आकारिता (मॉर्फिज्म): Difference between revisions

From Vigyanwiki
Line 74: Line 74:




==इस पेज में लापता आंतरिक लिंक की सूची==


*लीनियर अलजेब्रा
 
*समुच्चय सिद्धान्त
[[Category:Articles with short description]]
*समारोह रचना
[[Category:Collapse templates]]
*नक्शा (गणित)
[[Category:Created On 30/11/2022]]
*समारोह (सेट सिद्धांत)
[[Category:Machine Translated Page]]
*अंक शास्त्र
[[Category:Navigational boxes| ]]
*ठोस श्रेणी
[[Category:Navigational boxes without horizontal lists]]
*समारोह (गणित)
[[Category:Pages with script errors]]
*आंशिक संचालन
[[Category:Short description with empty Wikidata description]]
*कार्यों की संरचना
[[Category:Sidebars with styles needing conversion]]
*पहचान समारोह
[[Category:Template documentation pages|Documentation/doc]]
*संबद्धता
 
*एक समारोह की सीमा
*सेट की श्रेणी
*अलग करना सेट
*ठोस श्रेणियां
*पसंद का स्वयंसिद्ध
*समाकृतिकता
*क्रमविनिमेय अंगूठी
*चिकना कई गुना
*चिकना समारोह
*अंगूठी (बीजगणित)
*फ़ैक्टर श्रेणी
*द्विभाजन
*छोटी श्रेणी
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{springer|title=Morphism|id=p/m064940}}
* {{springer|title=Morphism|id=p/m064940}}

Revision as of 19:33, 24 December 2022

गणित में, विशेष रूप से श्रेणी सिद्धांत में, आकृतिवाद एक गणितीय संरचना से एक ही प्रकार के दूसरे में एक संरचना-संरक्षण मानचित्र है। आकृतिवाद की धारणा समकालीन गणित में अत्याधिक रूप में आती है। समुच्चय सिद्धांत में आकारिकी कार्य (समुच्चय सिद्धांत) हैं; रैखिक बीजगणित में, रैखिक परिवर्तन; समूह सिद्धांत में, समूह समरूपता; और इसी तरह टोपोलॉजी में, निरंतर कार्य, है।

श्रेणी सिद्धांत में, रूपवाद एक व्यापक रूप से समान विचार है: इसमें सम्मिलित गणितीय वस्तुओं को सेट करने की आवश्यकता नहीं है, और उनके बीच के संबंध चित्र के अतिरिक्त कुछ और हो सकते हैं, चूंकि किसी दिए गए वर्ग की वस्तुओं के बीच आकारिकी को नक्शों के समान व्यवहार करना पड़ता है, जिसमे उन्हें कार्य रचना के समान एक साहचर्य संचालन को स्वीकार करना पड़ता है। श्रेणी सिद्धांत में आकारिकी समरूपता का एक निष्कर्षण है।[1]

आकृतिवाद और संरचनाओं (जिन्हें कहा जाता है) का अध्ययन, जिस पर उन्हें परिभाषित किया गया है, श्रेणी सिद्धांत का केंद्र है। आकारिकी की अधिकांश शब्दावली, साथ ही साथ उनके अंतर्निहित अंतर्ज्ञान, कंक्रीट श्रेणी से आती है, जहां वस्तुओं को बस कुछ अतिरिक्त संरचना के साथ सेट किया जाता है, और आकारिकी संरचना-संरक्षण कार्य हैं। श्रेणी सिद्धांत में, आकारिकी को कभी-कभी तीर भी कहा जाता है।

परिभाषा

श्रेणी (गणित) C में दो वर्ग (सेट सिद्धांत) होते हैं, जिनमें से एक वस्तुओं और दूसरा आकारिकी. दो वस्तुएँ हैं जो हर रूपवाद, स्रोत और यह लक्ष्य से जुड़ी हैं। स्रोत X और लक्ष्य Y के साथ एक आकारिकी f को f : X → Y लिखा जाता है, और X से Y तक एक तीर द्वारा आरेखीय रूप से दर्शाया जाता है।।

कई सामान्य श्रेणियों के लिए, वस्तु सेट (गणित) (अधिकांश कुछ अतिरिक्त संरचना के साथ) होते हैं और आकारिकी एक वस्तु से दूसरे वस्तु के कार्य होते हैं। इसलिए, आकृतिवाद के स्रोत और लक्ष्य को अधिकांश डोमेन तथा कोडोमेन कहा जाता है।

आकारिकी एक आंशिक ऑपरेशन से लैस हैं, जिसे संयोजन कहा जाता है. दो आकारिकी f और g की संरचना को यथार्थ रूप से परिभाषित किया गया है जब f का लक्ष्य g का स्रोत है, और g ∘ f (या कभी-कभी केवल gf) को निरूपित किया जाता है। g ∘ f का स्रोत f का स्रोत है, और g ∘ f का लक्ष्य g का लक्ष्य है। रचना दो स्वयंसिद्धों को संतुष्ट करती है:

पहचान
प्रत्येक वस्तु X के लिए, एक आकारिकी idX : XX मौजूद होती है, जिसे X पर तत्समक आकारिकी कहा जाता है, जैसे कि प्रत्येक आकारिकी f : AB के लिए हमारे पास idBf = f = f ∘ idA है।

संबद्धता:

h ∘ (g ∘ f) = (h ∘ g) ∘ f जब भी सभी रचनाएँ परिभाषित हों, अर्थात् जब f का लक्ष्य g का स्रोत हो, और g का लक्ष्य h का स्रोत हो।

एक ठोस श्रेणी के लिए (एक श्रेणी जिसमें वस्तुओं को सेट किया जाता है, संभवतः अतिरिक्त संरचना के साथ, और आकारिकी संरचना-संरक्षण कार्य हैं), पहचान morphism केवल पहचान कार्य है, और संरचना केवल कार्यों की सामान्य संरचना है।

आकारिकी की संरचना को अधिकांश एक क्रमविनिमेय आरेख द्वारा दर्शाया जाता है। उदाहरण के लिए,

Commutative diagram for morphism.svg

X से Y तक के सभी रूपों का संग्रह होम सी (X, Y) या बस HomC(X,Y) को दर्शाता है और X और Y के बीच होम-सेट कहा जाता है। कुछ लेखक MorC(X,Y), Mor(X, Y) or C(X, Y)। ध्यान दें कि होम-सेट शब्द एक गलत नाम है, क्योंकि आकारिकी के संग्रह को सेट होने की आवश्यकता नहीं है; एक श्रेणी जहां Hom(X, Y) सभी वस्तुओं के लिए एक सेट है X और Y को स्थानीय रूप से छोटा कहा जाता है। क्योंकि होम-सेट सेट नहीं हो सकते हैं, कुछ लोग होम-क्लास शब्द का उपयोग करना पसंद करते हैं।

ध्यान दें कि डोमेन और कोडोमेन वास्तविक में आकृतिवाद का निर्धारण करने वाली जानकारी का भाग हैं। उदाहरण के लिए, समुच्चयों की श्रेणी में, जहाँ आकारिकी फलन होते हैं, दो फलन अलग-अलग कोडोमेन होते हुए क्रमित युग्मों के समुच्चय के समान हो सकते हैं (फ़ंक्शन की समान श्रेणी हो सकती है)। श्रेणी सिद्धांत के दृष्टिकोण से दो कार्य अलग हैं। इस प्रकार कई लेखकों की आवश्यकता है कि होम-क्लास Hom(X, Y) अलग-अलग सेट हों। व्यवहार में, यह कोई समस्या नहीं है क्योंकि यदि यह असम्बद्धता धारण नहीं करती है, तो डोमेन और कोडोमेन को आकारिकी में जोड़कर सुनिश्चित किया जा सकता है (एक आदेशित ट्रिपल के दूसरे और तीसरे घटक के रूप में कहते हैं)।

कुछ विशेष आकारिकी

मोनोमोर्फिज्म और एपिमोर्फिज्म

एकआकारिकी f: X → Y को एकरूपता कहा जाता है यदि fg1 = fg2 तात्पर्य g1 = g2 सभी रूपों के लिए g1 = g2: ZX है । एक मोनोमोर्फिज्म को संक्षेप में एक मोनो कहा जा सकता है, और हम विशेषण के रूप में मोनिक का उपयोग कर सकते हैं।[2] एक आकारिकी f में 'बायाँ प्रतिलोम' होता है या एक 'विभाजित मोनोमोर्फिज्म' होता है यदि कोई आकारिकी g: Y → X जैसे कि gf = idX। इस प्रकार fg: YY निरर्थक है; अर्थात, (fg)2 = f ∘ (gf) ∘ g = fg. बायें प्रतिलोम g को f का अनुभाग (श्रेणी सिद्धांत) भी कहा जाता है।[2]

बाएं व्युत्क्रम वाले आकारिकी हमेशा मोनोमोर्फिज्म होते हैं, लेकिन इसका व्युत्क्रम सामान्य रूप से सत्य नहीं होता है; एक मोनोमोर्फिज्म बाएं व्युत्क्रम होने में असफल हो सकता है। ठोस श्रेणियों में, एक फलन जिसमें बाएं व्युत्क्रम होता है वह अंतःक्षेपक होता है। इस प्रकार ठोस श्रेणियों में, मोनोआकारिकी अधिकांश होते हैं, लेकिन हमेशा अंतःक्षेपक नहीं होते हैं। एक अंतःक्षेपक होने की स्थिति मोनोमोर्फिज्म होने की तुलना में अधिक मजबूत है, लेकिन विभाजित मोनोमोर्फिज्म होने की तुलना में कमजोर है।

दोहरी रूप से मोनोमोर्फिज्म, एक आकारिकी f: X → Y को अधिरूपता कहा जाता है यदि g1f = g2f का अर्थ है g1 = g2 सभी रूपों के लिए g1 = g2 : Y → Z. एक एपिमोर्फिज्म को संक्षेप में एपि कहा जा सकता है, और हम महाकाव्य को विशेषण के रूप में उपयोग कर सकते हैं।[2] एक आकारिकी f का 'सही व्युत्क्रम' होता है या एक 'विभाजित एपिमोर्फिज्म' होता है यदि कोई आकारिकी g: Y → X हो, जैसे कि fg = idY सही व्युत्क्रम g को f का एक खंड भी कहा जाता है।[2] सही व्युत्क्रम वाले मोर्फिज्म हमेशा एपिमोर्फिज्म होते हैं, लेकिन इसका व्युत्क्रम सामान्य रूप से सत्य नहीं होता है, क्योंकि एक एपिमोर्फिज्म सही व्युत्क्रम होने में विफल हो सकता है।

यदि एक मोनोमोर्फिज्म f बाएं व्युत्क्रम g के साथ विभाजित होता है, तो g दाएं व्युत्क्रम f के साथ विभाजित एपिमोर्फिज्म है। ठोस श्रेणियों में, एक फ़ंक्शन जिसका सही व्युत्क्रम होता है, वह विशेषण है। इस प्रकार ठोस श्रेणियों में, एपिमोर्फिज्म अधिकांश होते हैं, लेकिन हमेशा विशेषण, नहीं होते है। एक अनुमान होने की स्थिति एपिमोर्फिज्म होने की तुलना में अधिक मजबूत है, लेकिन विभाजित एपिमोर्फिज्म होने की तुलना में कमजोर है। समुच्चयों की श्रेणी में, यह कथन कि प्रत्येक अनुमान का एक खंड है, पसंद के स्वयंसिद्ध के बराबर है।

एक आकृतिवाद जो एक एपिमोर्फिज्म और एक मोनोमोर्फिज्म दोनों है, उसे 'बिमोर्फिज्म' कहा जाता है।

समरूपता

एक आकारिकी f: X → Y को एक समरूपता कहा जाता है यदि कोई आकारिकी g: Y → X उपस्थित है जैसे कि f ∘ g = idY और g ∘ f = idX । यदि एक आकारिकी में बाएँ-प्रतिलोम और दाएँ-प्रतिलोम दोनों होते हैं, तो दो व्युत्क्रम समान होते हैं, इसलिए f एक तुल्याकारिता है, और g को केवल f का प्रतिलोम कहा जाता है। व्युत्क्रम आकारिकी, यदि वे उपस्थित हैं, तो वह अद्वितीय हैं। प्रतिलोम g भी f के साथ एक व्युत्क्रम तुल्याकारिता है । उनके बीच एक समरूपता वाली दो वस्तुओं को समरूपी या समतुल्य कहा जाता है।

जबकि प्रत्येक समरूपता एक द्विरूपता है, एक द्विरूपता आवश्यक रूप से एक समरूपता नहीं है। उदाहरण के लिए, क्रमविनिमेय छल्लों की श्रेणी में समावेशन 'Z' → 'Q' एक द्विरूपता है जो एक तुल्याकारिता नहीं है। चूंकि, कोई भी आकृतिवाद जो एक एपिमोर्फिज्म और स्प्लिट मोनोमोर्फिज्म, या मोनोमोर्फिज्म और स्प्लिट एपिमोर्फिज्म दोनों है, एक आइसोमोर्फिज्म होना चाहिए। एक श्रेणी, जैसे 'सेट', जिसमें प्रत्येक द्विरूपता एक समरूपता है, एक 'संतुलित श्रेणी' के रूप में जानी जाती है।

एंडोमोर्फिज्म और ऑटोमोर्फिज्म

एक रूपवाद f: X → X (अर्थात, समान स्रोत और लक्ष्य के साथ एक आकृतिवाद) X का एक एंडोमोर्फिज्म है। ए 'विभाजन एंडोमोर्फिज्म' एक आदर्श एंडोमोर्फिज्म f है यदि f एक अपघटन f = h ∘ g को g ∘ h = के साथ स्वीकार करता है। विशेष रूप से, एक श्रेणी का करौबी लिफाफा हर निरर्थक रूपवाद को विभाजित करता है।

ऑटोमोर्फिज्म एक रूपवाद है जो एंडोमोर्फिज्म और आइसोमोर्फिज्म दोनों है। हर श्रेणी में, किसी वस्तु के ऑटोमोर्फिज्म हमेशा एक समूह (गणित) बनाते हैं, जिसे वस्तु का ऑटोमोर्फिज्म समूह कहा जाता है।

उदाहरण

अधिक उदाहरणों के लिए, श्रेणी सिद्धांत देखें।

यह भी देखें

टिप्पणियाँ

  1. "आकारिता". nLab. Retrieved 2019-06-12.
  2. 2.0 2.1 2.2 2.3 Jacobson (2009), p. 15.


संदर्भ

बाहरी संबंध