डेडेकाइंड कट: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Method of construction of the real numbers}} | {{short description|Method of construction of the real numbers}} | ||
{{For|अमेरिकी रिकॉर्ड निर्माता पेशेवर रूप से डेडेकिंड कट के रूप में जाने जाते हैं|फ्रेड वार्मस्ले}} | {{For|अमेरिकी रिकॉर्ड निर्माता पेशेवर रूप से डेडेकिंड कट के रूप में जाने जाते हैं|फ्रेड वार्मस्ले}} | ||
[[File:Dedekind cut- square root of two.png| thumb| right| 350px| डेडेकाइंड ने [[अपरिमेय संख्या]], [[वास्तविक संख्या]]ओं के निर्माण के लिए अपने कट का उपयोग किया।]]गणित में, डेडेकिंड कट, जर्मन गणितज्ञ [[रिचर्ड डेडेकिंड]] के नाम से जाना जाता है लेकिन इनसे पहले डेडेकिंड कट को [[जोसेफ बर्ट्रेंड]] द्वारा जाना जाता था,<ref>{{cite book|last=Bertrand|first=Joseph|title=अंकगणित पर ग्रंथ|url = https://gallica.bnf.fr/ark:/12148/bpt6k77735p/f209.image.r=%22joseph%20bertrand%22 |year=1849|at=page 203|quote=एक अतुलनीय संख्या को केवल यह इंगित करके परिभाषित किया जा सकता है कि एकता के माध्यम से यह कैसे व्यक्त किया जा सकता है। निम्नलिखित में, हम मानते हैं कि इस परिभाषा में यह इंगित करना शामिल है कि कौन सी आनुपातिक संख्याएँ इससे छोटी या बड़ी हैं ....}}</ref><ref>{{cite book |last=Spalt |first=Detlef |title=विश्लेषण का एक संक्षिप्त इतिहास|year=2019|publisher=Springer|doi=10.1007/978-3-662-57816-2|isbn=978-3-662-57815-5 }}</ref> [[परिमेय संख्या]]ओं से वास्तविक संख्याओं के निर्माण की एक विधि है। डेडेकाइंड कट परिमेय संख्याओं के दो समुच्चयों A और B में परिमेय संख्याओं का विभाजन है, जैसे कि A के सभी तत्व B के सभी तत्वों से कम हैं, और A में कोई [[सबसे बड़ा तत्व]] नहीं है। | [[File:Dedekind cut- square root of two.png| thumb| right| 350px| डेडेकाइंड ने [[अपरिमेय संख्या]], [[वास्तविक संख्या]]ओं के निर्माण के लिए अपने कट का उपयोग किया।]]गणित में, डेडेकिंड कट, जर्मन गणितज्ञ [[रिचर्ड डेडेकिंड]] के नाम से जाना जाता है लेकिन इनसे पहले डेडेकिंड कट को [[जोसेफ बर्ट्रेंड]] द्वारा जाना जाता था,<ref>{{cite book|last=Bertrand|first=Joseph|title=अंकगणित पर ग्रंथ|url = https://gallica.bnf.fr/ark:/12148/bpt6k77735p/f209.image.r=%22joseph%20bertrand%22 |year=1849|at=page 203|quote=एक अतुलनीय संख्या को केवल यह इंगित करके परिभाषित किया जा सकता है कि एकता के माध्यम से यह कैसे व्यक्त किया जा सकता है। निम्नलिखित में, हम मानते हैं कि इस परिभाषा में यह इंगित करना शामिल है कि कौन सी आनुपातिक संख्याएँ इससे छोटी या बड़ी हैं ....}}</ref><ref>{{cite book |last=Spalt |first=Detlef |title=विश्लेषण का एक संक्षिप्त इतिहास|year=2019|publisher=Springer|doi=10.1007/978-3-662-57816-2|isbn=978-3-662-57815-5 }}</ref> [[परिमेय संख्या]]ओं से वास्तविक संख्याओं के निर्माण की एक विधि है। डेडेकाइंड कट परिमेय संख्याओं के दो समुच्चयों A और B में परिमेय संख्याओं का विभाजन है, जैसे कि A के सभी तत्व B के सभी तत्वों से कम हैं, और A में कोई [[सबसे बड़ा तत्व]] नहीं है। समुच्चय B में परिमेय के बीच सबसे छोटा तत्व हो सकता है या नहीं भी हो सकता है। यदि परिमेय में B का सबसे छोटा तत्व है, तो कट उस परिमेय के समान होती है। अन्यथा, वह कट एक अद्वितीय अपरिमेय संख्या को परिभाषित करता है, जो शिथिल रूप से बोलना, A और B के बीच के अंतर को भरता है।<ref name=":0">{{cite book|last=Dedekind |first=Richard |title=निरंतरता और अपरिमेय संख्या|url=http://www.math.ubc.ca/~cass/courses/m446-05b/dedekind-book.pdf#page=15 |year=1872|at=Section IV |quote=जब भी, हमें बिना किसी तर्कसंगत संख्या के उत्पन्न कट के साथ करना होता है, तो हम एक नई 'तर्कहीन' संख्या बनाते हैं, जिसे हम इस कट द्वारा पूरी तरह से परिभाषित मानते हैं ...। अब से, इसलिए, प्रत्येक निश्चित कट के लिए एक निश्चित परिमेय या अपरिमेय संख्या होती है ....}}</ref> दूसरे शब्दों में, A में कट से कम प्रत्येक परिमेय संख्या होती है, और B में कट से अधिक या उसके बराबर प्रत्येक परिमेय संख्या होती है। एक अपरिमेय कट एक अपरिमेय संख्या के बराबर होती है जो न तो समुच्चय में होती है। प्रत्येक वास्तविक संख्या, परिमेय हो या नहीं, परिमेय के एक और केवल एक कट के बराबर होती है।<ref name=":0" /> | ||
डेडेकाइंड कट्स को परिमेय संख्याओं से किसी भी पूरी तरह से | डेडेकाइंड कट्स को परिमेय संख्याओं से किसी भी पूरी तरह से सुव्यवस्थित किए गए समुच्चय तक सामान्यीकृत किया जा सकता है, डेडेकिंड कट को दो गैर-खाली भागों A और B में पूरी तरह से ऑर्डर किए गए समुच्चय के विभाजन के रूप में परिभाषित किया जा सकता है, जैसे कि A नीचे की ओर बंद है (जिसका अर्थ है कि सभी A में ए, एक्स ≤ A का तात्पर्य है कि एक्स A में भी है) और B ऊपर की तरफ बंद है, और A में कोई सबसे बड़ा तत्व नहीं है। पूर्णता भी देखें (आदेश सिद्धांत)। | ||
यह दिखाना सीधा है कि वास्तविक संख्याओं के बीच एक डेडेकाइंड कट को विशिष्ट रूप से परिमेय संख्याओं के बीच संबंधित कट द्वारा परिभाषित किया गया है। इसी तरह, वास्तविक का प्रत्येक कट एक विशिष्ट वास्तविक संख्या (जिसे B | यह दिखाना सीधा है कि वास्तविक संख्याओं के बीच एक डेडेकाइंड कट को विशिष्ट रूप से परिमेय संख्याओं के बीच संबंधित कट द्वारा परिभाषित किया गया है। इसी तरह, वास्तविक का प्रत्येक कट एक विशिष्ट वास्तविक संख्या (जिसे B समुच्चय के सबसे छोटे तत्व के रूप में पहचाना जा सकता है) द्वारा निर्मित कट के समान है। दूसरे शब्दों में, [[संख्या रेखा]] जहां प्रत्येक वास्तविक संख्या को परिमेय के डेडेकिंड कट के रूप में परिभाषित किया जाता है, बिना किसी और अंतराल के एक [[पूर्ण मीट्रिक स्थान]] रैखिक सातत्य है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 20: | Line 20: | ||
== प्रतिनिधित्व == | == प्रतिनिधित्व == | ||
डेडेकिंड कट के लिए (ए, बी) संकेतन का उपयोग करना अधिक सममित है, लेकिन A और B में से प्रत्येक दूसरे को निर्धारित करता है। यह एक सरलीकरण हो सकता है, संकेतन के संदर्भ में, यदि अधिक कुछ नहीं, एक आधे पर ध्यान केंद्रित करने के लिए - कहें, निचला एक - और किसी भी नीचे की ओर बंद | डेडेकिंड कट के लिए (ए, बी) संकेतन का उपयोग करना अधिक सममित है, लेकिन A और B में से प्रत्येक दूसरे को निर्धारित करता है। यह एक सरलीकरण हो सकता है, संकेतन के संदर्भ में, यदि अधिक कुछ नहीं, एक आधे पर ध्यान केंद्रित करने के लिए - कहें, निचला एक - और किसी भी नीचे की ओर बंद समुच्चय A को सबसे बड़े तत्व के बिना डेडेकाइंड कट कहा जाता है। | ||
यदि क्रमित समुच्चय S पूर्ण है, तो, S के प्रत्येक Dedekind कट (A, B) के लिए, समुच्चय B में न्यूनतम अवयव b होना चाहिए, | यदि क्रमित समुच्चय S पूर्ण है, तो, S के प्रत्येक Dedekind कट (A, B) के लिए, समुच्चय B में न्यूनतम अवयव b होना चाहिए, | ||
Line 26: | Line 26: | ||
इस मामले में, हम कहते हैं कि b को कट (A, B) द्वारा दर्शाया गया है। | इस मामले में, हम कहते हैं कि b को कट (A, B) द्वारा दर्शाया गया है। | ||
डेडेकाइंड कट का महत्वपूर्ण उद्देश्य उन संख्या | डेडेकाइंड कट का महत्वपूर्ण उद्देश्य उन संख्या समुच्चयों के साथ काम करना है जो पूर्ण नहीं हैं। कट स्वयं संख्याओं के मूल संग्रह में नहीं एक संख्या का प्रतिनिधित्व कर सकता है (अक्सर तर्कसंगत संख्याएं)। कट एक संख्या b का प्रतिनिधित्व कर सकता है, भले ही दो समुच्चय A और B में निहित संख्या में वास्तव में वह संख्या b शामिल नहीं है जो उनका कट दर्शाता है। | ||
उदाहरण के लिए यदि A और B में केवल [[परिमेय संख्या]]एँ हैं, तब भी उन्हें काटा जा सकता है {{radic|2}} प्रत्येक ऋणात्मक परिमेय संख्या को A में, प्रत्येक गैर-ऋणात्मक संख्या जिसका वर्ग 2 से कम है, के साथ रखकर; इसी प्रकार B में प्रत्येक धनात्मक परिमेय संख्या होगी जिसका वर्ग 2 से अधिक या उसके बराबर है। भले ही इसके लिए कोई परिमेय मान नहीं है {{sqrt|2}}, यदि परिमेय संख्याओं को इस प्रकार A और B में विभाजित किया जाता है, तो विभाजन स्वयं एक अपरिमेय संख्या का प्रतिनिधित्व करता है। | उदाहरण के लिए यदि A और B में केवल [[परिमेय संख्या]]एँ हैं, तब भी उन्हें काटा जा सकता है {{radic|2}} प्रत्येक ऋणात्मक परिमेय संख्या को A में, प्रत्येक गैर-ऋणात्मक संख्या जिसका वर्ग 2 से कम है, के साथ रखकर; इसी प्रकार B में प्रत्येक धनात्मक परिमेय संख्या होगी जिसका वर्ग 2 से अधिक या उसके बराबर है। भले ही इसके लिए कोई परिमेय मान नहीं है {{sqrt|2}}, यदि परिमेय संख्याओं को इस प्रकार A और B में विभाजित किया जाता है, तो विभाजन स्वयं एक अपरिमेय संख्या का प्रतिनिधित्व करता है। | ||
== कट का आदेश == | == कट का आदेश == | ||
एक डेडेकाइंड कट (ए, बी) के संबंध में एक और डेडेकिंड कट (सी, D ) (उसी | एक डेडेकाइंड कट (ए, बी) के संबंध में एक और डेडेकिंड कट (सी, D ) (उसी सुपर समुच्चय के) से कम है यदि A Cका एक उचित उपसमूह है। समतुल्य रूप से, यदि D B का एक उचित उपसमुच्चय है, तो कट (ए) , बी) फिर से (सी, D ) से कम है। इस तरह, संख्याओं के क्रम का प्रतिनिधित्व करने के लिए समुच्चय समावेशन का उपयोग किया जा सकता है, और अन्य सभी संबंध (इससे अधिक, से कम या बराबर, बराबर, और इसी तरह) समुच्चय संबंधों से समान रूप से बनाए जा सकते हैं। | ||
सभी डेडेकाइंड कट्स का | सभी डेडेकाइंड कट्स का समुच्चय अपने आप में एक रैखिक रूप से ऑर्डर किया गया समुच्चय (समुच्चय का) है। इसके अलावा, डेडेकाइंड कट्स के समुच्चय में सबसे [[कम से कम ऊपरी बाध्य संपत्ति]] होती है, यानी, इसका हर गैर-खाली उपसमुच्चय जिसकी कोई ऊपरी सीमा होती है, उसकी ऊपरी सीमा कम से कम होती है। इस प्रकार, डेडेकाइंड कट्स के समुच्चय का निर्माण मूल ऑर्डर किए गए समुच्चय एस को एम्बेड करने के उद्देश्य से कार्य करता है, जिसमें कम से कम-ऊपरी-बाध्य संपत्ति नहीं हो सकती है, (आमतौर पर बड़ा) रैखिक रूप से आदेशित समुच्चय के भीतर यह उपयोगी संपत्ति होती है। | ||
== वास्तविक संख्या का निर्माण == | == वास्तविक संख्या का निर्माण == | ||
Line 42: | Line 42: | ||
:<math>B = \{ b\in\mathbb{Q} : b^2 \ge 2 \text{ and } b \ge 0 \}.</math><ref>In the second line, <math>\ge</math> may be replaced by <math>></math> without any difference as there is no solution for <math>x^2 = 2</math> in <math>\Q</math> and <math>b=0</math> is already forbidden by the first condition. This results in the equivalent expression | :<math>B = \{ b\in\mathbb{Q} : b^2 \ge 2 \text{ and } b \ge 0 \}.</math><ref>In the second line, <math>\ge</math> may be replaced by <math>></math> without any difference as there is no solution for <math>x^2 = 2</math> in <math>\Q</math> and <math>b=0</math> is already forbidden by the first condition. This results in the equivalent expression | ||
:<math>B = \{ b\in\mathbb{Q} : b^2 > 2 \text{ and } b > 0 \}.</math></ref> | :<math>B = \{ b\in\mathbb{Q} : b^2 > 2 \text{ and } b > 0 \}.</math></ref> | ||
यह कट अपरिमेय संख्या का प्रतिनिधित्व करता है {{sqrt|2}} डेडेकिंड के निर्माण में। आवश्यक विचार यह है कि हम एक | यह कट अपरिमेय संख्या का प्रतिनिधित्व करता है {{sqrt|2}} डेडेकिंड के निर्माण में। आवश्यक विचार यह है कि हम एक समुच्चय का उपयोग करते हैं <math>A</math>, जो संख्या का प्रतिनिधित्व करने के लिए सभी परिमेय संख्याओं का समूह है, जिनके वर्ग 2 से कम हैं {{sqrt|2}}, और आगे, इन समुच्चयों (जोड़, घटाव, गुणा और भाग) पर ठीक से अंकगणितीय संकारकों को परिभाषित करके, ये समुच्चय (इन अंकगणितीय संक्रियाओं के साथ) परिचित वास्तविक संख्याएँ बनाते हैं। | ||
इसे स्थापित करने के लिए, उसे दिखाना होगा <math>A</math> वास्तव में एक कट (परिभाषा के अनुसार) और का वर्ग है <math>A</math>, वह है <math>A \times A</math> (कृपया कट्स के गुणन को कैसे परिभाषित किया जाता है, इसकी सटीक परिभाषा के लिए ऊपर दिए गए लिंक को देखें), है <math>2</math> (ध्यान दें कि इस नंबर 2 को सख्ती से बोलते हुए कट द्वारा दर्शाया गया है <math>\{x\ |\ x \in \mathbb{Q}, x < 2\}</math>). पहले भाग को दिखाने के लिए, हम दिखाते हैं कि किसी भी सकारात्मक तर्कसंगत के लिए <math>x</math> साथ <math>x^2 < 2</math>, एक तर्कसंगत है <math>y</math> साथ <math>x < y</math> तथा <math>y^2 < 2</math>. विकल्प <math>y=\frac{2x+2}{x+2}</math> काम करता है, इस प्रकार <math>A</math> वास्तव में एक कट है। अब कट के बीच गुणन से लैस, यह जांचना आसान है <math>A \times A \le 2</math> (अनिवार्य रूप से, यह इसलिए है क्योंकि <math>x \times y \le 2, \forall x, y \in A, x, y \ge 0</math>). इसलिए दिखाना है <math>A \times A = 2</math>, हम दिखाते हैं <math>A \times A \ge 2</math>, और यह किसी के लिए भी दिखाने के लिए पर्याप्त है <math>r < 2</math>, वहां मौजूद <math>x \in A</math>, <math>x^2 > r</math>. इसके लिए हम देखते हैं कि अगर <math>x > 0, 2-x^2=\epsilon > 0</math>, फिर <math>2-y^2 \le \frac{\epsilon}{2}</math> के लिए <math>y</math> ऊपर निर्मित, इसका मतलब है कि हमारे पास एक अनुक्रम है <math>A</math> जिसका वर्ग मनमाने ढंग से निकट हो सकता है <math>2</math>, जो प्रमाण को समाप्त करता है। | इसे स्थापित करने के लिए, उसे दिखाना होगा <math>A</math> वास्तव में एक कट (परिभाषा के अनुसार) और का वर्ग है <math>A</math>, वह है <math>A \times A</math> (कृपया कट्स के गुणन को कैसे परिभाषित किया जाता है, इसकी सटीक परिभाषा के लिए ऊपर दिए गए लिंक को देखें), है <math>2</math> (ध्यान दें कि इस नंबर 2 को सख्ती से बोलते हुए कट द्वारा दर्शाया गया है <math>\{x\ |\ x \in \mathbb{Q}, x < 2\}</math>). पहले भाग को दिखाने के लिए, हम दिखाते हैं कि किसी भी सकारात्मक तर्कसंगत के लिए <math>x</math> साथ <math>x^2 < 2</math>, एक तर्कसंगत है <math>y</math> साथ <math>x < y</math> तथा <math>y^2 < 2</math>. विकल्प <math>y=\frac{2x+2}{x+2}</math> काम करता है, इस प्रकार <math>A</math> वास्तव में एक कट है। अब कट के बीच गुणन से लैस, यह जांचना आसान है <math>A \times A \le 2</math> (अनिवार्य रूप से, यह इसलिए है क्योंकि <math>x \times y \le 2, \forall x, y \in A, x, y \ge 0</math>). इसलिए दिखाना है <math>A \times A = 2</math>, हम दिखाते हैं <math>A \times A \ge 2</math>, और यह किसी के लिए भी दिखाने के लिए पर्याप्त है <math>r < 2</math>, वहां मौजूद <math>x \in A</math>, <math>x^2 > r</math>. इसके लिए हम देखते हैं कि अगर <math>x > 0, 2-x^2=\epsilon > 0</math>, फिर <math>2-y^2 \le \frac{\epsilon}{2}</math> के लिए <math>y</math> ऊपर निर्मित, इसका मतलब है कि हमारे पास एक अनुक्रम है <math>A</math> जिसका वर्ग मनमाने ढंग से निकट हो सकता है <math>2</math>, जो प्रमाण को समाप्त करता है। | ||
Line 51: | Line 51: | ||
वास्तविक संख्या का प्रतिनिधित्व करने वाला डेडेकिंड कट दिया गया है <math>r</math> परिमेय को विभाजित करके <math>(A,B)</math> | वास्तविक संख्या का प्रतिनिधित्व करने वाला डेडेकिंड कट दिया गया है <math>r</math> परिमेय को विभाजित करके <math>(A,B)</math> | ||
जहां तर्कसंगत है <math>A</math> से कम हैं <math>r</math> और तर्कसंगत में <math>B</math> से अधिक हैं <math>r</math>, इसे समान रूप से जोड़े के | जहां तर्कसंगत है <math>A</math> से कम हैं <math>r</math> और तर्कसंगत में <math>B</math> से अधिक हैं <math>r</math>, इसे समान रूप से जोड़े के समुच्चय के रूप में दर्शाया जा सकता है <math>(a,b)</math> साथ <math>a \in A</math> तथा <math>b \in B</math>, निचले कट और ऊपरी कट अनुमानों द्वारा दिए जा रहे हैं। यह अनुमानित अंतराल के समुच्चय के बिल्कुल अनुरूप है <math>r</math>. | ||
यह [[अंतराल अंकगणित]]ीय के संदर्भ में वास्तविक संख्याओं पर मूल अंकगणितीय संचालन को परिभाषित करने की अनुमति देता है। यह संपत्ति और वास्तविक संख्या के साथ इसका संबंध केवल के संदर्भ में दिया गया है <math>A</math> तथा <math>B</math> कमजोर नींवों जैसे [[रचनात्मक विश्लेषण]] में विशेष रूप से महत्वपूर्ण है। | यह [[अंतराल अंकगणित]]ीय के संदर्भ में वास्तविक संख्याओं पर मूल अंकगणितीय संचालन को परिभाषित करने की अनुमति देता है। यह संपत्ति और वास्तविक संख्या के साथ इसका संबंध केवल के संदर्भ में दिया गया है <math>A</math> तथा <math>B</math> कमजोर नींवों जैसे [[रचनात्मक विश्लेषण]] में विशेष रूप से महत्वपूर्ण है। | ||
Line 57: | Line 57: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
=== मनमाना रैखिक रूप से आदेशित | === मनमाना रैखिक रूप से आदेशित समुच्चय === | ||
मनमाने ढंग से क्रमबद्ध | मनमाने ढंग से क्रमबद्ध समुच्चय एक्स के सामान्य मामले में, 'कट' एक जोड़ी है <math>(A,B)</math> ऐसा है कि <math>A \cup B = X </math> तथा <math>a \in A</math>, <math>b \in B</math> मतलब <math>a < b</math>. कुछ लेखक इस आवश्यकता को जोड़ते हैं कि A और B दोनों गैर-खाली हैं।<ref>R. Engelking, General Topology, I.3</ref> | ||
यदि न तो A का अधिकतम है और न ही B का न्यूनतम, तो कट को 'अंतर' कहा जाता है। ऑर्डर टोपोलॉजी के साथ संपन्न एक रैखिक रूप से आदेशित | यदि न तो A का अधिकतम है और न ही B का न्यूनतम, तो कट को 'अंतर' कहा जाता है। ऑर्डर टोपोलॉजी के साथ संपन्न एक रैखिक रूप से आदेशित समुच्चय कॉम्पैक्ट है अगर और केवल अगर इसमें कोई अंतर नहीं है।<ref>Jun-Iti Nagata, Modern General Topology, Second revised edition, Theorem VIII.2, p. 461. Actually, the theorem holds in the setting of generalized ordered spaces, but in this more general setting pseudo-gaps should be taken into account.</ref> | ||
Line 65: | Line 65: | ||
डेडेकिंड कट्स के समान एक निर्माण का उपयोग वास्तविक संख्याओं के निर्माण (कई संभव में से एक) के लिए किया जाता है। इस मामले में प्रासंगिक धारणा कुएस्ता-दुतारी कट है,<ref name="Alling">{{cite book | last = Alling | first = Norman L. | title = वास्तविक संख्या क्षेत्रों पर विश्लेषण की नींव| publisher = North-Holland | series = Mathematics Studies 141 | year = 1987 | isbn = 0-444-70226-1}}</ref> स्पेनिश गणितज्ञ के नाम पर {{Ill|Norberto Cuesta Dutari|es}}. | डेडेकिंड कट्स के समान एक निर्माण का उपयोग वास्तविक संख्याओं के निर्माण (कई संभव में से एक) के लिए किया जाता है। इस मामले में प्रासंगिक धारणा कुएस्ता-दुतारी कट है,<ref name="Alling">{{cite book | last = Alling | first = Norman L. | title = वास्तविक संख्या क्षेत्रों पर विश्लेषण की नींव| publisher = North-Holland | series = Mathematics Studies 141 | year = 1987 | isbn = 0-444-70226-1}}</ref> स्पेनिश गणितज्ञ के नाम पर {{Ill|Norberto Cuesta Dutari|es}}. | ||
=== आंशिक रूप से आदेशित | === आंशिक रूप से आदेशित समुच्चय === | ||
{{Main|Dedekind–MacNeille completion}} | {{Main|Dedekind–MacNeille completion}} | ||
अधिक आम तौर पर, यदि एस आंशिक रूप से आदेश दिया गया [[सबसेट]] है, तो एस के पूरा होने का अर्थ है एल में एस के ऑर्डर-एम्बेडिंग के साथ एक [[पूर्ण जाली]] एल। पूर्ण जाली की धारणा वास्तविक की कम से कम ऊपरी-बाध्य संपत्ति को सामान्यीकृत करती है। | अधिक आम तौर पर, यदि एस आंशिक रूप से आदेश दिया गया [[सबसेट|सबसमुच्चय]] है, तो एस के पूरा होने का अर्थ है एल में एस के ऑर्डर-एम्बेडिंग के साथ एक [[पूर्ण जाली]] एल। पूर्ण जाली की धारणा वास्तविक की कम से कम ऊपरी-बाध्य संपत्ति को सामान्यीकृत करती है। | ||
S का एक पूरा होना इसके नीचे की ओर बंद उपसमुच्चय का समुच्चय है, जो उपसमुच्चय द्वारा क्रमित है। एक संबंधित पूर्णता जो S के सभी मौजूदा सुपर और infs को संरक्षित करती है, निम्नलिखित निर्माण द्वारा प्राप्त की जाती है: S के प्रत्येक उपसमुच्चय A के लिए, A को<sup>u</sup> A की ऊपरी सीमा के समुच्चय को निरूपित करता है, और मान लीजिए A<sup>l</sup> A की निचली सीमा के | S का एक पूरा होना इसके नीचे की ओर बंद उपसमुच्चय का समुच्चय है, जो उपसमुच्चय द्वारा क्रमित है। एक संबंधित पूर्णता जो S के सभी मौजूदा सुपर और infs को संरक्षित करती है, निम्नलिखित निर्माण द्वारा प्राप्त की जाती है: S के प्रत्येक उपसमुच्चय A के लिए, A को<sup>u</sup> A की ऊपरी सीमा के समुच्चय को निरूपित करता है, और मान लीजिए A<sup>l</sup> A की निचली सीमा के समुच्चय को दर्शाता है। (ये ऑपरेटर एक [[गाल्वा कनेक्शन]] बनाते हैं।) फिर S के डेडेकिंड-मैकनील समापन में सभी सबसमुच्चय A होते हैं जिसके लिए (A<sup>में</sup>)<sup>एल </सुप> = ए; इसे शामिल करने का आदेश दिया गया है। Dedekind-MacNeille पूर्णता इसमें एम्बेडेड S के साथ सबसे छोटी पूर्ण जाली है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 83: | Line 83: | ||
*अंक शास्त्र | *अंक शास्त्र | ||
*एक | *एक समुच्चय का विभाजन | ||
*वास्तविक संख्या का निर्माण | *वास्तविक संख्या का निर्माण | ||
*रैखिक निरंतरता | *रैखिक निरंतरता | ||
*पूरी तरह से आदेशित | *पूरी तरह से आदेशित समुच्चय | ||
*पूर्णता (आदेश सिद्धांत) | *पूर्णता (आदेश सिद्धांत) | ||
*आंशिक रूप से आदेशित | *आंशिक रूप से आदेशित समुच्चय | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{springer|title=Dedekind cut|id=p/d030530}} | * {{springer|title=Dedekind cut|id=p/d030530}} |
Revision as of 11:17, 9 December 2022
गणित में, डेडेकिंड कट, जर्मन गणितज्ञ रिचर्ड डेडेकिंड के नाम से जाना जाता है लेकिन इनसे पहले डेडेकिंड कट को जोसेफ बर्ट्रेंड द्वारा जाना जाता था,[1][2] परिमेय संख्याओं से वास्तविक संख्याओं के निर्माण की एक विधि है। डेडेकाइंड कट परिमेय संख्याओं के दो समुच्चयों A और B में परिमेय संख्याओं का विभाजन है, जैसे कि A के सभी तत्व B के सभी तत्वों से कम हैं, और A में कोई सबसे बड़ा तत्व नहीं है। समुच्चय B में परिमेय के बीच सबसे छोटा तत्व हो सकता है या नहीं भी हो सकता है। यदि परिमेय में B का सबसे छोटा तत्व है, तो कट उस परिमेय के समान होती है। अन्यथा, वह कट एक अद्वितीय अपरिमेय संख्या को परिभाषित करता है, जो शिथिल रूप से बोलना, A और B के बीच के अंतर को भरता है।[3] दूसरे शब्दों में, A में कट से कम प्रत्येक परिमेय संख्या होती है, और B में कट से अधिक या उसके बराबर प्रत्येक परिमेय संख्या होती है। एक अपरिमेय कट एक अपरिमेय संख्या के बराबर होती है जो न तो समुच्चय में होती है। प्रत्येक वास्तविक संख्या, परिमेय हो या नहीं, परिमेय के एक और केवल एक कट के बराबर होती है।[3]
डेडेकाइंड कट्स को परिमेय संख्याओं से किसी भी पूरी तरह से सुव्यवस्थित किए गए समुच्चय तक सामान्यीकृत किया जा सकता है, डेडेकिंड कट को दो गैर-खाली भागों A और B में पूरी तरह से ऑर्डर किए गए समुच्चय के विभाजन के रूप में परिभाषित किया जा सकता है, जैसे कि A नीचे की ओर बंद है (जिसका अर्थ है कि सभी A में ए, एक्स ≤ A का तात्पर्य है कि एक्स A में भी है) और B ऊपर की तरफ बंद है, और A में कोई सबसे बड़ा तत्व नहीं है। पूर्णता भी देखें (आदेश सिद्धांत)।
यह दिखाना सीधा है कि वास्तविक संख्याओं के बीच एक डेडेकाइंड कट को विशिष्ट रूप से परिमेय संख्याओं के बीच संबंधित कट द्वारा परिभाषित किया गया है। इसी तरह, वास्तविक का प्रत्येक कट एक विशिष्ट वास्तविक संख्या (जिसे B समुच्चय के सबसे छोटे तत्व के रूप में पहचाना जा सकता है) द्वारा निर्मित कट के समान है। दूसरे शब्दों में, संख्या रेखा जहां प्रत्येक वास्तविक संख्या को परिमेय के डेडेकिंड कट के रूप में परिभाषित किया जाता है, बिना किसी और अंतराल के एक पूर्ण मीट्रिक स्थान रैखिक सातत्य है।
परिभाषा
डेडेकाइंड कट तर्कसंगत का विभाजन है दो उपसमूहों में तथा ऐसा है कि
- खाली नहीं है।
- (समान रूप से, खाली नहीं है)।
- यदि , , तथा , फिर . ( नीचे बंद है।)
- यदि , तो वहाँ एक मौजूद है ऐसा है कि . ( सबसे बड़ा तत्व नहीं है।)
पहली दो आवश्यकताओं को छोड़ कर, हम औपचारिक रूप से विस्तारित वास्तविक संख्या रेखा प्राप्त करते हैं।
प्रतिनिधित्व
डेडेकिंड कट के लिए (ए, बी) संकेतन का उपयोग करना अधिक सममित है, लेकिन A और B में से प्रत्येक दूसरे को निर्धारित करता है। यह एक सरलीकरण हो सकता है, संकेतन के संदर्भ में, यदि अधिक कुछ नहीं, एक आधे पर ध्यान केंद्रित करने के लिए - कहें, निचला एक - और किसी भी नीचे की ओर बंद समुच्चय A को सबसे बड़े तत्व के बिना डेडेकाइंड कट कहा जाता है।
यदि क्रमित समुच्चय S पूर्ण है, तो, S के प्रत्येक Dedekind कट (A, B) के लिए, समुच्चय B में न्यूनतम अवयव b होना चाहिए, इसलिए हमारे पास यह होना चाहिए कि A अंतराल (गणित) (−∞, b), और B अंतराल [b, +∞) है। इस मामले में, हम कहते हैं कि b को कट (A, B) द्वारा दर्शाया गया है।
डेडेकाइंड कट का महत्वपूर्ण उद्देश्य उन संख्या समुच्चयों के साथ काम करना है जो पूर्ण नहीं हैं। कट स्वयं संख्याओं के मूल संग्रह में नहीं एक संख्या का प्रतिनिधित्व कर सकता है (अक्सर तर्कसंगत संख्याएं)। कट एक संख्या b का प्रतिनिधित्व कर सकता है, भले ही दो समुच्चय A और B में निहित संख्या में वास्तव में वह संख्या b शामिल नहीं है जो उनका कट दर्शाता है।
उदाहरण के लिए यदि A और B में केवल परिमेय संख्याएँ हैं, तब भी उन्हें काटा जा सकता है √2 प्रत्येक ऋणात्मक परिमेय संख्या को A में, प्रत्येक गैर-ऋणात्मक संख्या जिसका वर्ग 2 से कम है, के साथ रखकर; इसी प्रकार B में प्रत्येक धनात्मक परिमेय संख्या होगी जिसका वर्ग 2 से अधिक या उसके बराबर है। भले ही इसके लिए कोई परिमेय मान नहीं है √2, यदि परिमेय संख्याओं को इस प्रकार A और B में विभाजित किया जाता है, तो विभाजन स्वयं एक अपरिमेय संख्या का प्रतिनिधित्व करता है।
कट का आदेश
एक डेडेकाइंड कट (ए, बी) के संबंध में एक और डेडेकिंड कट (सी, D ) (उसी सुपर समुच्चय के) से कम है यदि A Cका एक उचित उपसमूह है। समतुल्य रूप से, यदि D B का एक उचित उपसमुच्चय है, तो कट (ए) , बी) फिर से (सी, D ) से कम है। इस तरह, संख्याओं के क्रम का प्रतिनिधित्व करने के लिए समुच्चय समावेशन का उपयोग किया जा सकता है, और अन्य सभी संबंध (इससे अधिक, से कम या बराबर, बराबर, और इसी तरह) समुच्चय संबंधों से समान रूप से बनाए जा सकते हैं।
सभी डेडेकाइंड कट्स का समुच्चय अपने आप में एक रैखिक रूप से ऑर्डर किया गया समुच्चय (समुच्चय का) है। इसके अलावा, डेडेकाइंड कट्स के समुच्चय में सबसे कम से कम ऊपरी बाध्य संपत्ति होती है, यानी, इसका हर गैर-खाली उपसमुच्चय जिसकी कोई ऊपरी सीमा होती है, उसकी ऊपरी सीमा कम से कम होती है। इस प्रकार, डेडेकाइंड कट्स के समुच्चय का निर्माण मूल ऑर्डर किए गए समुच्चय एस को एम्बेड करने के उद्देश्य से कार्य करता है, जिसमें कम से कम-ऊपरी-बाध्य संपत्ति नहीं हो सकती है, (आमतौर पर बड़ा) रैखिक रूप से आदेशित समुच्चय के भीतर यह उपयोगी संपत्ति होती है।
वास्तविक संख्या का निर्माण
परिमेय संख्याओं का एक प्रारूपिक डेडेकिंड कट विभाजन द्वारा दिया गया है साथ
यह कट अपरिमेय संख्या का प्रतिनिधित्व करता है √2 डेडेकिंड के निर्माण में। आवश्यक विचार यह है कि हम एक समुच्चय का उपयोग करते हैं , जो संख्या का प्रतिनिधित्व करने के लिए सभी परिमेय संख्याओं का समूह है, जिनके वर्ग 2 से कम हैं √2, और आगे, इन समुच्चयों (जोड़, घटाव, गुणा और भाग) पर ठीक से अंकगणितीय संकारकों को परिभाषित करके, ये समुच्चय (इन अंकगणितीय संक्रियाओं के साथ) परिचित वास्तविक संख्याएँ बनाते हैं।
इसे स्थापित करने के लिए, उसे दिखाना होगा वास्तव में एक कट (परिभाषा के अनुसार) और का वर्ग है , वह है (कृपया कट्स के गुणन को कैसे परिभाषित किया जाता है, इसकी सटीक परिभाषा के लिए ऊपर दिए गए लिंक को देखें), है (ध्यान दें कि इस नंबर 2 को सख्ती से बोलते हुए कट द्वारा दर्शाया गया है ). पहले भाग को दिखाने के लिए, हम दिखाते हैं कि किसी भी सकारात्मक तर्कसंगत के लिए साथ , एक तर्कसंगत है साथ तथा . विकल्प काम करता है, इस प्रकार वास्तव में एक कट है। अब कट के बीच गुणन से लैस, यह जांचना आसान है (अनिवार्य रूप से, यह इसलिए है क्योंकि ). इसलिए दिखाना है , हम दिखाते हैं , और यह किसी के लिए भी दिखाने के लिए पर्याप्त है , वहां मौजूद , . इसके लिए हम देखते हैं कि अगर , फिर के लिए ऊपर निर्मित, इसका मतलब है कि हमारे पास एक अनुक्रम है जिसका वर्ग मनमाने ढंग से निकट हो सकता है , जो प्रमाण को समाप्त करता है।
ध्यान दें कि समानता b2 = 2 धारण नहीं कर सकता क्योंकि 2# का वर्गमूल तर्कहीनता का प्रमाण है√2 तर्कसंगत नहीं है।
अंतराल अंकगणित से संबंध
वास्तविक संख्या का प्रतिनिधित्व करने वाला डेडेकिंड कट दिया गया है परिमेय को विभाजित करके जहां तर्कसंगत है से कम हैं और तर्कसंगत में से अधिक हैं , इसे समान रूप से जोड़े के समुच्चय के रूप में दर्शाया जा सकता है साथ तथा , निचले कट और ऊपरी कट अनुमानों द्वारा दिए जा रहे हैं। यह अनुमानित अंतराल के समुच्चय के बिल्कुल अनुरूप है .
यह अंतराल अंकगणितीय के संदर्भ में वास्तविक संख्याओं पर मूल अंकगणितीय संचालन को परिभाषित करने की अनुमति देता है। यह संपत्ति और वास्तविक संख्या के साथ इसका संबंध केवल के संदर्भ में दिया गया है तथा कमजोर नींवों जैसे रचनात्मक विश्लेषण में विशेष रूप से महत्वपूर्ण है।
सामान्यीकरण
मनमाना रैखिक रूप से आदेशित समुच्चय
मनमाने ढंग से क्रमबद्ध समुच्चय एक्स के सामान्य मामले में, 'कट' एक जोड़ी है ऐसा है कि तथा , मतलब . कुछ लेखक इस आवश्यकता को जोड़ते हैं कि A और B दोनों गैर-खाली हैं।[5] यदि न तो A का अधिकतम है और न ही B का न्यूनतम, तो कट को 'अंतर' कहा जाता है। ऑर्डर टोपोलॉजी के साथ संपन्न एक रैखिक रूप से आदेशित समुच्चय कॉम्पैक्ट है अगर और केवल अगर इसमें कोई अंतर नहीं है।[6]
असली संख्या
डेडेकिंड कट्स के समान एक निर्माण का उपयोग वास्तविक संख्याओं के निर्माण (कई संभव में से एक) के लिए किया जाता है। इस मामले में प्रासंगिक धारणा कुएस्ता-दुतारी कट है,[7] स्पेनिश गणितज्ञ के नाम पर Norberto Cuesta Dutari .
आंशिक रूप से आदेशित समुच्चय
अधिक आम तौर पर, यदि एस आंशिक रूप से आदेश दिया गया सबसमुच्चय है, तो एस के पूरा होने का अर्थ है एल में एस के ऑर्डर-एम्बेडिंग के साथ एक पूर्ण जाली एल। पूर्ण जाली की धारणा वास्तविक की कम से कम ऊपरी-बाध्य संपत्ति को सामान्यीकृत करती है।
S का एक पूरा होना इसके नीचे की ओर बंद उपसमुच्चय का समुच्चय है, जो उपसमुच्चय द्वारा क्रमित है। एक संबंधित पूर्णता जो S के सभी मौजूदा सुपर और infs को संरक्षित करती है, निम्नलिखित निर्माण द्वारा प्राप्त की जाती है: S के प्रत्येक उपसमुच्चय A के लिए, A कोu A की ऊपरी सीमा के समुच्चय को निरूपित करता है, और मान लीजिए Al A की निचली सीमा के समुच्चय को दर्शाता है। (ये ऑपरेटर एक गाल्वा कनेक्शन बनाते हैं।) फिर S के डेडेकिंड-मैकनील समापन में सभी सबसमुच्चय A होते हैं जिसके लिए (Aमें)एल </सुप> = ए; इसे शामिल करने का आदेश दिया गया है। Dedekind-MacNeille पूर्णता इसमें एम्बेडेड S के साथ सबसे छोटी पूर्ण जाली है।
टिप्पणियाँ
- ↑ Bertrand, Joseph (1849). अंकगणित पर ग्रंथ. page 203.
एक अतुलनीय संख्या को केवल यह इंगित करके परिभाषित किया जा सकता है कि एकता के माध्यम से यह कैसे व्यक्त किया जा सकता है। निम्नलिखित में, हम मानते हैं कि इस परिभाषा में यह इंगित करना शामिल है कि कौन सी आनुपातिक संख्याएँ इससे छोटी या बड़ी हैं ....
- ↑ Spalt, Detlef (2019). विश्लेषण का एक संक्षिप्त इतिहास. Springer. doi:10.1007/978-3-662-57816-2. ISBN 978-3-662-57815-5.
- ↑ 3.0 3.1 Dedekind, Richard (1872). निरंतरता और अपरिमेय संख्या (PDF). Section IV.
जब भी, हमें बिना किसी तर्कसंगत संख्या के उत्पन्न कट के साथ करना होता है, तो हम एक नई 'तर्कहीन' संख्या बनाते हैं, जिसे हम इस कट द्वारा पूरी तरह से परिभाषित मानते हैं ...। अब से, इसलिए, प्रत्येक निश्चित कट के लिए एक निश्चित परिमेय या अपरिमेय संख्या होती है ....
- ↑ In the second line, may be replaced by without any difference as there is no solution for in and is already forbidden by the first condition. This results in the equivalent expression
- ↑ R. Engelking, General Topology, I.3
- ↑ Jun-Iti Nagata, Modern General Topology, Second revised edition, Theorem VIII.2, p. 461. Actually, the theorem holds in the setting of generalized ordered spaces, but in this more general setting pseudo-gaps should be taken into account.
- ↑ Alling, Norman L. (1987). वास्तविक संख्या क्षेत्रों पर विश्लेषण की नींव. Mathematics Studies 141. North-Holland. ISBN 0-444-70226-1.
संदर्भ
- Dedekind, Richard, Essays on the Theory of Numbers, "Continuity and Irrational Numbers," Dover Publications: New York, ISBN 0-486-21010-3. Also available at Project Gutenberg.
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- एक समुच्चय का विभाजन
- वास्तविक संख्या का निर्माण
- रैखिक निरंतरता
- पूरी तरह से आदेशित समुच्चय
- पूर्णता (आदेश सिद्धांत)
- आंशिक रूप से आदेशित समुच्चय
बाहरी संबंध
- "Dedekind cut", Encyclopedia of Mathematics, EMS Press, 2001 [1994]