex set, or a balanced set) the same is true of
    3. In particular, the set:
      is a subspace of X, called the null space of .
  4. Rudin 1991, p. 14. Suppose now that X and Y are vector spaces over the same scalar field. A mapping is said to be linear if for all and all scalars and . Note that one often writes , rather than , when is linear.
  5. Rudin 1976, p. 206. A mapping A of a vector space X into a vector space Y is said to be a linear transformation if: for all and all scalars c. Note that one often writes instead of if A is linear.
  6. Rudin 1991, p. 14. Linear mappings of X onto its scalar field are called linear functionals.
  7. "शब्दावली - रेखीय बीजगणित में 'रैखिक' का क्या अर्थ है?". Mathematics Stack Exchange. Retrieved 2021-02-17.
  8. Wilansky 2013, pp. 21–26.
  9. Kubrusly, Carlos (2001). ऑपरेटर सिद्धांत के तत्व. Boston: Birkhäuser. p. 57. ISBN 978-1-4757-3328-0. OCLC 754555941.
  10. 10.0 10.1 Schechter 1996, pp. 277–280.
  11. Rudin 1976, p. 210 Suppose and are bases of vector spaces X and Y, respectively. Then every determines a set of numbers such that
    It is convenient to represent these numbers in a rectangular array of m rows and n columns, called an m by n matrix:
    Observe that the coordinates of the vector (with respect to the basis ) appear in the jth column of . The vectors are therefore sometimes called the column vectors of . With this terminology, the range of A is spanned by the column vectors of .
  12. Axler (2015) p. 52, § 3.3
  13. Tu (2011), p. 19, § 3.1
  14. Horn & Johnson 2013, 0.2.3 Vector spaces associated with a matrix or linear transformation, p. 6
  15. 15.0 15.1 Katznelson & Katznelson (2008) पी। 52, § 2.5.1
  16. 16.0 16.1 Halmos (1974) पी। 90, § 50
  17. Nistor, Victor (2001) [1994], "Index theory", Encyclopedia of Mathematics, EMS Press: "The main question in index theory is to provide index formulas for classes of Fredholm operators ... Index theory has become a subject on its own only after M. F. Atiyah and I. Singer published their index theorems"
  18. Rudin 1991, p. 15 1.18 Theorem Let be a linear functional on a topological vector space X. Assume for some . Then each of the following four properties implies the other three:
    1. is continuous
    2. The null space is closed.
    3. is not dense in X.
    4. is bounded in some neighbourhood V of 0.


ग्रन्थसूची