शंकु: Difference between revisions
No edit summary |
No edit summary |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 5: | Line 5: | ||
'''शंकु''', त्रि-आयामी (त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है| | '''शंकु''', त्रि-आयामी (त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है| | ||
एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता हैl यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता है lवस्तु की तरह है, अन्यथा यह [[ त्रि-आयामी अंतरिक्ष | त्रि-आयामी स्थल]] में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को ''पार्श्व सतह'' कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक शंक्वाकार सतह होती है। | एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता हैl यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता है lवस्तु की तरह है, अन्यथा यह [[ त्रि-आयामी अंतरिक्ष | त्रि-आयामी स्थल]] में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को ''पार्श्व सतह'' कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक [https://en.wikipedia.org/wiki/Conical_surface'''शंक्वाकार सतह'''] होती है। | ||
शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है। | शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है। | ||
Line 18: | Line 18: | ||
== आगे की शब्दावली (फरदर टर्मिनोलॉजी) == | == आगे की शब्दावली (फरदर टर्मिनोलॉजी) == | ||
एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स | एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स [https://en.wikipedia.org/wiki/Conic_section#Eccentricity.2C_focus_and_directrix|'''डायरेक्ट्रिक्स'''] कहा जाता है, और शिखर के बीच का प्रत्येक रेखा खंड पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।) | ||
एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, छोटा शंकु कहलाता है, यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।<ref name=":1 />दीर्घवृत्ताकार शंकु एक दीर्घवृत्ताकार आधार वाला शंकु होता है।<ref name=":1 />सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)। | एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, छोटा शंकु कहलाता है, यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।<ref name=":1 />दीर्घवृत्ताकार शंकु एक दीर्घवृत्ताकार आधार वाला शंकु होता है।<ref name=":1 />सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)। | ||
== माप और समीकरण (मैसरमेंट्स एंड एक्वेशन्स ) == | == माप और समीकरण (मैसरमेंट्स एंड एक्वेशन्स ) == | ||
=== आयतन === | === आयतन === | ||
आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref> | आयतन <math>V</math> किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है <math>A_B</math> और ऊंचाई <math>h</math><ref name=":0 >{{Cite book|url=https://books.google.com/books?id=EN_KAgAAQBAJ|title=Elementary Geometry for College Students|last=Alexander|first=Daniel C.|last2=Koeberlein|first2=Geralyn M.|date=2014-01-01|publisher=Cengage Learning|isbn=9781285965901|language=en}}</ref> | ||
Line 147: | Line 142: | ||
*[http://mathforum.org/library/drmath/view/55017.html Lateral surface area of an oblique cone] | *[http://mathforum.org/library/drmath/view/55017.html Lateral surface area of an oblique cone] | ||
*[http://www.cut-the-knot.org/Curriculum/Geometry/ConicSections.shtml Cut a Cone] An interactive demonstration of the intersection of a cone with a plane | *[http://www.cut-the-knot.org/Curriculum/Geometry/ConicSections.shtml Cut a Cone] An interactive demonstration of the intersection of a cone with a plane | ||
[[Category:Machine Translated Page]] | |||
[[Category:Articles with short description]] | [[Category:Articles with short description]] | ||
[[Category:CS1]] | [[Category:CS1]] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 maint]] | [[Category:CS1 maint]] | ||
[[Category:Commons category link is locally defined]] | [[Category:Commons category link is locally defined]] | ||
[[Category:Elementary shapes]] | [[Category:Elementary shapes]] | ||
[[Category:Exclude in print]] | |||
[[Category:Harv and Sfn no-target errors]] | [[Category:Harv and Sfn no-target errors]] | ||
[[Category: | [[Category:Interwiki category linking templates]] | ||
[[Category:Interwiki link templates]] | |||
[[Category:Mathematics]] | [[Category:Mathematics]] | ||
[[Category:Pages with script errors]] | [[Category:Pages with script errors]] | ||
[[Category: | [[Category:Short description with empty Wikidata description]] | ||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikimedia Commons templates]] |
Latest revision as of 10:03, 4 August 2022
शंकु, त्रि-आयामी (त्रिविमीय) संरचना है,जो शीर्ष बिन्दु और एक आधार (आवश्यक नहीं कि आधार वृत्ताकार हो) को मिलाने वाली रेखाओं द्वारा निर्मित होती है। यह शीर्ष तक या शीर्ष बिंदु तक पतला होता है|
एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता हैl यदि संलग्न बिंदुओं को आधार में शामिल किया जाता है, तो शंकु एक ठोस एक शंकु, रेखा खंडों, अर्ध-रेखाओं, या सामान्य बिंदु के एक समूह से बनता है, एक आधार पर सभी बिंदुओं को शीर्षों पर जोड़ने वाली रेखाओं का समूह है जिसका कोई शिखर नहीं होते हैं। आधार एक वृत्त तक सीमित , कोई एक-आयामी द्विघात रूप, एक-आयामी आकृति, या बातये गए उपरोक्त बिंदु में से जोड़ा जा सकता है lवस्तु की तरह है, अन्यथा यह त्रि-आयामी स्थल में एक द्वि-आयामी वस्तु है। ठोस वस्तु के मामले में, इन रेखाओं या आंशिक रेखाओं से बनी सीमा को पार्श्व सतह कहा जाता है; यदि पार्श्व सतह अपार है, तो यह एक शंक्वाकार सतह होती है।
शंकु रेखाखंडों के मामले में, आधार से आगे नहीं बढ़ता है, जबकि अर्ध-रेखाओं के मामले में, यह अपार रूप से दूर तक फैला होता है। शंकु रेखाओं के मामले में शीर्ष से दोनों दिशाओं में अपरिमित रूप से फैला हुआ होता है, इस स्थिति में इसे कभी-कभी दोहरा शंकु कहा जाता है। शीर्ष के एक तरफ एक दोहरे शंकु के आधे हिस्से को नैप कहा जाता है।
शंकु की धुरी शीर्ष से गुजरने वाली सीधी रेखा (यदि कोई हो) होती है, जिसके आस पास आधार (पुरा शंकु) सम वृत्ताकार होता है।
प्राथमिक ज्यामिति के सामान्य उपयोग में, शंकु को ' सम वृत्ताकार ' माना जाता है, यहाँ वृत्ताकार का अर्थ है कि आधार एक वृत्त है और यथार्थ रूप से (लंबवत का अर्थ है कि) अक्ष आधार के केंद्र से समकोण पर उसके तल से होकर गुजरता है।[1] यदि शंकु सम वृत्ताकार है तो पार्श्व सतह वाले समतल का प्रतिच्छेदन एक शंकु खंड है। सामान्य तौर पर, आधार किसी भी आकार का हो सकता है[2] और शीर्ष कहीं भी स्थित हो सकता है (हालांकि आमतौर पर यह माना जाता है कि आधार घिरा हुआ है और इसलिए इसका परिमित क्षेत्र है, और शीर्ष आधार के तल के बाहर स्थित है)। वासत्विक शंकु के विपरीत तिरछे शंकु होते हैं, जिसमें अक्ष आधार के केंद्र से गैर-लंबवत रूप से गुजरता है।[3] एक बहुभुज आधार वाले शंकु को पिरामिड कहा जाता है।
संदर्भ के आधार पर, शंकु का अर्थ विशेष रूप से उत्तल शंकु या प्रक्षेपी शंकु भी हो सकता है।
शंकु को उच्च आयामों के लिए भी सामान्यीकृत किया जा सकता है।
आगे की शब्दावली (फरदर टर्मिनोलॉजी)
एक शंकु के आधार की परिधि को डायरेक्ट्रिक्स डायरेक्ट्रिक्स कहा जाता है, और शिखर के बीच का प्रत्येक रेखा खंड पार्श्व सतह की एक जेनरेट्रिक्स या जनरेटिंग लाइन है। (शंकु खंड के डायरेक्ट्रिक्स और डायरेक्ट्रिक्स शब्द के इस अर्थ के बीच संबंध के लिए, डंडेलिन क्षेत्र देखें।)
एक वृत्ताकार शंकु की आधार त्रिज्या उसके आधार की त्रिज्या है, अक्सर इसे केवल शंकु की त्रिज्या कहा जाता है। एक लम्ब वृत्तीय शंकु का छिद्र दो जेनरेट्रिक्स रेखाओं के बीच का अधिकतम कोण होता है, यदि जेनरेटर अक्ष से कोण बनाता है, तो एपर्चर 2θ है। शंकु जिसमें एक समतल द्वारा काटे गए शीर्ष सहित एक क्षेत्र होता है, छोटा शंकु कहलाता है, यदि कटाव तल शंकु के आधार के समानांतर है, तो इसे छिन्नक कहा जाता है।[1]दीर्घवृत्ताकार शंकु एक दीर्घवृत्ताकार आधार वाला शंकु होता है।[1]सामान्यीकृत शंकु एक शीर्ष और एक सीमा पर प्रत्येक बिंदु से गुजरने वाली रेखाओं के समूह द्वारा बनाई गई सतह है (दृश्य पतवार भी देखें)।
माप और समीकरण (मैसरमेंट्स एंड एक्वेशन्स )
आयतन
आयतन किसी भी शंकु ठोस का आधार के क्षेत्रफल के गुणनफल का एक तिहाई होता है और ऊंचाई [4]
आधुनिक गणित में, इस सूत्र को कैलकुलस का उपयोग करके आसानी से परिकलित किया जा सकता है - यह स्केलिंग तक, इंटीग्रल है।
द्रव्यमान का केंद्र (सेंटर ऑफ़ मास)
एकसमान घनत्व वाले ठोस शंकु का द्रव्यमान केंद्र, आधार केंद्र से शीर्ष तक के रास्ते का एक-चौथाई भाग होता है, जो दोनों को मिलाने वाली सीधी रेखा पर होता है।
लम्ब वृत्तीय शंकु (राइट सर्कुलर कोन)
आयतन (वॉल्यूम)
त्रिज्या r और ऊँचाई h वाले एक वृत्ताकार शंकु के लिए, आधार क्षेत्रफल का एक वृत्त है और इसलिए आयतन का सूत्र बन जाता है[6]
तिर्यक् ऊंचाई (स्लांट हाइट)
एक लम्ब वृत्तीय शंकु की तिर्यक ऊँचाई उसके आधार के वृत्त के किसी बिंदु से शंकु की सतह के अनुदिश रेखाखंड से होते हुए शीर्ष तक की दूरी है। यह द्वारा दिया गया है, जहां पे आधार की त्रिज्या है और ऊंचाई है। यह पाइथागोरस प्रमेय द्वारा सिद्ध किया जा सकता है।
भूतल क्षेत्र (सरफेस एरिया)
एक लम्ब वृत्तीय शंकु का पार्श्व पृष्ठीय क्षेत्रफल है जहां पे शंकु के तल पर वृत्त की त्रिज्या है और शंकु की तिर्यक ऊँचाई है।[4] एक शंकु के निचले वृत्त का पृष्ठीय क्षेत्रफल किसी भी वृत्त के क्षेत्रफल के समान होता है इस प्रकार, एक लम्ब वृत्तीय शंकु का कुल पृष्ठीय क्षेत्रफल निम्नलिखित में से प्रत्येक के रूप में व्यक्त किया जा सकता है:
- त्रिज्या और ऊंचाई
- (आधार का क्षेत्रफल और पार्श्व सतह का क्षेत्रफल; यहाँ पे तिरछी ऊंचाई है)
- यहाँ पे त्रिज्या है और ऊंचाई है।
- त्रिज्या और तिर्यक् ऊंचाई
- यहाँ पे त्रिज्या है और तिरछी ऊंचाई है।
- परिधि और तिर्यक् ऊंचाई
- यहाँ पे परिधि है और तिर्यक् ऊंचाई है।
- शीर्ष कोण और ऊंचाई
- यहाँ पे शीर्ष कोण है और ऊंचाई है।
परिपत्र क्षेत्र (सर्कुलर सेक्टर)
शंकु के घाटिका की सतह को खोलकर प्राप्त वृत्त में त्रिज्यखंड होता है, जो कि निम्नांकित है.....
- त्रिज्या R
- चाप की लंबाई L
- केंद्रीय कोण φ रेडियन में
समीकरण रूप (एक्वेशन्स फॉर्म)
शंकु की सतह को संप्रेषित (पैरामीटर) किया जा सकता है. जो कि निम्नांकित है.....
- यहाँ पे शंकु के चारों ओर का कोण है, और शंकु के साथ ऊंचाई है।
ऊंचाई के साथ लम्ब गोलाकार शंकु और एपर्चर , जिसकी धुरी है निर्देशांक अक्ष और जिसका शीर्ष मूल है, को मानदंडित (पैरामीट्रिक रूप से वर्णित) किया गया है
यहाँ पे सीमा से अधिक , , तथा , क्रमश।
निहित रूप में एक ही ठोस को असमानताओं द्वारा परिभाषित किया जाता है
यहाँ पे
- ज्यादातर, शीर्ष के मूल पर एक लम्ब गोलाकार शंकु, वेक्टर के समानांतर अक्ष ,और एपर्चर , निहित सदिश समीकरण द्वारा दिया गया है,यहाँ पे
- या
यहाँ पे , तथा डॉट उत्पाद को दर्शाता है।
दीर्घवृत्तीय शंकु (इलिप्टिक कोन)
एक अण्डाकार शंकु चतुर्भुज सतह [7] कार्टेजियन समन्वय प्रणाली में, दीर्घवृत्तीय शंकु रूप के लिए एक बिन्दुपथ समीकरण हैl जो कि निम्नांकित है.....
ऊपर उद्धृत आकृतिय एक जुडा हुआ आरेख है, जहां लम्ब गोलाकार इकाई शंकु की एक परिबद्ध छवि है। वास्तव में शंकु खंड की अनुकुल छवि (एफ्फिन इमेज ) एक ही प्रकार के (दीर्घवृत्त, परवलय,...) नमुनो मे मिलता है।
- दीर्घवृत्तीय शंकु का कोई भी समतल भाग एक शंकु खंड होता है।
स्पष्ट है कि किसी भी लम्ब वृत्तीय शंकु में वृत्त होते हैं। यह भी सच है, लेकिन सामान्य मामले में कम स्पष्ट है (परिपत्र अनुभाग देखें)।
एक संकेंद्रित गोले के साथ दीर्घवृत्तीय शंकु का प्रतिच्छेदन एक गोलाकार शंकु है।
प्रक्षेप्य ज्यामिति (प्रोजेक्टिवे ज्योमेट्री)
प्रक्षेप्य ज्यामिति में, बेलन (सिलेंडर) शंकु होता है जिसका शीर्ष अनंत पर होता है।[8] सहज रूप से, यदि कोई आधार को स्थिर रखता है और सीमा को लेता है जहां शीर्ष अनंत तक जाता है, तो उसे एक बेलन (सिलेंडर) प्राप्त होता है, एक समकोण बनाने वाली सीमा में, आर्कटन के रूप में बढ़ती हुई भुजा का कोण है। यह अपक्षयी शांकवों की परिभाषा में उपयोगी है, जिसमें बेलनाकार शांकवों पर विचार करने की आवश्यकता होती है।
जी.बी. हालस्टेड के अनुसार, स्टेनर शंकु के लिए उपयोग की जाने वाली प्रक्षेप्य (प्रोजेक्टिव) श्रेणियों के बजाय केवल एक प्रक्षेपीय (प्रोजेक्टिविटी) और अक्षीय पेंसिल (परिप्रेक्ष्य में नहीं) के साथ एक स्टेनर शंकु के समान एक शंकु उत्पन्न होता है।
यदि दो कॉपंक्चुअल नॉन-कोस्ट्रेट अक्षीय पेंसिल प्रक्षेपीय (प्रोजेक्टिव) हैं लेकिन परिप्रेक्ष्य नहीं हैं, तो सहसंबद्ध तलो का मिलन 'दूसरे क्रम की शंकु सतह' या 'शंकु' बनाती है।[9]
उच्च आयाम (हायर डाइमेंशन्स)
शंकु की परिभाषा को उच्च आयामों तक बढ़ाया जा सकता है (उत्तल शंकु देखें)। इस मामले में, कोई कहता है कि वास्तविक सदिश समष्टि Rn में उत्तल समुच्चय C शंकु है (मूल में शीर्ष के साथ) यदि C में प्रत्येक सदिश एक्स (x) और प्रत्येक अऋणात्मक वास्तविक संख्या ए (a) के लिए, सदिश (वेक्टर) ए एक्स (ax), C में है।[2] इस संदर्भ में, गोलाकार शंकु के अनुरूप आमतौर पर विशेष नहीं होते हैं, वास्तव में अक्सर बहुफलकीय शंकुओं में रुचि होती है।
यह भी देखें
- बीकोन
- शंकु (रैखिक बीजगणित)
- शंकु (टोपोलॉजी)
- सिलेंडर (ज्यामिति)
- डेमोक्रिटस
- सामान्यीकृत शंकु
- हाइपरबोलॉइड
- आकृतियों की सूची
- पाइरोमेट्रिक शंकु
- क्वाड्रिक
- कुल्हाड़ियों का घूमना
- शासित सतह
- कुल्हाड़ियों का अनुवाद
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 James, R. C.; James, Glenn (1992-07-31). The Mathematics Dictionary (in English). Springer Science & Business Media. pp. 74–75. ISBN 9780412990410.
- ↑ 2.0 2.1 ग्रुनबाम, उत्तल पॉलीटोप्स, दूसरा संस्करण, पी। 23.
- ↑ Weisstein, Eric W. "Cone". MathWorld.
- ↑ 4.0 4.1 Alexander, Daniel C.; Koeberlein, Geralyn M. (2014-01-01). Elementary Geometry for College Students (in English). Cengage Learning. ISBN 9781285965901.
- ↑ Hartshorne, Robin (2013-11-11). Geometry: Euclid and Beyond (in English). Springer Science & Business Media. Chapter 27. ISBN 9780387226767.
- ↑ Blank, Brian E.; Krantz, Steven George (2006-01-01). Calculus: Single Variable (in English). Springer Science & Business Media. Chapter 8. ISBN 9781931914598.
- ↑ Protter & Morrey (1970, p. 583)
- ↑ Dowling, Linnaeus Wayland (1917-01-01). Projective Geometry (in English). McGraw-Hill book Company, Incorporated.
- ↑ G. B. Halsted (1906) सिंथेटिक प्रोजेक्टिव ज्योमेट्री, पेज 20
संदर्भ (रेफरेन्सेस)
- Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042
बाहरी संबंध (एक्सटर्नल लिंक्स)
- An interactive Spinning Cone from Maths Is Fun
- Paper model cone
- Lateral surface area of an oblique cone
- Cut a Cone An interactive demonstration of the intersection of a cone with a plane