समुच्चय की श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 22: Line 22:
'समुच्चय' में सुगम्य श्रेणी परिमित समुच्चय हैं। चूँकि प्रत्येक समुच्चय अपने परिमित उपसमुच्चयों की एक सीधी सीमा है, श्रेणी 'समुच्चय' एक [[सुलभ श्रेणी]] है।
'समुच्चय' में सुगम्य श्रेणी परिमित समुच्चय हैं। चूँकि प्रत्येक समुच्चय अपने परिमित उपसमुच्चयों की एक सीधी सीमा है, श्रेणी 'समुच्चय' एक [[सुलभ श्रेणी]] है।


यदि C एक स्वेच्छ श्रेणी है, तो C से 'सेट' तक का प्रतिपरिवर्ती फलनकार अधिकांश अध्ययन का एक महत्वपूर्ण उद्देश्य होता है। यदि A, C का एक वस्तु है, तो C से 'सेट' तक गुणन जो X को Hom<sub>''C''</sub>(''X'',''A'') भेजता है (X से A तक C में आकारिकी का सेट) इस तरह के एक गुणन का एक उदाहरण है। यदि C एक छोटी श्रेणी है (अर्थात इसकी वस्तुओं का संग्रह एक सेट बनाता है), तो C से सेट तक के विपरीत कारक, प्राकृतिक परिवर्तनों के साथ-साथ आकारिता के रूप में, एक नई श्रेणी बनाते हैं, एक गुणन श्रेणी जिसे C पर [[presheaves|पूर्व समूह]] की श्रेणी के रूप में जाना जाता है                                                        यदि C एक श्रेणी_(गणित)#छोटा_और_बड़ा_श्रेणियाँ है (अर्थात इसकी वस्तुओं का संग्रह एक सेट बनाता है), तो C से 'सेट' तक के प्रतिपरिवर्तक फ़ैक्टर, साथ में रूपात्मकता के रूप में प्राकृतिक परिवर्तनों के साथ, एक नई श्रेणी बनाते हैं, एक फ़ंक्टर श्रेणी जिसे के रूप में जाना जाता है सी पर  की श्रेणी।
यदि C एक स्वेच्छ श्रेणी है, तो C से 'सेट' तक का प्रतिपरिवर्ती फलनकार अधिकांश अध्ययन का एक महत्वपूर्ण उद्देश्य होता है। यदि A, C का एक वस्तु है, तो C से 'सेट' तक गुणन जो X को Hom<sub>''C''</sub>(''X'',''A'') भेजता है (X से A तक C में आकारिकी का सेट) इस तरह के एक गुणन का एक उदाहरण है। यदि C एक छोटी श्रेणी है (अर्थात इसकी वस्तुओं का संग्रह एक सेट बनाता है), तो C से सेट तक के विपरीत कारक, प्राकृतिक परिवर्तनों के साथ-साथ आकारिता के रूप में, एक नई श्रेणी बनाते हैं, एक गुणन श्रेणी जिसे C पर [[presheaves|पूर्व समूह]] की श्रेणी के रूप में जाना जाता है                                                         


== सेट की श्रेणी के लिए नींव ==
== सेट की श्रेणी के लिए नींव ==


ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में सभी समुच्चयों का संग्रह समुच्चय नहीं है; यह नींव के स्वयंसिद्ध से आता है। एक उन संग्रहों को संदर्भित करता है जो [[उचित वर्ग]]ों के रूप में सेट नहीं होते हैं। कोई उचित कक्षाओं को संभाल नहीं सकता क्योंकि एक सेट को संभालता है; विशेष रूप से, कोई यह नहीं लिख सकता है कि वे उचित वर्ग संग्रह (या तो एक सेट या उचित वर्ग) से संबंधित हैं। यह एक समस्या है क्योंकि इसका मतलब है कि इस सेटिंग में सेट की श्रेणी को सीधे तौर पर औपचारिक रूप नहीं दिया जा सकता है। सेट जैसी श्रेणियां जिनके ऑब्जेक्ट का संग्रह एक उचित वर्ग बनाता है उन्हें [[बड़ी श्रेणी]] के रूप में जाना जाता है, उन्हें उन छोटी श्रेणियों से अलग करने के लिए जिनकी वस्तुएं एक सेट बनाती हैं।
ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में सभी समुच्चयों का संग्रह समुच्चय नहीं है; यह नींव के स्वयंसिद्ध से आता है। एक उन संग्रहों को संदर्भित करता है जो [[उचित वर्ग|उचित वर्गों]] के रूप में सेट नहीं होते हैं। कोई उचित कक्षाओं को संभाल नहीं सकता क्योंकि एक सेट को संभालता है; विशेष रूप से, कोई यह नहीं लिख सकता है कि वे उचित वर्ग संग्रह (या तो एक सेट या उचित वर्ग) से संबंधित हैं। यह एक समस्या है क्योंकि इसका अर्थ है कि इस सेटिंग में सेट की श्रेणी को सीधे विधि द्वारा औपचारिक रूप नहीं दिया जा सकता है। सेट जैसी श्रेणियां जिनके ऑब्जेक्ट का संग्रह एक उचित वर्ग बनाता है उन्हें [[बड़ी श्रेणी]] के रूप में जाना जाता है, उन्हें उन छोटी श्रेणियों से अलग करने के लिए जिनकी वस्तुएं एक सेट बनाती हैं।


समस्या को हल करने का एक तरीका ऐसी प्रणाली में काम करना है जो उचित वर्गों को औपचारिक स्थिति देता है, जैसे कि [[एनबीजी सेट सिद्धांत]] इस सेटिंग में, समुच्चयों से बनी श्रेणियों को 'छोटा' कहा जाता है और वे (जैसे सेट) जो उचित वर्गों से बनते हैं, उन्हें 'बड़ा' कहा जाता है।
समस्या को हल करने का एक तरीका ऐसी प्रणाली में काम करना है जो उचित वर्गों को औपचारिक स्थिति देता है, जैसे कि [[एनबीजी सेट सिद्धांत]] इस सेटिंग में, समुच्चयों से बनी श्रेणियों को 'छोटा' कहा जाता है और वे (जैसे सेट) जो उचित वर्गों से बनते हैं, उन्हें 'बड़ा' कहा जाता है।


एक अन्य समाधान [[ग्रोथेंडिक ब्रह्मांड]]ों के अस्तित्व को मान लेना है। मोटे तौर पर बोलना, एक ग्रोथेंडिक ब्रह्मांड एक सेट है जो स्वयं जेडएफ (सी) का एक मॉडल है (उदाहरण के लिए यदि कोई सेट ब्रह्मांड से संबंधित है, तो इसके तत्व और इसकी शक्तियां ब्रह्मांड से संबंधित होंगी)। ग्रोथेंडिक ब्रह्मांडों का अस्तित्व (खाली सेट और सेट के अलावा <math>V_\omega</math> सभी आनुवंशिक रूप से परिमित सेटों में) सामान्य ZF स्वयंसिद्धों द्वारा निहित नहीं है; यह एक अतिरिक्त, स्वतंत्र स्वयंसिद्ध है, मोटे तौर पर दुर्गम कार्डिनल्स के अस्तित्व के बराबर है। इस अतिरिक्त स्वयंसिद्ध को मानते हुए, सेट की वस्तुओं को किसी विशेष ब्रह्मांड के तत्वों तक सीमित कर सकते हैं। (मॉडल के भीतर सभी सेटों का कोई सेट नहीं है, लेकिन कोई भी सभी आंतरिक सेटों के वर्ग 'यू' के बारे में तर्क कर सकता है, यानी 'यू' के तत्व।)
एक अन्य समाधान [[ग्रोथेंडिक ब्रह्मांड|ग्रोथेंडिक ब्रह्मांडों]] के अस्तित्व को मान लेना है। लगभग परिणाम, एक ग्रोथेंडिक ब्रह्मांड एक सेट है जो स्वयं ZF(C) का एक मॉडल है (उदाहरण के लिए यदि कोई सेट ब्रह्मांड से संबंधित है, तो इसके तत्व और इसकी शक्तियां ब्रह्मांड से संबंधित होंगी)। ग्रोथेंडिक ब्रह्मांडों का अस्तित्व (खाली सेट और सेट के अलावा <math>V_\omega</math> सभी आनुवंशिक रूप से परिमित सेटों में) सामान्य ZF स्वयंसिद्धों द्वारा निहित नहीं है; यह एक अतिरिक्त, स्वतंत्र स्वयंसिद्ध है, लगभगर दुर्गम कार्डिनल्स के अस्तित्व के बराबर है। इस अतिरिक्त स्वयंसिद्ध को मानते हुए, सेट की वस्तुओं को किसी विशेष ब्रह्मांड के तत्वों तक सीमित कर सकते हैं। (मॉडल के अन्दर सभी सेटों का कोई सेट नहीं है, लेकिन कोई भी सभी आंतरिक सेटों के वर्ग 'U' के बारे में तर्क कर सकता है, अर्थात् '''U''<nowiki/>' के तत्व।)


इस योजना की एक भिन्नता में, सेट का वर्ग ग्रोथेंडिक ब्रह्मांडों के पूरे टॉवर का मिलन है। (यह आवश्यक रूप से एक उचित वर्ग है, लेकिन प्रत्येक ग्रोथेंडिक ब्रह्मांड एक सेट है क्योंकि यह कुछ बड़े ग्रोथेंडिक ब्रह्मांड का एक तत्व है।) हालांकि, सभी सेटों की श्रेणी के साथ सीधे काम नहीं करता है। इसके बजाय, श्रेणी सेट के संदर्भ में प्रमेय व्यक्त किए जाते हैं<sub>''U''</sub> जिनकी वस्तुएं पर्याप्त रूप से बड़े ग्रोथेंडिक ब्रह्मांड यू के तत्व हैं, और फिर उन्हें यू की विशेष पसंद पर निर्भर नहीं दिखाया जाता है। श्रेणी सिद्धांत के आधार के रूप में, यह दृष्टिकोण टार्स्की-ग्रोथेंडिक सेट सिद्धांत जैसी प्रणाली से अच्छी तरह मेल खाता है जिसमें कोई उचित कक्षाओं के बारे में सीधे तर्क नहीं कर सकता; इसका मुख्य नुकसान यह है कि एक प्रमेय सभी 'समुच्चय' के लिए सत्य हो सकता है<sub>''U''</sub> लेकिन सेट का नहीं।
इस योजना की एक भिन्नता में, सेट का वर्ग ग्रोथेंडिक ब्रह्मांडों के पूरे टॉवर का मिलन है। (यह आवश्यक रूप से एक उचित वर्ग है, लेकिन प्रत्येक ग्रोथेंडिक ब्रह्मांड एक सेट है क्योंकि यह कुछ बड़े ग्रोथेंडिक ब्रह्मांड का एक तत्व है।) चूंकि, सभी सेटों की श्रेणी के साथ सीधे काम नहीं करता है। इसके अतिरिक्त, श्रेणी सेट के संदर्भ में प्रमेय व्यक्त किए जाते हैं<sub>''U''</sub> जिनकी वस्तुएं पर्याप्त रूप से बड़े ग्रोथेंडिक ब्रह्मांड U के तत्व हैं, और फिर उन्हें U की विशेष पसंद पर निर्भर नहीं दिखाया जाता है। श्रेणी सिद्धांत के आधार के रूप में, यह दृष्टिकोण टार्स्की-ग्रोथेंडिक सेट सिद्धांत जैसी प्रणाली से बहुत समान है जिसमें कोई उचित कक्षाओं के बारे में सीधे तर्क नहीं कर सकता; इसकी प्रमुख हानि यह है कि एक प्रमेय सभी 'सेट<sub>''U''</sub>' के लिए सत्य हो सकता है लेकिन सेट के लिये सत्य नहीं हो सकती है।


कई अन्य समाधान, और उपरोक्त पर विविधताएं प्रस्तावित की गई हैं।<ref>{{harvnb|Mac Lane|1969}}</ref><ref>{{harvnb|Feferman|1969}}</ref><ref>{{harvnb|Blass|1984}}</ref>
कई अन्य समाधान, और उपरोक्त पर विविधताएं प्रस्तावित की गई हैं।<ref>{{harvnb|Mac Lane|1969}}</ref><ref>{{harvnb|Feferman|1969}}</ref><ref>{{harvnb|Blass|1984}}</ref>
अन्य ठोस श्रेणियों के साथ भी यही समस्याएँ उत्पन्न होती हैं, जैसे समूहों की श्रेणी या [[टोपोलॉजिकल स्पेस की श्रेणी]]।
अन्य ठोस श्रेणियों के साथ भी यही समस्याएँ उत्पन्न होती हैं, जैसे समूहों की श्रेणी या [[टोपोलॉजिकल स्पेस की श्रेणी]]।



Revision as of 09:13, 15 December 2022

श्रेणी सिद्धांत के गणित क्षेत्र में, सेट के रूप में निरूपित सेट की श्रेणी,वह श्रेणी (गणित) है जिसका श्रेणी सिद्धांत सेट (गणित) है। सेट A और B के बीच के तीर या आकारिकी A से B तक के कुल कार्य हैं, और आकारिकी की संरचना कार्यों की संरचना है।

कई अन्य श्रेणियां (जैसे समूहों की श्रेणी, तीर के रूप में समूह समरूपता के साथ) सेट की श्रेणी की वस्तुओं में संरचना जोड़ती हैं और/या तीरों को किसी विशेष प्रकार के कार्यों तक सीमित करती हैं।

सेट की श्रेणी के गुण

किसी श्रेणी के अभिगृहीत सेट से संतुष्ट होते हैं क्योंकि फलनों का संयोजन साहचर्य होता है, और क्योंकि प्रत्येक सेट X का एक पहचान फलन होता है idX : XX जो फलन संघटन के लिए पहचान तत्व के रूप में कार्य करता है।

'सेट' में अधिरूपता विशेषण मानचित्र हैं, एकरूपता इंजेक्शन मानचित्र हैं, और समरूपता (श्रेणी सिद्धांत) विशेषण मानचित्र हैं।

खाली सेट 'सेट' में प्रारंभिक वस्तु के रूप में कार्य करता है जिसमें खाली कार्य आकारिकी के रूप में होते हैं। प्रत्येक सिंगलटन (गणित) एक अंतिम वस्तु है, जिसमें स्रोत सेट के सभी तत्वों को मैपिंग के रूप में एकल लक्ष्य तत्व के रूप में कार्य करता है। इस प्रकार 'सेट' में कोई शून्य वस्तु नहीं है।

श्रेणी सेट पूर्ण और सह-पूर्ण है। इस श्रेणी में उत्पाद (श्रेणी सिद्धांत) के कार्तीय उत्पाद द्वारा दिया जाता है। सह-उत्पाद असम्बद्ध संघ द्वारा दिया जाता है: दिए गए सेट Ai जहां i कुछ सूचकांक सेट I पर होता है, हम Ai×{i} के संघ के रूप में सह-उत्पाद का निर्माण करते हैं (कार्तीय उत्पाद i के साथ यह सुनिश्चित करने के लिए कार्य करता है कि सभी घटक अलग रहें) ।

'सेट' एक ठोस श्रेणी का प्रोटोटाइप है; अन्य श्रेणियां ठोस हैं यदि वे किसी सुपरिभाषित विधि से 'सेट' पर निर्मित हों।

प्रत्येक दो-तत्व सेट 'सेट' में सबऑब्जेक्ट वर्गसूचक के रूप में कार्य करता है। एक सेट A का पावर ऑब्जेक्ट अपने सत्ता स्थापित द्वारा दिया जाता है, और सेट ए और बी की घातीय वस्तु ए से बी के सभी कार्यों के सेट द्वारा दी जाती है। 'सेट' इस प्रकार एक टॉपोस है (और विशेष रूप से कार्तीय बंद श्रेणी और सटीक बर्र के अर्थ में)।

'सेट' विनिमेय श्रेणी, योज्य श्रेणी और न ही पूर्ववर्ती श्रेणी है।

प्रत्येक गैर-खाली सेट 'सेट' में एक अंतःक्षेपक वस्तु है। प्रत्येक सेट 'सेट' में एक प्रक्षेपी मॉड्यूल है (पसंद के स्वयंसिद्ध को मानते हुए)।

'समुच्चय' में सुगम्य श्रेणी परिमित समुच्चय हैं। चूँकि प्रत्येक समुच्चय अपने परिमित उपसमुच्चयों की एक सीधी सीमा है, श्रेणी 'समुच्चय' एक सुलभ श्रेणी है।

यदि C एक स्वेच्छ श्रेणी है, तो C से 'सेट' तक का प्रतिपरिवर्ती फलनकार अधिकांश अध्ययन का एक महत्वपूर्ण उद्देश्य होता है। यदि A, C का एक वस्तु है, तो C से 'सेट' तक गुणन जो X को HomC(X,A) भेजता है (X से A तक C में आकारिकी का सेट) इस तरह के एक गुणन का एक उदाहरण है। यदि C एक छोटी श्रेणी है (अर्थात इसकी वस्तुओं का संग्रह एक सेट बनाता है), तो C से सेट तक के विपरीत कारक, प्राकृतिक परिवर्तनों के साथ-साथ आकारिता के रूप में, एक नई श्रेणी बनाते हैं, एक गुणन श्रेणी जिसे C पर पूर्व समूह की श्रेणी के रूप में जाना जाता है

सेट की श्रेणी के लिए नींव

ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में सभी समुच्चयों का संग्रह समुच्चय नहीं है; यह नींव के स्वयंसिद्ध से आता है। एक उन संग्रहों को संदर्भित करता है जो उचित वर्गों के रूप में सेट नहीं होते हैं। कोई उचित कक्षाओं को संभाल नहीं सकता क्योंकि एक सेट को संभालता है; विशेष रूप से, कोई यह नहीं लिख सकता है कि वे उचित वर्ग संग्रह (या तो एक सेट या उचित वर्ग) से संबंधित हैं। यह एक समस्या है क्योंकि इसका अर्थ है कि इस सेटिंग में सेट की श्रेणी को सीधे विधि द्वारा औपचारिक रूप नहीं दिया जा सकता है। सेट जैसी श्रेणियां जिनके ऑब्जेक्ट का संग्रह एक उचित वर्ग बनाता है उन्हें बड़ी श्रेणी के रूप में जाना जाता है, उन्हें उन छोटी श्रेणियों से अलग करने के लिए जिनकी वस्तुएं एक सेट बनाती हैं।

समस्या को हल करने का एक तरीका ऐसी प्रणाली में काम करना है जो उचित वर्गों को औपचारिक स्थिति देता है, जैसे कि एनबीजी सेट सिद्धांत इस सेटिंग में, समुच्चयों से बनी श्रेणियों को 'छोटा' कहा जाता है और वे (जैसे सेट) जो उचित वर्गों से बनते हैं, उन्हें 'बड़ा' कहा जाता है।

एक अन्य समाधान ग्रोथेंडिक ब्रह्मांडों के अस्तित्व को मान लेना है। लगभग परिणाम, एक ग्रोथेंडिक ब्रह्मांड एक सेट है जो स्वयं ZF(C) का एक मॉडल है (उदाहरण के लिए यदि कोई सेट ब्रह्मांड से संबंधित है, तो इसके तत्व और इसकी शक्तियां ब्रह्मांड से संबंधित होंगी)। ग्रोथेंडिक ब्रह्मांडों का अस्तित्व (खाली सेट और सेट के अलावा सभी आनुवंशिक रूप से परिमित सेटों में) सामान्य ZF स्वयंसिद्धों द्वारा निहित नहीं है; यह एक अतिरिक्त, स्वतंत्र स्वयंसिद्ध है, लगभगर दुर्गम कार्डिनल्स के अस्तित्व के बराबर है। इस अतिरिक्त स्वयंसिद्ध को मानते हुए, सेट की वस्तुओं को किसी विशेष ब्रह्मांड के तत्वों तक सीमित कर सकते हैं। (मॉडल के अन्दर सभी सेटों का कोई सेट नहीं है, लेकिन कोई भी सभी आंतरिक सेटों के वर्ग 'U' के बारे में तर्क कर सकता है, अर्थात् 'U' के तत्व।)

इस योजना की एक भिन्नता में, सेट का वर्ग ग्रोथेंडिक ब्रह्मांडों के पूरे टॉवर का मिलन है। (यह आवश्यक रूप से एक उचित वर्ग है, लेकिन प्रत्येक ग्रोथेंडिक ब्रह्मांड एक सेट है क्योंकि यह कुछ बड़े ग्रोथेंडिक ब्रह्मांड का एक तत्व है।) चूंकि, सभी सेटों की श्रेणी के साथ सीधे काम नहीं करता है। इसके अतिरिक्त, श्रेणी सेट के संदर्भ में प्रमेय व्यक्त किए जाते हैंU जिनकी वस्तुएं पर्याप्त रूप से बड़े ग्रोथेंडिक ब्रह्मांड U के तत्व हैं, और फिर उन्हें U की विशेष पसंद पर निर्भर नहीं दिखाया जाता है। श्रेणी सिद्धांत के आधार के रूप में, यह दृष्टिकोण टार्स्की-ग्रोथेंडिक सेट सिद्धांत जैसी प्रणाली से बहुत समान है जिसमें कोई उचित कक्षाओं के बारे में सीधे तर्क नहीं कर सकता; इसकी प्रमुख हानि यह है कि एक प्रमेय सभी 'सेटU' के लिए सत्य हो सकता है लेकिन सेट के लिये सत्य नहीं हो सकती है।

कई अन्य समाधान, और उपरोक्त पर विविधताएं प्रस्तावित की गई हैं।[1][2][3]

अन्य ठोस श्रेणियों के साथ भी यही समस्याएँ उत्पन्न होती हैं, जैसे समूहों की श्रेणी या टोपोलॉजिकल स्पेस की श्रेणी

यह भी देखें

टिप्पणियाँ


संदर्भ

  • Blass, A. (1984). "The interaction between category theory and set theory" (PDF). Mathematical Applications of Category Theory. Contemporary Mathematics. Vol. 30. American Mathematical Society. pp. 5–29. doi:10.1090/conm/030/749767. ISBN 978-0-8218-5032-9.
  • Feferman, S. (1969). "Set-theoretical foundations of category theory". Mac Lane 1969. pp. 201–247. doi:10.1007/BFb0059148.
  • Lawvere, F.W. An elementary theory of the category of sets (long version) with commentary
  • Mac Lane, S. (2006) [1969]. "One universe as a foundation for category theory". In Mac Lane, S. (ed.). Reports of the Midwest Category Seminar III. Lecture Notes in Mathematics. Vol. 106. Springer. pp. 192–200. doi:10.1007/BFb0059147. ISBN 978-3-540-36150-3.
  • Mac Lane, Saunders (September 1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5. Springer. ISBN 0-387-98403-8.
  • Pareigis, Bodo (1970), Categories and functors, Pure and applied mathematics, vol. 39, Academic Press, ISBN 978-0-12-545150-5


इस पेज में लापता आंतरिक लिंक की सूची

  • समारोह रचना
  • आकारिता
  • अंक शास्त्र
  • कुल समारोह
  • संबंधी संपत्ति
  • पहचान समारोह
  • कार्तीय गुणन
  • खाली समारोह
  • पूरी श्रेणी
  • समाकृतिकता (श्रेणी सिद्धांत)
  • द्विभाजित
  • संघ अलग करना
  • प्रतिउत्पाद (श्रेणी सिद्धांत)
  • योजक श्रेणी
  • प्रतिपरिवर्ती संचालिका
  • प्रत्यक्ष सीमा
  • पूर्वगामी श्रेणी
  • पसंद का स्वयंसिद्ध
  • फ़ैक्टर श्रेणी
  • नींव का स्वयंसिद्ध
  • वंशानुगत रूप से परिमित सेट
  • दृढ़ता से दुर्गम कार्डिनल

बाहरी संबंध