शंकु: Difference between revisions

From Vigyanwiki
(modify)
No edit summary
 
(49 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{short description|Geometric shape}}
{{short description|Geometric shape}}
{{other uses|Cone (disambiguation)}}{{distinguish|Conical surface}}
[[File:Cone 3d.png|thumb|250px|right|एक लम्ब वृत्तीय शंकु और एक तिरछा वृत्तीय शंकु]]
[[File:Cone 3d.png|thumb|250px|right|एक लम्ब वृत्तीय शंकु और एक तिरछा वृत्तीय शंकु]]
[[File:DoubleCone.png|thumb|right|एक दोहरा शंकु (असीम रूप से विस्तारित नहीं दिखाया गया है)]]
[[File:DoubleCone.png|thumb|right|एक दोहरा शंकु (असीम रूप से विस्तारित नहीं दिखाया गया है)]]
[[File:Cono 3D.stl|thumb|एक शंकु का 3डी मॉडल]]
'''शंकु''' (cone), एक त्रि-आयामी(त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि यह आधार वृत्त ही हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है|


शंकु रेखा खंडों, अर्ध-रेखाओं का समूह, या एक सामान्य बिंदु से शीर्ष को जोड़ने वाली रेखाओं के समूह द्वारा एक आधार पर सभी बिंदुओं से बनता है और एक तल  में होता है जिसमें शीर्ष नहीं होता है। लेखक के आधार पर, आधार को एक वृत्त, समतल में कोई एक-आयामी द्विघात रूप, किसी भी बंद एक आयामी आंकड़ा, या उपरोक्त में से कोई भी संलग्न बिंदुओं  तक सीमित किया जा सकता है। यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस वस्तु की तरह है; अन्यथा यह [[ त्रि-आयामी अंतरिक्ष | त्रि-आयामी स्थल]] में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को ''पार्श्व सतह'' कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक शंक्वाकार सतह होती है।
'''शंकु''', त्रि-आयामी (त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है|


रेखाखंडों के मामले में, शंकु आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह असीम रूप से दूर तक फैला होता है। रेखाओं के मामले में, शंकु शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है।{{anchor|Double}}. शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है।
एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप,  एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता हैl यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप,  एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता है lवस्तु की तरह है, अन्यथा यह [[ त्रि-आयामी अंतरिक्ष | त्रि-आयामी स्थल]] में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को ''पार्श्व सतह'' कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक [https://en.wikipedia.org/wiki/Conical_surface'''शंक्वाकार सतह''']  होती है।


एक शंकु की धुरी शीर्ष से गुजरने वाली सीधी रेखा (यदि कोई हो) है, जिसके बारे में आधार (और पूरे शंकु) में एक गोलाकार समरूपता है।
शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है।


प्राथमिक ज्यामिति में सामान्य उपयोग में, शंकु को 'सम वृत्ताकार' माना जाता है, जहाँ वृत्ताकार का अर्थ है कि आधार एक वृत्त है और दाएँ का अर्थ है कि अक्ष आधार के केंद्र से समकोण पर उसके तल से होकर गुजरता है।<ref name=":1 >{{Cite book|url=https://books.google.com/books?id=UyIfgBIwLMQC|title=The Mathematics Dictionary|last=James|first=R. C.|last2=James|first2=Glenn|date=1992-07-31|publisher=Springer Science & Business Media|isbn=9780412990410|pages=74–75|language=en}}</ref>यदि शंकु सम वृत्ताकार है तो पार्श्व सतह वाले समतल का प्रतिच्छेदन एक शंकु खंड है। सामान्य तौर पर, हालांकि, आधार किसी भी आकार का हो सकता है<ref name="grunbaum">ग्रुनबाम, उत्तल पॉलीटोप्स, दूसरा संस्करण, पी। 23.</ref>और शीर्ष कहीं भी स्थित हो सकता है (हालांकि आमतौर पर यह माना जाता है कि आधार घिरा हुआ है और इसलिए इसका परिमित क्षेत्र है, और शीर्ष आधार के तल के बाहर स्थित है)। दाएं शंकु के विपरीत तिरछे शंकु होते हैं, जिसमें अक्ष आधार के केंद्र से गैर-लंबवत रूप से गुजरता है।<ref name="MathWorld">{{MathWorld |urlname=Cone |title=Cone}}</ref>  
शंकु की धुरी शीर्ष से गुजरने वाली सीधी रेखा (यदि कोई हो) होती है, जिसके आस पास आधार (पुरा शंकु) सम वृत्ताकार होता है।
एक बहुभुज आधार वाले शंकु को पिरामिड कहा जाता है।
 
प्राथमिक ज्यामिति के सामान्य उपयोग में, शंकु को ' सम वृत्ताकार ' माना जाता है, यहाँ वृत्ताकार का अर्थ है कि आधार एक वृत्त है और यथार्थ रूप से (लंबवत का अर्थ है कि) अक्ष आधार के केंद्र से समकोण पर उसके तल से होकर गुजरता है।<ref name=":1 >{{Cite book|url=https://books.google.com/books?id=UyIfgBIwLMQC|title=The Mathematics Dictionary|last=James|first=R. C.|last2=James|first2=Glenn|date=1992-07-31|publisher=Springer Science & Business Media|isbn=9780412990410|pages=74–75|language=en}}</ref> यदि शंकु सम वृत्ताकार है तो पार्श्व सतह वाले समतल का प्रतिच्छेदन एक शंकु खंड है। सामान्य तौर पर, आधार किसी भी आकार का हो सकता है<ref name="grunbaum">ग्रुनबाम, उत्तल पॉलीटोप्स, दूसरा संस्करण, पी। 23.</ref> और शीर्ष कहीं भी स्थित हो सकता है (हालांकि आमतौर पर यह माना जाता है कि आधार घिरा हुआ है और इसलिए इसका परिमित [[:en:Area|क्षेत्र]] है, और शीर्ष आधार के तल के बाहर स्थित है)। वासत्विक शंकु के विपरीत तिरछे शंकु होते हैं, जिसमें अक्ष आधार के केंद्र से गैर-लंबवत रूप से गुजरता है।<ref name="MathWorld">{{MathWorld |urlname=Cone |title=Cone}}</ref> एक बहुभुज आधार वाले शंकु को [[पिरामिड]] कहा जाता है।


संदर्भ के आधार पर, शंकु का अर्थ विशेष रूप से उत्तल शंकु या प्रक्षेपी शंकु भी हो सकता है।
संदर्भ के आधार पर, शंकु का अर्थ विशेष रूप से उत्तल शंकु या प्रक्षेपी शंकु भी हो सकता है।
Line 20: Line 17:
शंकु को उच्च आयामों के लिए भी सामान्यीकृत किया जा सकता है।
शंकु को उच्च आयामों के लिए भी सामान्यीकृत किया जा सकता है।


== आगे की शब्दावली ==
== आगे की शब्दावली (फरदर टर्मिनोलॉजी) ==
एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स कहा जाता है, और डायरेक्ट्रिक्स और एपेक्स के बीच का प्रत्येक लाइन सेगमेंट पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।)
एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स [https://en.wikipedia.org/wiki/Conic_section#Eccentricity.2C_focus_and_directrix|'''डायरेक्ट्रिक्स'''] कहा जाता है, और शिखर के बीच का प्रत्येक रेखा खंड पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।)
 
एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है; अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है; यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है।
फ़ाइल: एक्टा एरुडिटोरम - I जियोमेट्रिया, 1734 - BEIC 13446956.jpg|thumb|एक्टा एरुडिटोरम, 1734 . में प्रकाशित प्रॉब्लम मैथमैटिका से चित्रण...
एक शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, एक छोटा शंकु कहलाता है; यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।<ref name=":1 /> एक अण्डाकार शंकु एक अण्डाकार आधार वाला शंकु होता है।<ref name=":1 /> एक सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)।
 
== माप और समीकरण ==
<!--सूत्र सही हैं। कृपया संपादन से पहले अपने काम की जांच करें। --><!--कृपया प्रूफ़ और व्युत्पत्तियों को शंकु (ज्यामिति) प्रूफ़ में डालें -->


 
एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, छोटा शंकु कहलाता है, यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।<ref name=":1 />दीर्घवृत्ताकार शंकु एक दीर्घवृत्ताकार आधार वाला शंकु होता है।<ref name=":1 />सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)।
 
== माप और समीकरण (मैसरमेंट्स एंड  एक्वेशन्स ) ==
=== वॉल्यूम ===
=== आयतन ===
आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref>  
आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref>  
:<math>V = \frac{1}{3}A_B h.</math>
:<math>V = \frac{1}{3}A_B h.</math>
आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल <math display= block >\int x^2 dx = \tfrac{1}{3} x^3</math> है। कैलकुलस का उपयोग किए बिना, सूत्र को एक पिरामिड से शंकु की तुलना करके और कैवेलियरी के सिद्धांत को लागू करके सिद्ध किया जा सकता है - विशेष रूप से, शंकु की तुलना एक (लंबवत स्केल किए गए) दाहिने वर्ग पिरामिड से की जाती है, जो एक घन का एक तिहाई बनाता है। इस सूत्र को ऐसे अनंतिम तर्कों का उपयोग किए बिना सिद्ध नहीं किया जा सकता है - पॉलीहेड्रल क्षेत्र के लिए 2-आयामी फ़ार्मुलों के विपरीत, हालांकि सर्कल के क्षेत्र के समान - और इसलिए कैलकुस के आगमन से पहले कम कठोर सबूत स्वीकार किए जाते हैं, प्राचीन यूनानियों द्वारा विधि का उपयोग करते हुए थकावट। यह अनिवार्य रूप से हिल्बर्ट की तीसरी समस्या की सामग्री है - अधिक सटीक रूप से, सभी पॉलीहेड्रल पिरामिड कैंची सर्वांगसम नहीं हैं (इसे परिमित टुकड़ों में काटा जा सकता है और दूसरे में पुनर्व्यवस्थित किया जा सकता है), और इस प्रकार एक अपघटन तर्क का उपयोग करके मात्रा की गणना विशुद्ध रूप से नहीं की जा सकती है -।<ref>{{Cite book|url=https://books.google.com/books?id=C5fSBwAAQBAJ|title=Geometry: Euclid and Beyond|last=Hartshorne|first=Robin|date=2013-11-11|publisher=Springer Science & Business Media|isbn=9780387226767|at=Chapter 27|language=en}} </ref>
आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल है। <math display= block >\int x^2 dx = \tfrac{1}{3} x^3</math> कैलकुलस का उपयोग किए बिना, सूत्र को एक पिरामिड से शंकु की तुलना करके और कैवेलियरी के सिद्धांत को लागू करके सिद्ध किया जा सकता है - विशेष रूप से, शंकु की तुलना एक (लंबवत स्केल) लम्ब वर्गाकार पिरामिड से की जाती है, जो एक घन का एक तिहाई बनाता है। इस सूत्र को ऐसे अनंतिम तर्कों का उपयोग किए बिना सिद्ध नहीं किया जा सकता है - उसके लिए पॉलीहेड्रल क्षेत्र के 2-आयामी फ़ार्मुलों के विपरीत, यद्यपि सर्कल के क्षेत्र के समान - और इसलिए कैलकुस के आगमन से पहले , प्राचीन यूनानियों द्वारा क्षय विधि (एक्सहस्शन मेथड) का उपयोग करते हुए कमजोर सबूत स्वीकार किए गए। यह तत्त्वतः हिल्बर्ट की तीसरी समस्या की विषय वस्तु है - अधिक सटीक रूप से, सभी पॉलीहेड्रल पिरामिड सीज़र्स कांग्रएन्ट नहीं हैं (इसे परिमित टुकड़ों में काटा जा सकता है और दूसरे में पुनर्व्यवस्थित किया जा सकता है), और इस प्रकार एक अपघटन तर्क का उपयोग करके मात्रा की गणना विशुद्ध रूप से नहीं की जा सकती है -।<ref>{{Cite book|url=https://books.google.com/books?id=C5fSBwAAQBAJ|title=Geometry: Euclid and Beyond|last=Hartshorne|first=Robin|date=2013-11-11|publisher=Springer Science & Business Media|isbn=9780387226767|at=Chapter 27|language=en}} </ref>


=== द्रव्यमान का केंद्र ===
=== द्रव्यमान का केंद्र (सेंटर ऑफ़ मास) ===
एकसमान घनत्व वाले एक शंकु ठोस के द्रव्यमान का केंद्र आधार के केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है।
एकसमान घनत्व वाले ठोस शंकु का द्रव्यमान केंद्र, आधार केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है।


=== दायां गोलाकार शंकु ===
=== लम्ब वृत्तीय शंकु (राइट सर्कुलर कोन) ===


==== वॉल्यूम ====
==== आयतन (वॉल्यूम) ====
त्रिज्या r और ऊँचाई h वाले एक वृत्ताकार शंकु के लिए, आधार क्षेत्रफल का एक वृत्त है <math>\pi r^2</math> और इसलिए आयतन का सूत्र बन जाता है<ref>{{Cite book|url=https://books.google.com/books?id=hMY8lbX87Y8C|title=Calculus: Single Variable|last=Blank|first=Brian E.|last2=Krantz|first2=Steven George|date=2006-01-01|publisher=Springer Science & Business Media|isbn=9781931914598|at=Chapter 8|language=en}}</ref>
त्रिज्या r और ऊँचाई h वाले एक वृत्ताकार शंकु के लिए, आधार क्षेत्रफल का एक वृत्त है <math>\pi r^2</math> और इसलिए आयतन का सूत्र बन जाता है<ref>{{Cite book|url=https://books.google.com/books?id=hMY8lbX87Y8C|title=Calculus: Single Variable|last=Blank|first=Brian E.|last2=Krantz|first2=Steven George|date=2006-01-01|publisher=Springer Science & Business Media|isbn=9781931914598|at=Chapter 8|language=en}}</ref>


:<math>V = \frac{1}{3} \pi r^2 h. </math>
:<math>V = \frac{1}{3} \pi r^2 h. </math>


==== तिरछी ऊंचाई ====
==== तिर्यक् ऊंचाई (स्लांट हाइट) ====
एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह द्वारा दिया गया है <math>\sqrt{r^2+h^2}</math>, कहाँ पे <math>r</math> आधार की त्रिज्या है और <math>h</math> ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है।
एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह <math>\sqrt{r^2+h^2}</math> द्वारा दिया गया है, जहां पे <math>r</math> आधार की त्रिज्या है और <math>h</math> ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है।


==== भूतल क्षेत्र ====
==== भूतल क्षेत्र (सरफेस एरिया) ====
एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है <math>LSA = \pi r l</math> कहाँ पे <math>r</math> शंकु के तल पर वृत्त की त्रिज्या है और <math>l</math> शंकु की तिर्यक ऊँचाई है।<ref name=":0 /> एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के समान होता है, <math>\pi r^2</math>. इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है:
एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है <math>LSA = \pi r l</math> जहां पे <math>r</math> शंकु के तल पर वृत्त की त्रिज्या है और <math>l</math> शंकु की तिर्यक ऊँचाई है।<ref name=":0 /> एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के क्षेत्रफल <math>\pi r^2</math> के समान होता है इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है:


*त्रिज्या और ऊंचाई
*त्रिज्या और ऊंचाई
:<math>\pi r^2+\pi r \sqrt{r^2+h^2}</math>
:<math>\pi r^2+\pi r \sqrt{r^2+h^2}</math>
:(आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; पद <math>\sqrt{r^2+h^2}</math> तिरछी ऊंचाई है)
:(आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; यहाँ पे <math>\sqrt{r^2+h^2}</math> तिरछी ऊंचाई है)


:<math>\pi r \left(r + \sqrt{r^2+h^2}\right)</math>
:<math>\pi r \left(r + \sqrt{r^2+h^2}\right)</math>
:कहाँ पे <math>r</math> त्रिज्या है और <math>h</math> ऊंचाई है।
:यहाँ  पे <math>r</math> त्रिज्या है और <math>h</math> ऊंचाई है।


*त्रिज्या और तिरछी ऊंचाई
*त्रिज्या और तिर्यक् ऊंचाई
:<math>\pi r^2+\pi r l</math>
:<math>\pi r^2+\pi r l</math>
:<math>\pi r(r+l)</math>
:<math>\pi r(r+l)</math>
:कहाँ पे <math>r</math> त्रिज्या है और <math>l</math> तिरछी ऊंचाई है।
:यहाँ  पे <math>r</math> त्रिज्या है और <math>l</math> तिरछी ऊंचाई है।


*परिधि और तिरछी ऊंचाई
*परिधि और तिर्यक् ऊंचाई
:<math>\frac {c^2} {4 \pi} + \frac {cl} 2</math>
:<math>\frac {c^2} {4 \pi} + \frac {cl} 2</math>
:<math>\left(\frac c 2\right)\left(\frac c {2\pi} + l\right)</math>
:<math>\left(\frac c 2\right)\left(\frac c {2\pi} + l\right)</math>
:कहाँ पे <math>c</math> परिधि है और <math>l</math> तिरछी ऊंचाई है।
:यहाँ पे <math>c</math> परिधि है और <math>l</math> तिर्यक् ऊंचाई है।


*शीर्ष कोण और ऊंचाई
*शीर्ष कोण और ऊंचाई
:<math>\pi h^2 \tan \frac{\Theta}{2} \left(\tan \frac{\Theta}{2} + \sec \frac{\Theta}{2}\right)</math>
:<math>\pi h^2 \tan \frac{\Theta}{2} \left(\tan \frac{\Theta}{2} + \sec \frac{\Theta}{2}\right)</math>
:कहाँ पे <math> \Theta </math> शीर्ष कोण है और <math>h</math> ऊंचाई है।
:यहाँ  पे <math> \Theta </math> शीर्ष कोण है और <math>h</math> ऊंचाई है।


==== सर्कुलर सेक्टर ====
==== परिपत्र क्षेत्र (सर्कुलर सेक्टर) ====
शंकु के एक लंगोट की सतह को खोलकर प्राप्त वृत्ताकार त्रिज्यखंड में है:
शंकु के घाटिका की सतह को खोलकर प्राप्त वृत्त में त्रिज्यखंड होता है, जो कि निम्नांकित है.....


*त्रिज्या आर
*त्रिज्या R
:<math>R = \sqrt{r^2+h^2}</math>
:<math>R = \sqrt{r^2+h^2}</math>
*चाप की लंबाई L
*चाप की लंबाई L
Line 84: Line 74:
:<math>\phi = \frac{L}{R} = \frac{2\pi r}{\sqrt{r^2+h^2}}</math>
:<math>\phi = \frac{L}{R} = \frac{2\pi r}{\sqrt{r^2+h^2}}</math>


==== समीकरण रूप ====
==== समीकरण रूप (एक्वेशन्स फॉर्म) ====


एक शंकु की सतह के रूप में पैरामीटर किया जा सकता है
शंकु की सतह को  संप्रेषित (पैरामीटर) किया जा सकता है. जो कि निम्नांकित है.....
:<math>f(\theta,h) = (h \cos\theta, h \sin\theta, h ),</math>
:<math>f(\theta,h) = (h \cos\theta, h \sin\theta, h ),</math>
कहाँ पे <math>\theta \in [0,2\pi)</math> शंकु के चारों ओर का कोण है, और <math>h \in \mathbb{R}</math> शंकु के साथ ऊंचाई है।
:यहाँ पे <math>\theta \in [0,2\pi)</math> शंकु के चारों ओर का कोण है, और <math>h \in \mathbb{R}</math> शंकु के साथ ऊंचाई है।
 
ऊंचाई के साथ लम्ब गोलाकार शंकु <math>h</math> और एपर्चर  <math>2\theta</math>, जिसकी धुरी है <math>z</math> निर्देशांक अक्ष और जिसका शीर्ष मूल है, को मानदंडित (पैरामीट्रिक रूप से वर्णित) किया गया है
ऊंचाई के साथ एक सही ठोस गोलाकार शंकु <math>h</math> और एपर्चर  <math>2\theta</math>, जिसकी धुरी है <math>z</math> निर्देशांक अक्ष और जिसका शीर्ष मूल है, को पैरामीट्रिक रूप से वर्णित किया गया है
:<math>F(s,t,u) = \left(u \tan s \cos t, u \tan s \sin t, u \right)</math>
:<math>F(s,t,u) = \left(u \tan s \cos t, u \tan s \sin t, u \right)</math>
कहाँ पे <math>s,t,u</math> सीमा से अधिक <math>[0,\theta)</math>, <math>[0,2\pi)</math>, तथा <math>[0,h]</math>, क्रमश।
यहाँ पे <math>s,t,u</math> सीमा से अधिक <math>[0,\theta)</math>, <math>[0,2\pi)</math>, तथा <math>[0,h]</math>, क्रमश।


निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है
निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है
:<math>\{ F(x,y,z) \leq 0, z\geq 0, z\leq h\},</math>
:<math>\{ F(x,y,z) \leq 0, z\geq 0, z\leq h\},</math>
कहाँ पे
यहाँ पे
:<math>F(x,y,z) = (x^2 + y^2)(\cos\theta)^2 - z^2 (\sin \theta)^2.\,</math>
:<math>F(x,y,z) = (x^2 + y^2)(\cos\theta)^2 - z^2 (\sin \theta)^2.\,</math>
अधिक आम तौर पर, मूल पर शीर्ष के साथ एक सही गोलाकार शंकु, वेक्टर के समानांतर अक्ष <math>d</math>, और एपर्चर <math>2\theta</math>, निहित सदिश समीकरण द्वारा दिया गया है <math>F(u) = 0</math> कहाँ पे
:ज्‍यादातर, शीर्ष के मूल पर एक लम्ब गोलाकार शंकु, वेक्टर के समानांतर अक्ष <math>d</math>,और एपर्चर <math>2\theta</math>, निहित सदिश समीकरण <math>F(u) = 0</math> द्वारा दिया गया है,यहाँ पे
 
:<math>F(u) = (u \cdot d)^2 - (d \cdot d) (u \cdot u) (\cos \theta)^2</math> या <math>F(u) = u \cdot d - |d| |u| \cos \theta</math>
:<math>F(u) = (u \cdot d)^2 - (d \cdot d) (u \cdot u) (\cos \theta)^2</math> या <math>F(u) = u \cdot d - |d| |u| \cos \theta</math>
कहाँ पे <math>u=(x,y,z)</math>, तथा <math>u \cdot d</math> डॉट उत्पाद को दर्शाता है।
यहाँ पे <math>u=(x,y,z)</math>, तथा <math>u \cdot d</math> डॉट उत्पाद को दर्शाता है।
 
=== अण्डाकार शंकु ===
[[File:Elliptical Cone Quadric.Png|एक अण्डाकार शंकु चतुर्भुज सतह]]
humb|एक अण्डाकार शंकु चतुर्भुज सतह
कार्तीय निर्देशांक प्रणाली में, एक अण्डाकार शंकु रूप के समीकरण का बिन्दुपथ होता है<ref>{{harvtxt|Protter|Morrey|1970|p=583}}</ref>


=== दीर्घवृत्तीय शंकु (इलिप्टिक  कोन) ===
[[File:Elliptical Cone Quadric.Png|alt=elliptical cone quadric surface|thumb|एक अण्डाकार शंकु चतुर्भुज सतह]]
एक अण्डाकार शंकु चतुर्भुज सतह <ref>{{harvtxt|Protter|Morrey|1970|p=583}}</ref>
कार्टेजियन समन्वय प्रणाली में, दीर्घवृत्तीय शंकु रूप के लिए एक बिन्दुपथ समीकरण हैl जो कि निम्नांकित है.....
:<math> \frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2 .</math>
:<math> \frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2 .</math>
यह समीकरण के साथ दायीं-वृत्ताकार इकाई शंकु की एक परिबद्ध छवि है <math>x^2+y^2=z^2\ .</math> इस तथ्य से, कि एक शंकु खंड की affine छवि एक ही प्रकार का एक शंकु खंड है (दीर्घवृत्त, परवलय,...)
ऊपर उद्धृत आकृतिय एक जुडा हुआ आरेख है, जहां लम्ब गोलाकार इकाई शंकु की एक परिबद्ध छवि <math>x^2+y^2=z^2\ .</math>है। वास्तव में शंकु खंड की अनुकुल छवि (एफ्फिन इमेज ) एक ही प्रकार के (दीर्घवृत्त, परवलय,...) नमुनो मे मिलता है।
*अण्डाकार शंकु का कोई भी समतल भाग एक शंकु खंड होता है।
*दीर्घवृत्तीय शंकु का कोई भी समतल भाग एक शंकु खंड होता है।
स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)।
स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)।


एक संकेंद्रित गोले के साथ दीर्घवृत्तीय शंकु का प्रतिच्छेदन एक गोलाकार शंकु है।
एक संकेंद्रित गोले के साथ दीर्घवृत्तीय शंकु का प्रतिच्छेदन एक गोलाकार शंकु है।


== प्रक्षेप्य ज्यामिति ==
== प्रक्षेप्य ज्यामिति (प्रोजेक्टिवे  ज्योमेट्री) ==
[[File:Australia Square building in George Street Sydney.jpg|thumb|upright=0.6|बेलन केवल एक शंकु होता है जिसका शीर्ष अनंत पर होता है, जो देखने में आकाश की ओर एक शंकु के रूप में दिखाई देने वाले एक बेलन से मेल खाता है।]]
[[File:Australia Square building in George Street Sydney.jpg|thumb|upright=0.6|बेलन केवल एक शंकु होता है जिसका शीर्ष अनंत पर होता है, जो देखने में आकाश की ओर एक शंकु के रूप में दिखाई देने वाले एक बेलन से मेल खाता है।]]
आकाश की ओर एक शंकु प्रतीत होता है।
प्रक्षेप्य [[ज्यामिति]] में, बेलन (सिलेंडर) शंकु होता है जिसका शीर्ष अनंत पर होता है।<ref>{{Cite book|url=https://archive.org/details/projectivegeome04dowlgoog|title=Projective Geometry|last=Dowling|first=Linnaeus Wayland|date=1917-01-01|publisher=McGraw-Hill book Company, Incorporated|language=en}}</ref> सहज रूप से, यदि कोई आधार को स्थिर रखता है और सीमा को लेता है जहां शीर्ष अनंत तक जाता है, तो उसे एक बेलन (सिलेंडर) प्राप्त होता है, एक समकोण बनाने वाली सीमा में, आर्कटन के रूप में बढ़ती हुई भुजा का कोण है। यह अपक्षयी शांकवों की परिभाषा में उपयोगी है, जिसमें बेलनाकार शांकवों पर विचार करने की आवश्यकता होती है।
प्रक्षेप्य ज्यामिति में, एक बेलन केवल एक शंकु होता है जिसका शीर्ष अनंत पर होता है।<ref>{{Cite book|url=https://archive.org/details/projectivegeome04dowlgoog|title=Projective Geometry|last=Dowling|first=Linnaeus Wayland|date=1917-01-01|publisher=McGraw-Hill book Company, Incorporated|language=en}}</ref>सहज रूप से, यदि कोई आधार को स्थिर रखता है और सीमा लेता है क्योंकि शीर्ष अनंत तक जाता है, तो उसे एक सिलेंडर प्राप्त होता है, एक समकोण बनाने वाली सीमा में, आर्कटन के रूप में बढ़ती हुई भुजा का कोण। यह अपक्षयी शांकवों की परिभाषा में उपयोगी है, जिसमें बेलनाकार शांकवों पर विचार करने की आवश्यकता होती है।


G. B. Halsted के अनुसार, स्टेनर शंकु के लिए उपयोग की जाने वाली प्रोजेक्टिव श्रेणियों के बजाय केवल एक प्रोजेक्टिविटी और अक्षीय पेंसिल (परिप्रेक्ष्य में नहीं) के साथ एक स्टेनर शंकु के समान एक शंकु उत्पन्न होता है:
जी.बी. हालस्टेड के अनुसार, स्टेनर शंकु के लिए उपयोग की जाने वाली प्रक्षेप्य (प्रोजेक्टिव) श्रेणियों के बजाय केवल एक प्रक्षेपीय (प्रोजेक्टिविटी) और अक्षीय पेंसिल (परिप्रेक्ष्य में नहीं) के साथ एक स्टेनर शंकु के समान एक शंकु उत्पन्न होता है।


यदि दो कॉपंक्चुअल नॉन-कोस्ट्रेट अक्षीय पेंसिल प्रोजेक्टिव हैं लेकिन परिप्रेक्ष्य नहीं हैं, तो सहसंबद्ध विमानों की मुलाकात 'दूसरे क्रम की शंकु सतह' या 'शंकु' बनाती है।<ref>G. B. Halsted (1906) सिंथेटिक प्रोजेक्टिव ज्योमेट्री, पेज 20</ref>
यदि दो कॉपंक्चुअल नॉन-कोस्ट्रेट अक्षीय पेंसिल प्रक्षेपीय (प्रोजेक्टिव) हैं लेकिन परिप्रेक्ष्य नहीं हैं, तो सहसंबद्ध तलो का मिलन 'दूसरे क्रम की शंकु सतह' या 'शंकु' बनाती है।<ref>G. B. Halsted (1906) सिंथेटिक प्रोजेक्टिव ज्योमेट्री, पेज 20</ref>


== उच्च आयाम ==
== उच्च आयाम (हायर  डाइमेंशन्स) ==
शंकु की परिभाषा को उच्च आयामों तक बढ़ाया जा सकता है (उत्तल शंकु देखें)। इस मामले में, कोई कहता है कि एक उत्तल समुच्चय C वास्तविक सदिश समष्टि 'R' में है<sup>''n''</sup>एक शंकु है (मूल में शीर्ष के साथ) यदि सी में प्रत्येक वेक्टर एक्स और प्रत्येक गैर-ऋणात्मक वास्तविक संख्या ए के लिए, वेक्टर कुल्हाड़ी सी में है।<ref name="grunbaum" />  इस संदर्भ में, गोलाकार शंकु के अनुरूप आमतौर पर विशेष नहीं होते हैं; वास्तव में अक्सर बहुफलकीय शंकुओं में रुचि होती है।
शंकु की परिभाषा को उच्च आयामों तक बढ़ाया जा सकता है (उत्तल शंकु देखें)। इस मामले में, कोई कहता है कि वास्तविक सदिश समष्टि '''R'''<sup>''n''</sup> में उत्तल समुच्चय C शंकु है (मूल में शीर्ष के साथ) यदि C में प्रत्येक सदिश एक्स (x) और प्रत्येक अऋणात्मक वास्तविक संख्या ए (a) के लिए, सदिश (वेक्टर)  ए एक्स (ax), C में है।<ref name="grunbaum" />  इस संदर्भ में, गोलाकार शंकु के अनुरूप आमतौर पर विशेष नहीं होते हैं, वास्तव में अक्सर बहुफलकीय शंकुओं में रुचि होती है।


== यह भी देखें ==
== यह भी देखें ==
Line 130: Line 118:
* शंकु (रैखिक बीजगणित)
* शंकु (रैखिक बीजगणित)
* शंकु (टोपोलॉजी)
* शंकु (टोपोलॉजी)
* [[ सिलेंडर (ज्यामिति) ]]
* सिलेंडर (ज्यामिति)  
* डेमोक्रिटस
* डेमोक्रिटस
* सामान्यीकृत शंकु
* सामान्यीकृत शंकु
Line 144: Line 132:
{{Reflist}}
{{Reflist}}


== संदर्भ ==
== संदर्भ (रेफरेन्सेस) ==
* {{ citation | first1 = Murray H. | last1 = Protter | first2 = Charles B. | last2 = Morrey, Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}
* {{ citation | first1 = Murray H. | last1 = Protter | first2 = Charles B. | last2 = Morrey, Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}


== बाहरी संबंध ==
== बाहरी संबंध (एक्सटर्नल  लिंक्स) ==
{{Commons category|Cones}}
{{Commons category|Cones}}  
* {{MathWorld |urlname=Cone |title=Cone}}
 
* {{MathWorld |urlname=DoubleCone |title=Double Cone}}
*An interactive [http://www.mathsisfun.com/geometry/cone.html Spinning Cone] from Maths Is Fun
* {{MathWorld |urlname=GeneralizedCone |title=Generalized Cone}}
* An interactive [http://www.mathsisfun.com/geometry/cone.html Spinning Cone] from Maths Is Fun
* [http://www.korthalsaltes.com/model.php?name_en=cone Paper model cone]
* [http://www.korthalsaltes.com/model.php?name_en=cone Paper model cone]
* [http://mathforum.org/library/drmath/view/55017.html Lateral surface area of an oblique cone]
*[http://mathforum.org/library/drmath/view/55017.html Lateral surface area of an oblique cone]
* [http://www.cut-the-knot.org/Curriculum/Geometry/ConicSections.shtml Cut a Cone] An interactive demonstration of the intersection of a cone with a plane
*[http://www.cut-the-knot.org/Curriculum/Geometry/ConicSections.shtml Cut a Cone] An interactive demonstration of the intersection of a cone with a plane
[[Category: प्राथमिक आकार]]
[[Category:Machine Translated Page]]
[[Category: सतह]]
 
[[Category: Machine Translated Page]]
[[Category:Articles with short description]]
[[Category: Mathematics]]
[[Category:CS1]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category:Commons category link is locally defined]]
[[Category:Elementary shapes]]
[[Category:Exclude in print]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Mathematics]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates that add a tracking category]]
[[Category:Templates using TemplateData]]
[[Category:Wikimedia Commons templates]]

Latest revision as of 10:03, 4 August 2022

एक लम्ब वृत्तीय शंकु और एक तिरछा वृत्तीय शंकु
एक दोहरा शंकु (असीम रूप से विस्तारित नहीं दिखाया गया है)

शंकु, त्रि-आयामी (त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है|

एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप,  एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता हैl यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप,  एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता है lवस्तु की तरह है, अन्यथा यह त्रि-आयामी स्थल में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को पार्श्व सतह कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक शंक्वाकार सतह होती है।

शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है।

शंकु की धुरी शीर्ष से गुजरने वाली सीधी रेखा (यदि कोई हो) होती है, जिसके आस पास आधार (पुरा शंकु) सम वृत्ताकार होता है।

प्राथमिक ज्यामिति के सामान्य उपयोग में, शंकु को ' सम वृत्ताकार ' माना जाता है, यहाँ वृत्ताकार का अर्थ है कि आधार एक वृत्त है और यथार्थ रूप से (लंबवत का अर्थ है कि) अक्ष आधार के केंद्र से समकोण पर उसके तल से होकर गुजरता है।[1] यदि शंकु सम वृत्ताकार है तो पार्श्व सतह वाले समतल का प्रतिच्छेदन एक शंकु खंड है। सामान्य तौर पर, आधार किसी भी आकार का हो सकता है[2] और शीर्ष कहीं भी स्थित हो सकता है (हालांकि आमतौर पर यह माना जाता है कि आधार घिरा हुआ है और इसलिए इसका परिमित क्षेत्र है, और शीर्ष आधार के तल के बाहर स्थित है)। वासत्विक शंकु के विपरीत तिरछे शंकु होते हैं, जिसमें अक्ष आधार के केंद्र से गैर-लंबवत रूप से गुजरता है।[3] एक बहुभुज आधार वाले शंकु को पिरामिड कहा जाता है।

संदर्भ के आधार पर, शंकु का अर्थ विशेष रूप से उत्तल शंकु या प्रक्षेपी शंकु भी हो सकता है।

शंकु को उच्च आयामों के लिए भी सामान्यीकृत किया जा सकता है।

आगे की शब्दावली (फरदर टर्मिनोलॉजी)

एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स डायरेक्ट्रिक्स कहा जाता है, और शिखर के बीच का प्रत्येक रेखा खंड पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।)

एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, छोटा शंकु कहलाता है, यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।[1]दीर्घवृत्ताकार शंकु एक दीर्घवृत्ताकार आधार वाला शंकु होता है।[1]सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)।

माप और समीकरण (मैसरमेंट्स एंड  एक्वेशन्स )

आयतन

आयतन किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है और ऊंचाई [4]

आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल है।

कैलकुलस का उपयोग किए बिना, सूत्र को एक पिरामिड से शंकु की तुलना करके और कैवेलियरी के सिद्धांत को लागू करके सिद्ध किया जा सकता है - विशेष रूप से, शंकु की तुलना एक (लंबवत स्केल) लम्ब वर्गाकार पिरामिड से की जाती है, जो एक घन का एक तिहाई बनाता है। इस सूत्र को ऐसे अनंतिम तर्कों का उपयोग किए बिना सिद्ध नहीं किया जा सकता है - उसके लिए पॉलीहेड्रल क्षेत्र के 2-आयामी फ़ार्मुलों के विपरीत, यद्यपि सर्कल के क्षेत्र के समान - और इसलिए कैलकुस के आगमन से पहले , प्राचीन यूनानियों द्वारा क्षय विधि (एक्सहस्शन मेथड) का उपयोग करते हुए कमजोर सबूत स्वीकार किए गए। यह तत्त्वतः हिल्बर्ट की तीसरी समस्या की विषय वस्तु है - अधिक सटीक रूप से, सभी पॉलीहेड्रल पिरामिड सीज़र्स कांग्रएन्ट नहीं हैं (इसे परिमित टुकड़ों में काटा जा सकता है और दूसरे में पुनर्व्यवस्थित किया जा सकता है), और इस प्रकार एक अपघटन तर्क का उपयोग करके मात्रा की गणना विशुद्ध रूप से नहीं की जा सकती है -।[5]

द्रव्यमान का केंद्र (सेंटर ऑफ़ मास)

एकसमान घनत्व वाले ठोस शंकु का द्रव्यमान केंद्र, आधार केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है।

लम्ब वृत्तीय शंकु (राइट सर्कुलर कोन)

आयतन (वॉल्यूम)

त्रिज्या r और ऊँचाई h वाले एक वृत्ताकार शंकु के लिए, आधार क्षेत्रफल का एक वृत्त है और इसलिए आयतन का सूत्र बन जाता है[6]

तिर्यक् ऊंचाई (स्लांट हाइट)

एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह द्वारा दिया गया है, जहां पे आधार की त्रिज्या है और ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है।

भूतल क्षेत्र (सरफेस एरिया)

एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है जहां पे शंकु के तल पर वृत्त की त्रिज्या है और शंकु की तिर्यक ऊँचाई है।[4] एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के क्षेत्रफल के समान होता है इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है:

  • त्रिज्या और ऊंचाई
(आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; यहाँ पे तिरछी ऊंचाई है)
यहाँ पे त्रिज्या है और ऊंचाई है।
  • त्रिज्या और तिर्यक् ऊंचाई
यहाँ पे त्रिज्या है और तिरछी ऊंचाई है।
  • परिधि और तिर्यक् ऊंचाई
यहाँ पे परिधि है और तिर्यक् ऊंचाई है।
  • शीर्ष कोण और ऊंचाई
यहाँ पे शीर्ष कोण है और ऊंचाई है।

परिपत्र क्षेत्र (सर्कुलर सेक्टर)

शंकु के घाटिका की सतह को खोलकर प्राप्त वृत्त में त्रिज्यखंड होता है, जो कि निम्नांकित है.....

  • त्रिज्या R
  • चाप की लंबाई L
  • केंद्रीय कोण φ रेडियन में

समीकरण रूप (एक्वेशन्स फॉर्म)

शंकु की सतह को संप्रेषित (पैरामीटर) किया जा सकता है. जो कि निम्नांकित है.....

यहाँ पे शंकु के चारों ओर का कोण है, और शंकु के साथ ऊंचाई है।

ऊंचाई के साथ लम्ब गोलाकार शंकु और एपर्चर , जिसकी धुरी है निर्देशांक अक्ष और जिसका शीर्ष मूल है, को मानदंडित (पैरामीट्रिक रूप से वर्णित) किया गया है

यहाँ पे सीमा से अधिक , , तथा , क्रमश।

निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है

यहाँ पे

ज्‍यादातर, शीर्ष के मूल पर एक लम्ब गोलाकार शंकु, वेक्टर के समानांतर अक्ष ,और एपर्चर , निहित सदिश समीकरण द्वारा दिया गया है,यहाँ पे
या

यहाँ पे , तथा डॉट उत्पाद को दर्शाता है।

दीर्घवृत्तीय शंकु (इलिप्टिक  कोन)

elliptical cone quadric surface
एक अण्डाकार शंकु चतुर्भुज सतह

एक अण्डाकार शंकु चतुर्भुज सतह [7] कार्टेजियन समन्वय प्रणाली में, दीर्घवृत्तीय शंकु रूप के लिए एक बिन्दुपथ समीकरण हैl जो कि निम्नांकित है.....

ऊपर उद्धृत आकृतिय एक जुडा हुआ आरेख है, जहां लम्ब गोलाकार इकाई शंकु की एक परिबद्ध छवि है। वास्तव में शंकु खंड की अनुकुल छवि (एफ्फिन इमेज ) एक ही प्रकार के (दीर्घवृत्त, परवलय,...) नमुनो मे मिलता है।

  • दीर्घवृत्तीय शंकु का कोई भी समतल भाग एक शंकु खंड होता है।

स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)।

एक संकेंद्रित गोले के साथ दीर्घवृत्तीय शंकु का प्रतिच्छेदन एक गोलाकार शंकु है।

प्रक्षेप्य ज्यामिति (प्रोजेक्टिवे  ज्योमेट्री)

बेलन केवल एक शंकु होता है जिसका शीर्ष अनंत पर होता है, जो देखने में आकाश की ओर एक शंकु के रूप में दिखाई देने वाले एक बेलन से मेल खाता है।

प्रक्षेप्य ज्यामिति में, बेलन (सिलेंडर) शंकु होता है जिसका शीर्ष अनंत पर होता है।[8] सहज रूप से, यदि कोई आधार को स्थिर रखता है और सीमा को लेता है जहां शीर्ष अनंत तक जाता है, तो उसे एक बेलन (सिलेंडर) प्राप्त होता है, एक समकोण बनाने वाली सीमा में, आर्कटन के रूप में बढ़ती हुई भुजा का कोण है। यह अपक्षयी शांकवों की परिभाषा में उपयोगी है, जिसमें बेलनाकार शांकवों पर विचार करने की आवश्यकता होती है।

जी.बी. हालस्टेड के अनुसार, स्टेनर शंकु के लिए उपयोग की जाने वाली प्रक्षेप्य (प्रोजेक्टिव) श्रेणियों के बजाय केवल एक प्रक्षेपीय (प्रोजेक्टिविटी) और अक्षीय पेंसिल (परिप्रेक्ष्य में नहीं) के साथ एक स्टेनर शंकु के समान एक शंकु उत्पन्न होता है।

यदि दो कॉपंक्चुअल नॉन-कोस्ट्रेट अक्षीय पेंसिल प्रक्षेपीय (प्रोजेक्टिव) हैं लेकिन परिप्रेक्ष्य नहीं हैं, तो सहसंबद्ध तलो का मिलन 'दूसरे क्रम की शंकु सतह' या 'शंकु' बनाती है।[9]

उच्च आयाम (हायर  डाइमेंशन्स)

शंकु की परिभाषा को उच्च आयामों तक बढ़ाया जा सकता है (उत्तल शंकु देखें)। इस मामले में, कोई कहता है कि वास्तविक सदिश समष्टि Rn में उत्तल समुच्चय C शंकु है (मूल में शीर्ष के साथ) यदि C में प्रत्येक सदिश एक्स (x) और प्रत्येक अऋणात्मक वास्तविक संख्या ए (a) के लिए, सदिश (वेक्टर) ए एक्स (ax), C में है।[2] इस संदर्भ में, गोलाकार शंकु के अनुरूप आमतौर पर विशेष नहीं होते हैं, वास्तव में अक्सर बहुफलकीय शंकुओं में रुचि होती है।

यह भी देखें

  • बीकोन
  • शंकु (रैखिक बीजगणित)
  • शंकु (टोपोलॉजी)
  • सिलेंडर (ज्यामिति)
  • डेमोक्रिटस
  • सामान्यीकृत शंकु
  • हाइपरबोलॉइड
  • आकृतियों की सूची
  • पाइरोमेट्रिक शंकु
  • क्वाड्रिक
  • कुल्हाड़ियों का घूमना
  • शासित सतह
  • कुल्हाड़ियों का अनुवाद

टिप्पणियाँ

  1. 1.0 1.1 1.2 James, R. C.; James, Glenn (1992-07-31). The Mathematics Dictionary (in English). Springer Science & Business Media. pp. 74–75. ISBN 9780412990410.
  2. 2.0 2.1 ग्रुनबाम, उत्तल पॉलीटोप्स, दूसरा संस्करण, पी। 23.
  3. Weisstein, Eric W. "Cone". MathWorld.
  4. 4.0 4.1 Alexander, Daniel C.; Koeberlein, Geralyn M. (2014-01-01). Elementary Geometry for College Students (in English). Cengage Learning. ISBN 9781285965901.
  5. Hartshorne, Robin (2013-11-11). Geometry: Euclid and Beyond (in English). Springer Science & Business Media. Chapter 27. ISBN 9780387226767.
  6. Blank, Brian E.; Krantz, Steven George (2006-01-01). Calculus: Single Variable (in English). Springer Science & Business Media. Chapter 8. ISBN 9781931914598.
  7. Protter & Morrey (1970, p. 583)
  8. Dowling, Linnaeus Wayland (1917-01-01). Projective Geometry (in English). McGraw-Hill book Company, Incorporated.
  9. G. B. Halsted (1906) सिंथेटिक प्रोजेक्टिव ज्योमेट्री, पेज 20

संदर्भ (रेफरेन्सेस)

  • Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042

बाहरी संबंध (एक्सटर्नल  लिंक्स)