रिक्त गुणनफल: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Result from multiplying no factors}} {{for|the non-empty product that equals to zero|zero-product property}} गणित में, एक रिक्त...")
 
Line 94: Line 94:




==इस पेज में लापता आंतरिक लिंक की सूची==
*गुणा
*गुणक पहचान
*अंक शास्त्र
*गणितीय अधिष्ठापन
*खाली सेट
*कारख़ाने का
*रैखिक नक्शा
*पहचान समारोह
*पोछाम्मेर सिंबल
*अंतर ऑपरेटर
*कार्तीय गुणन
*खाली समारोह
*असतत श्रेणी
*सहउत्पाद
*decategorification
*खाली सच
*विधेय गणना
*पायथन (प्रोग्रामिंग भाषा)
*विविध समारोह
*अशक्त
== बाहरी संबंध ==
== बाहरी संबंध ==
* [https://web.archive.org/web/20150217225003/http://planetmath.org/emptyproduct PlanetMath article on the empty product]
* [https://web.archive.org/web/20150217225003/http://planetmath.org/emptyproduct PlanetMath article on the empty product]

Revision as of 16:53, 7 December 2022

गणित में, एक रिक्त गुणनफल, या शून्य गुणनफल या रिक्त गुणनफल, बिना किसी कारक के गुणन का परिणाम होता है। यह गुणनात्मक पहचान के बराबर सम्मेलन द्वारा है (यह मानते हुए कि प्रश्न में गुणन संक्रिया के लिए एक पहचान है), ठीक वैसे ही जैसे [[खाली योग]] - अतिरिक्त संख्याओं का परिणाम - सम्मेलन 0, या योज्य पहचान द्वारा होता है।[1][2][3][4] जब संख्याएँ निहित होती हैं, तो खाली गुणनफल एक हो जाता है।

अंकगणितीय परिचालनों पर चर्चा करते समय खाली उत्पाद शब्द का प्रयोग अक्सर उपरोक्त अर्थ में किया जाता है। हालाँकि, कभी-कभी इस शब्द का उपयोग तब किया जाता है जब समुच्चय सिद्धान्त|सेट-सैद्धांतिक चौराहों, श्रेणीबद्ध उत्पादों और कंप्यूटर प्रोग्रामिंग में उत्पादों पर चर्चा की जाती है; इन पर नीचे चर्चा की गई है।

शून्य अंकगणितीय उत्पाद

परिभाषा

चलो ए1, एक2, एक3, ... संख्याओं का एक क्रम हो, और चलो

अनुक्रम के प्रथम m तत्वों का गुणनफल हो। फिर

सभी के लिए m = 1, 2, ... बशर्ते कि हम परिपाटी का उपयोग करें . दूसरे शब्दों में, बिना किसी कारक वाला उत्पाद 1 का मूल्यांकन करता है। किसी उत्पाद को शून्य कारकों के साथ अनुमति देने से कई गणितीय फ़ार्मुलों में विचार किए जाने वाले मामलों की संख्या कम हो जाती है। इस तरह का उत्पाद गणितीय प्रेरण के साथ-साथ एल्गोरिदम में एक प्राकृतिक प्रारंभिक बिंदु है। इन कारणों से, गणित और कंप्यूटर प्रोग्रामिंग में खाली उत्पाद एक सामान्य प्रथा है।

खाली उत्पादों को परिभाषित करने की प्रासंगिकता

खाली गुणनफल की धारणा इसी कारण से उपयोगी है कि संख्या 0 और रिक्त समुच्चय उपयोगी हैं: जबकि वे काफी निर्बाध धारणाओं का प्रतिनिधित्व करते प्रतीत होते हैं, उनका अस्तित्व कई विषयों की बहुत छोटी गणितीय प्रस्तुति की अनुमति देता है।

उदाहरण के लिए, खाली उत्पाद 0! = 1 (शून्य का भाज्य) और x0 = 1 टेलर श्रृंखला को छोटा करें # परिभाषा (जब x = 0 की चर्चा के लिए शून्य की घात शून्य देखें)। इसी तरह, यदि M एक n × n मैट्रिक्स है, तो M0 n × n पहचान मैट्रिक्स है, जो इस तथ्य को दर्शाता है कि एक रेखीय मानचित्र को शून्य बार लागू करने का वही प्रभाव होता है जो पहचान फ़ंक्शन को लागू करने का होता है।

एक अन्य उदाहरण के रूप में, अंकगणित का मौलिक प्रमेय कहता है कि 1 से अधिक प्रत्येक धनात्मक पूर्णांक को अभाज्य संख्याओं के गुणनफल के रूप में विशिष्ट रूप से लिखा जा सकता है। हालांकि, अगर हम केवल 0 या 1 कारकों के साथ उत्पादों की अनुमति नहीं देते हैं, तो प्रमेय (और इसका सबूत) लंबा हो जाता है।[5][6] गणित में रिक्त गुणनफल के उपयोग के अधिक उदाहरण द्विपद प्रमेय में पाए जा सकते हैं (जो मानता है और इसका अर्थ है कि x0 = 1 for all x), स्टर्लिंग संख्या, कोनिग प्रमेय (सेट सिद्धांत) | कोनिग प्रमेय, द्विपद प्रकार, द्विपद श्रृंखला, अंतर संकारक और पोचममेर प्रतीक।

लघुगणक और घातांक

चूंकि लघुगणक उत्पादों को राशियों में मैप करते हैं:

वे एक खाली उत्पाद को एक खाली योग में मैप करते हैं।

इसके विपरीत, घातीय फ़ंक्शन मानचित्र उत्पादों में योग करता है:

और एक खाली योग को एक खाली उत्पाद से मैप करता है।

न्यूलरी कार्टेशियन उत्पाद

कार्टेशियन उत्पाद की सामान्य परिभाषा पर विचार करें:

यदि I खाली है, तो केवल ऐसा g खाली कार्य है , जो कि अद्वितीय उपसमुच्चय है वह एक कार्य है , अर्थात् खाली उपसमुच्चय (एकमात्र उपसमुच्चय जो है):

इस प्रकार, बिना सेट के कार्टेशियन उत्पाद की प्रमुखता 1 है।

शायद अधिक परिचित n-tuple व्याख्या के तहत,

वह है, सिंगलटन सेट जिसमें खाली टपल होता है। ध्यान दें कि दोनों अभ्यावेदन में खाली उत्पाद की प्रमुखता 1 है - 0 इनपुट से 0 आउटपुट उत्पन्न करने के सभी तरीकों की संख्या 1 है।

अशक्त श्रेणीबद्ध उत्पाद

किसी भी श्रेणी (श्रेणी सिद्धांत) में, एक खाली परिवार का उत्पाद (श्रेणी सिद्धांत) उस श्रेणी का एक अंतिम वस्तु है। यह उत्पाद की सीमा (श्रेणी सिद्धांत) परिभाषा का उपयोग करके प्रदर्शित किया जा सकता है। एन-गुना श्रेणीबद्ध उत्पाद को एन ऑब्जेक्ट्स के साथ अलग श्रेणी द्वारा दिए गए आरेख (श्रेणी सिद्धांत) के संबंध में सीमा के रूप में परिभाषित किया जा सकता है। एक खाली उत्पाद तब खाली श्रेणी के संबंध में सीमा द्वारा दिया जाता है, जो मौजूद होने पर श्रेणी का टर्मिनल वस्तु होता है। यह परिभाषा ऊपर के रूप में परिणाम देने में माहिर है। उदाहरण के लिए, सेट की श्रेणी में श्रेणीबद्ध उत्पाद सामान्य कार्टेशियन उत्पाद है, और टर्मिनल ऑब्जेक्ट एक सिंगलटन सेट है। समूहों की श्रेणी में श्रेणीबद्ध उत्पाद समूहों का कार्टेशियन उत्पाद है, और टर्मिनल ऑब्जेक्ट एक तत्व वाला एक तुच्छ समूह है। रिक्त गुणनफल की सामान्य अंकगणितीय परिभाषा प्राप्त करने के लिए हमें परिमित समुच्चयों की श्रेणी में रिक्त गुणनफल के विवर्गीकरण को लेना चाहिए।

दोहरी (श्रेणी सिद्धांत), एक खाली परिवार का प्रतिफल एक प्रारंभिक वस्तु है। किसी दिए गए वर्ग में निरर्थक श्रेणीबद्ध उत्पाद या सह-उत्पाद मौजूद नहीं हो सकते हैं; उदा. खेतों की श्रेणी में, न तो मौजूद है।

तर्क में

शास्त्रीय तर्क तार्किक संयोजन के संचालन को परिभाषित करता है, जो विधेय कलन में सार्वभौमिक परिमाणीकरण के लिए सामान्यीकृत है, और व्यापक रूप से तार्किक गुणन के रूप में जाना जाता है क्योंकि हम सहज रूप से 1 के साथ सत्य और 0 के साथ असत्य की पहचान करते हैं और हमारा संयोजन साधारण गुणक के रूप में व्यवहार करता है। गुणक में निविष्टियों की मनमानी संख्या हो सकती है। 0 इनपुट के मामले में, हमारे पास खाली संयोजन है, जो समान रूप से सत्य के बराबर है।

यह तर्क में एक अन्य अवधारणा से संबंधित है, रिक्त सत्य, जो हमें बताता है कि वस्तुओं के रिक्त समुच्चय में कोई गुण हो सकता है। इसे इस तरह से समझाया जा सकता है कि संयोजन (सामान्य रूप से तर्क के हिस्से के रूप में) कम या बराबर 1 के मूल्यों से संबंधित है। इसका मतलब यह है कि संयोजन जितना लंबा होगा, 0 के साथ समाप्त होने की संभावना उतनी ही अधिक होगी। संयोजन केवल प्रस्ताव और रिटर्न की जांच करता है। 0 (या असत्य) जैसे ही प्रस्तावों में से एक असत्य का मूल्यांकन करता है। संयुक्त प्रस्तावों की संख्या को कम करने से चेक पास करने और 1 के साथ बने रहने का मौका बढ़ जाता है। विशेष रूप से, यदि 0 परीक्षण या जांच करने के लिए सदस्य हैं, तो कोई भी विफल नहीं हो सकता है, इसलिए डिफ़ॉल्ट रूप से हमें हमेशा सफल होना चाहिए चाहे कोई भी प्रस्ताव या सदस्य संपत्तियां हों परीक्षण किया जाए।

कंप्यूटर प्रोग्रामिंग में

कई प्रोग्रामिंग लैंग्वेज, जैसे कि पायथन (प्रोग्रामिंग लैंग्वेज), संख्याओं की सूचियों की प्रत्यक्ष अभिव्यक्ति की अनुमति देती है, और यहां तक ​​​​कि ऐसे फ़ंक्शन भी जो मनमाने ढंग से मापदंडों की संख्या की अनुमति देते हैं। यदि ऐसी भाषा में कोई फ़ंक्शन है जो सूची में सभी संख्याओं के उत्पाद को लौटाता है, तो यह आमतौर पर इस तरह काम करता है: <वाक्यविन्यास लैंग = पिकॉन> >>> गणित.प्रोड ([2, 3, 5]) 30 >>> गणित.प्रोड ([2, 3]) 6 >>> गणित.प्रोड ([2]) 2 >>> गणित.प्रोड ([]) 1 </वाक्यविन्यास हाइलाइट> (कृपया ध्यान दें: prod में उपलब्ध नहीं है math मॉड्यूल संस्करण 3.8 से पहले।)

यह सम्मेलन विशेष मामलों को कोड करने से बचने में मदद करता है जैसे सूची की लंबाई 1 है या यदि विशेष मामलों के रूप में सूची की लंबाई शून्य है।

गुणा एक इंफिक्स नोटेशन ऑपरेटर है और इसलिए एक बाइनरी ऑपरेटर है, जो एक खाली उत्पाद के अंकन को जटिल बनाता है। कुछ प्रोग्रामिंग लैंग्वेज वैरिएडिक फ़ंक्शंस को लागू करके इसे हैंडल करती हैं। उदाहरण के लिए, लिस्प प्रोग्रामिंग भाषा की एस-अभिव्यक्ति शून्य कार्यों के लिए एक प्राकृतिक संकेतन को जन्म देती है:

(* 2 2 2); 8 का मूल्यांकन करता है
(* 2 2); 4 का मूल्यांकन करता है
(* 2); 2 का मूल्यांकन करता है
(*); 1 का मूल्यांकन करता है

यह भी देखें

संदर्भ

  1. Jaroslav Nešetřil, Jiří Matoušek (1998). असतत गणित के लिए निमंत्रण. Oxford University Press. p. 12. ISBN 0-19-850207-9.
  2. A.E. Ingham and R C Vaughan (1990). अभाज्य संख्याओं का वितरण. Cambridge University Press. p. 1. ISBN 0-521-39789-8.
  3. Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, p. 9, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
  4. David M. Bloom (1979). रेखीय बीजगणित और ज्यामिति. pp. 45. ISBN 0521293243.
  5. Edsger Wybe Dijkstra (1990-03-04). "कैसे कम्प्यूटिंग साइंस ने एक नई गणितीय शैली बनाई". EWD. Retrieved 2010-01-20. हार्डी एंड राइट: 'प्रत्येक सकारात्मक पूर्णांक, 1 को छोड़कर, अभाज्य संख्याओं का गुणनफल है', हेरोल्ड एम. स्टार्क: 'यदि n 1 से अधिक पूर्णांक है, तो या तो n अभाज्य है या n अभाज्य संख्याओं का परिमित गुणनफल है। ये उदाहरण - जो मुझे ए. जे. एम. वैन गैस्टरन के लिए देय हैं - दोनों खाली उत्पाद को अस्वीकार करते हैं, अंतिम वाला भी एक कारक के साथ उत्पाद को अस्वीकार करता है।
  6. Edsger Wybe Dijkstra (1986-11-14). "मेरे शोध की प्रकृति और मैं इसे क्यों करता हूं". EWD. Archived from the original on 2012-07-15. Retrieved 2010-07-03. लेकिन 0 निश्चित रूप से परिमित है और 0 कारकों के उत्पाद को परिभाषित करके - और कैसे? - 1 के बराबर होने के लिए हम इस अपवाद को दूर कर सकते हैं: 'यदि n एक धनात्मक पूर्णांक है, तो n अभाज्य संख्याओं का परिमित गुणनफल है।'


बाहरी संबंध