विस्तारित वास्तविक संख्या रेखा: Difference between revisions
No edit summary |
No edit summary |
||
Line 32: | Line 32: | ||
कार्यों को अनंत मानों पर लेने की अनुमति के बिना, [[मोनोटोन अभिसरण प्रमेय]] और वर्चस्व वाले अभिसरण प्रमेय जैसे आवश्यक परिणाम समझ में नहीं आएंगे। | कार्यों को अनंत मानों पर लेने की अनुमति के बिना, [[मोनोटोन अभिसरण प्रमेय]] और वर्चस्व वाले अभिसरण प्रमेय जैसे आवश्यक परिणाम समझ में नहीं आएंगे। | ||
== ऑर्डर और टोपोलॉजिकल गुण == | <nowiki>== ऑर्डर और टोपोलॉजिकल गुण ==</nowiki> | ||
परिभाषित करके, विस्तृत रूप से विस्तारित वास्तविक संख्या प्रणाली को [[पूरी तरह से आदेशित सेट]] में बदल दिया जा सकता है | सभी <math>a</math> के लिए <math>-\infty \leq a \leq +\infty</math> को परिभाषित करके, विस्तृत रूप से विस्तारित वास्तविक संख्या प्रणाली को [[पूरी तरह से आदेशित सेट]] में बदल दिया जा सकता है, इस [[आदेश टोपोलॉजी]] के साथ, <math>\overline{\R}</math> [[कॉम्पैक्ट जगह]] की वांछनीय गुण है: <math>\overline\R</math> का प्रत्येक सबसेट उच्चतम और निम्नतम है<ref>{{cite book |last1=Oden |first1=J. Tinsley |last2= Demkowicz|first2= Leszek|title=एप्लाइड कार्यात्मक विश्लेषण|date=16 January 2018 |publisher=Chapman and Hall/CRC |isbn=9781498761147 |page=74 |edition=3 |access-date=8 December 2019 |url=https://www.crcpress.com/Applied-Functional-Analysis/Oden-Demkowicz/p/book/9781498761147}}</ref> (खाली सेट का न्यूनतम <math>+\infty</math> है, और इसकी सर्वोच्चता <math>-\infty</math>है). इसके अतिरिक्त, इस टोपोलॉजी के साथ, <math>\overline\R</math> [[इकाई अंतराल]] के लिए <math>[0, 1]</math> [[होमोमोर्फिज्म]] है इस प्रकार टोपोलॉजी इस अंतराल पर साधारण मीट्रिक के अनुरूप (दिए गए होमोमोर्फिज्म के लिए) [[metrizable]] है। चूंकि, कोई मीट्रिक नहीं है, जो <math>\R</math> पर सामान्य मीट्रिक का विस्तार है | ||
इस टोपोलॉजी में, एक सेट <math>U</math> | |||
इस टोपोलॉजी में, एक सेट <math>U</math>, <math>+\infty</math> का निकटतम पड़ोसी (टोपोलॉजी) है, अगर और केवल अगर इसमें कुछ वास्तविक संख्या <math>a</math> के लिए एक सेट <math>\{ x : x > a \}</math>शम्मिलित है, <math>-\infty</math> के पड़ोस की धारणा इसी प्रकार परिभाषित किया जा सकता है। विस्तारित-वास्तविक पड़ोस के इस लक्षण वर्णन का उपयोग करते हुए, <math>x</math> की सीमा <math>+\infty</math> या <math>-\infty</math> के लिए उन्मुख, और सीमा के बराबर को <math>+\infty</math> तथा <math>-\infty</math> तक सीमित करता है, वास्तविक संख्या प्रणाली में एक विशेष परिभाषा होने के अतिरिक्त सीमा की सामान्य सामयिक परिभाषा को कम करता है। | |||
== अंकगणितीय संचालन == | == अंकगणितीय संचालन == | ||
<math>\R</math> की अंकगणितीय संक्रियाओं को आंशिक रूप से <math>\overline\R</math> तक बढ़ाया जा सकता है निम्नलिखित के अनुसार:<ref name=":0" /> | |||
:<math> | :<math> | ||
Line 53: | Line 53: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
घातांक के लिए, | घातांक के लिए, {{Section link|घातांक|शक्तियों की सीमा}} देखें. यहां, <math>a + \infty</math> दोनों का अर्थ <math>a + (+\infty)</math> है और <math>a - (-\infty),</math> जबकि <math>a - \infty</math> दोनों का अर्थ <math>a - (+\infty)</math> और <math>a + (-\infty)</math> है | ||
धनात्मक और ऋणात्मक दोनों विस्तारित वास्तविक संख्याओं के साथ | व्यंजक <math>\infty - \infty, 0 \times (\pm\infty)</math> और <math>\pm\infty/\pm\infty</math> (जिसे [[अनिश्चित रूप]] कहा जाता है) को सामान्यतः पर [[परिभाषित और अपरिभाषित|अपरिभाषित]] छोड़ दिया जाता है। ये नियम अनंत सीमाओं के कानूनों पर आधारित हैं। हालांकि, संभाव्यता या माप सिद्धांत के संदर्भ में, <math>0 \times \pm\infty</math> को अधिकांश {{nowrap|<math>0</math><ref>{{Cite web|url=https://ncatlab.org/nlab/show/extended+real+number|title=extended real number in nLab|website=ncatlab.org|access-date=2019-12-03}}</ref>}} से परिभाषित किया जाता है | ||
धनात्मक और ऋणात्मक दोनों विस्तारित वास्तविक संख्याओं के साथ काम करते समय, व्यंजक <math>1/0</math> सामायतः अपरिभाषित छोड़ दिया जाता है, क्योंकि, हालांकि यह सच है कि <math>0,</math> में परिवर्तित होने वाले प्रत्येक वास्तविक अशून्य अनुक्रम <math>f</math> के लिए पारस्परिक अनुक्रम <math>1/f</math> अंततः के हर पड़ोस <math>\{ \infty, -\infty \}</math> में समाहित है, यह सच नहीं है कि क्रम <math>1/f</math> खुद को या तो <math>-\infty</math> या <math>\infty.</math>अभिसरण करना चाहिए दूसरे तरीके से कहा जाये तो, अगर एक सतत कार्य <math>f</math> एक निश्चित मान <math>x_0</math>पर शून्य प्राप्त करता है, तो यह स्थिति नहीं होना चाहिए कि <math>1/f</math> या तो <math>-\infty</math> या <math>\infty</math> के रूप में सीमा में <math>x</math> <math>x_0</math> की और जाता है, यह [[पहचान समारोह|पहचान फलन]] <math>f(x) = x</math> की सीमाओं के लिए स्थिति में है जब <math>x</math> <math>0 | |||
</math> की और जाता है और के <math>f(x) = x^2 \sin \left( 1/x \right)</math> (बाद के फलन के लिए, न तो <math>-\infty</math> न <math>\infty</math> की सीमा <math>1/f(x)</math> है, भले ही <math>x</math> के केवल धनात्मक मान माना जाता है)। | |||
चूंकि, ऐसे संदर्भों में जहां केवल गैर-ऋणात्मक मानों पर विचार किया जाता है, <math>1/0 = +\infty</math> को परिभाषित करना अक्सर सुविधाजनक होता है। उदाहरण के लिए, शक्ति श्रृंखला के साथ काम करते समय, गुणांक के साथ एक शक्ति श्रृंखला के [[अभिसरण की त्रिज्या]] <math>a_n</math> अधिकांश अनुक्रम की सीमा-सर्वोच्चता के व्युत्क्रम <math>\left\{|a_n|^{1/n}\right\}</math> के रूप में परिभाषित किया जाता है, इस प्रकार, अगर कोई <math>1/0</math> को <math>+\infty</math> मान लेने की अनुमति देता है, तो कोई भी इस सूत्र का उपयोग कर सकता है चाहे सीमा-सर्वोच्च <math>0 </math> हो या नहीं। | |||
== बीजगणितीय गुण == | == बीजगणितीय गुण == | ||
इन परिभाषाओं के साथ, <math>\overline\R</math> [[समूह (गणित)]], वलय | इन परिभाषाओं के साथ, <math>\overline\R</math> एक [[समूह (गणित)|अर्धसमूह (गणित)]], भी नही है अकेले एक समूह, एक वलय या [[क्षेत्र (गणित)]] की तो बात ही छोड़ दें, जैसा कि <math>\R</math> के स्थितियों में है चूँकि, इसमें कई सुविधाजनक गुण हैं: | ||
* <math>a + (b + c)</math> तथा <math>(a + b) + c</math> या तो बराबर हैं या दोनों अपरिभाषित हैं। | * <math>a + (b + c)</math> तथा <math>(a + b) + c</math> या तो बराबर हैं या दोनों अपरिभाषित हैं। | ||
* <math>a + b</math> तथा <math>b + a</math> या तो बराबर हैं या दोनों अपरिभाषित हैं। | * <math>a + b</math> तथा <math>b + a</math> या तो बराबर हैं या दोनों अपरिभाषित हैं। | ||
Line 69: | Line 72: | ||
* यदि <math>a \leq b</math> और यदि दोनों <math>a + c</math> तथा <math>b + c</math> परिभाषित हैं, तो <math>a + c \leq b + c.</math> | * यदि <math>a \leq b</math> और यदि दोनों <math>a + c</math> तथा <math>b + c</math> परिभाषित हैं, तो <math>a + c \leq b + c.</math> | ||
* यदि <math>a \leq b</math> तथा <math>c > 0</math> और यदि दोनों <math>a \cdot c</math> तथा <math>b \cdot c</math> परिभाषित हैं, तो <math>a \cdot c \leq b \cdot c.</math> | * यदि <math>a \leq b</math> तथा <math>c > 0</math> और यदि दोनों <math>a \cdot c</math> तथा <math>b \cdot c</math> परिभाषित हैं, तो <math>a \cdot c \leq b \cdot c.</math> | ||
सामान्यतः अंकगणित के सभी नियम मान्य | सामान्यतः अंकगणित के सभी नियम मान्य <math>\overline\R</math> में होते हैं—जब तक कि सभी घटित होने वाले भाव परिभाषित हैं। | ||
== विविध == | == विविध == | ||
कई कार्यों | सीमाएँ लेकर कई कार्यों को [[निरंतरता (टोपोलॉजी)]] <math>\overline\R</math> तक बढ़ाया जा सकता है उदाहरण के लिए, निम्नलिखित कार्यों के चरम बिंदुओं को परिभाषित किया जा सकता है: | ||
:<math>\exp(-\infty) = 0,</math> :<math>\ln(0) = -\infty,</math> | :<math>\exp(-\infty) = 0,</math> :<math>\ln(0) = -\infty,</math> | ||
:<math>\tanh(\pm\infty) = \pm 1,</math> | :<math>\tanh(\pm\infty) = \pm 1,</math> | ||
:<math>\arctan(\pm\infty) = \pm\frac{\pi}{2}.</math> | :<math>\arctan(\pm\infty) = \pm\frac{\pi}{2}.</math> | ||
कुछ [[विलक्षणता (गणित)]] को अतिरिक्त रूप से हटाया जा सकता है। उदाहरण के लिए, | कुछ [[विलक्षणता (गणित)]] को अतिरिक्त रूप से हटाया जा सकता है। उदाहरण के लिए, फलन <math>1/x^2</math> तक लगातार <math>\overline\R</math> (निरंतरता की कुछ परिभाषाओं के तहत) बढ़ाया जा सकता है, <math>x = 0,</math> तथा <math>0 </math> के लिये <math>x = +\infty</math> तथा <math>x = -\infty.</math> और के लिये मान को <math>+\infty</math> पर सेट करते है। दूसरी ओर, फलन <math>1/x</math> लगातार विस्तारित नहीं किया जा सकता, क्योंकि फलन <math>-\infty</math> तक पहुचता है और क्योंकि नीचे से <math>0 </math> तक पहुचता है, और <math>+\infty</math> जैसा <math>x</math> ऊपर से <math>0 </math> तक पहुचता है। | ||
एक समान लेकिन भिन्न वास्तविक-रेखा प्रणाली, [[अनुमानित रूप से विस्तारित वास्तविक रेखा]], | एक समान लेकिन भिन्न वास्तविक-रेखा प्रणाली, [[अनुमानित रूप से विस्तारित वास्तविक रेखा]], <math>+\infty</math> तथा <math>-\infty</math> (अर्थात अनंत अहस्ताक्षरित है) के बीच अंतर नहीं करती है।<ref>{{Cite web|url=http://mathworld.wolfram.com/ProjectivelyExtendedRealNumbers.html|title=अनुमानित रूप से विस्तारित वास्तविक संख्याएँ|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-03}}</ref> परिणामस्वरुप, एक फ़ंक्शन में अनुमानित रूप से विस्तारित वास्तविक रेखा पर सीमा <math>+\infty</math> हो सकती है, जबकि सजातीय रूप से विस्तारित वास्तविक संख्या प्रणाली में, फ़ंक्शन के केवल निरपेक्ष मान की सीमा होती है, उदा. फलन <math>1/x</math> की स्थिति में <math>x = 0</math> पर दूसरी ओर, <math>\lim_{x \to -\infty}{f(x)}</math> तथा <math>\lim_{x \to +\infty}{f(x)}</math> प्रक्षेप्य रूप से विस्तारित वास्तविक रेखा पर क्रमशः दाईं ओर से केवल एक सीमा तक और बाईं ओर से एक सीमा तक, पूर्ण सीमा के साथ केवल तभी मौजूद होता है जब दोनों बराबर होते हैं। इस प्रकार, <math>e^x</math> तथा <math>\arctan(x)</math> को अनुमानित रूप से विस्तारित वास्तविक रेखा पर <math>x = \infty</math> पर निरंतर नहीं बनाया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 07:15, 21 December 2022
गणित में, सजातीय रूप से विस्तारित वास्तविक संख्या प्रणाली वास्तविक संख्या प्रणाली से दो अनंत तत्वों को जोड़कर: तथा प्राप्त की जाती है[lower-alpha 1] जहां अनंत को वास्तविक संख्या के रूप में माना जाता है। यह विशेष रूप से माप (गणित) और अभिन्न के सिद्धांत में अनंतता पर बीजगणित और गणना और गणितीय विश्लेषण में कार्यों की विभिन्न सीमाओं का वर्णन करने में उपयोगी है।[1] आत्मीयता से विस्तारित वास्तविक संख्या प्रणाली को निरूपित किया जाता है या या [2] यह वास्तविक संख्याओं का डेडेकाइंड-मैकनील समापन है।
जब अर्थ संदर्भ से स्पष्ट होता है, तो प्रतीक को अधिकांश [2] के रूप में लिखा जाता है
प्रेरणा
सीमाएं
किसी फ़ंक्शन के व्यवहार का वर्णन करना अधिकांश उपयोगी होता है, या तो तर्क या फ़ंक्शन मान कुछ अर्थों में "अनंत रूप से बड़ा" हो जाता है। उदाहरण के लिए, द्वारा परिभाषित फ़ंक्शन पर विचार करें
इस फ़ंक्शन के ग्राफ़ में एक क्षैतिज स्पर्शोन्मुख है। ज्यामितीय रूप से, जब -अक्ष के साथ-साथ दाहिनी ओर बढ़ते समय, का मान 0 की ओर अग्रसर होता है। यह सीमित व्यवहार फ़ंक्शन की सीमा के समान है जिसमें वास्तविक संख्या दृष्टिकोण तक पहुंचती है, सिवाय इसके कि कोई वास्तविक संख्या नहीं है जिसके पास पहुंचता है।
तथा से तत्वों को जोड़कर यह के समान टोपोलॉजिकल गुणों के साथ "अनंत पर सीमा" के सूत्रीकरण को सक्षम करता है।
चीजों को पूरी तरह से औपचारिक बनाने के लिए, के कौशी अनुक्रम परिभाषित को सभी अनुक्रमों के सेट के रूप में परिभाषित करने की अनुमति देती है परिमेय संख्याएँ, जैसे कि प्रत्येक संबंधित से जुड़ा है जिसके लिए सभी के लिए की परिभाषा समान बनाया जा सकता है।
माप और एकीकरण
माप सिद्धांत में, यह अधिकांश उन सेटों को अनुमति देने के लिए उपयोगी होता है जिनमें अनंत माप और समाकलन होते हैं जिनका मान अनंत हो सकता है।
ऐसे उपाय स्वाभाविक रूप से कलन से उत्पन्न होते हैं। उदाहरण के लिए, को माप निर्दिष्ट करने में, जो अंतराल की सामान्य लंबाई से सहमत है, यह माप किसी परिमित वास्तविक संख्या से बड़ा होना चाहिए। साथ ही, अनुचित समाकलन पर विचार करते समय, जैसे
मान "अनंत" उत्पन्न होता है। अंत में, अक्सर कार्यों के अनुक्रम की सीमा पर विचार करना उपयोगी होता है, जैसे
कार्यों को अनंत मानों पर लेने की अनुमति के बिना, मोनोटोन अभिसरण प्रमेय और वर्चस्व वाले अभिसरण प्रमेय जैसे आवश्यक परिणाम समझ में नहीं आएंगे।
== ऑर्डर और टोपोलॉजिकल गुण ==
सभी के लिए को परिभाषित करके, विस्तृत रूप से विस्तारित वास्तविक संख्या प्रणाली को पूरी तरह से आदेशित सेट में बदल दिया जा सकता है, इस आदेश टोपोलॉजी के साथ, कॉम्पैक्ट जगह की वांछनीय गुण है: का प्रत्येक सबसेट उच्चतम और निम्नतम है[3] (खाली सेट का न्यूनतम है, और इसकी सर्वोच्चता है). इसके अतिरिक्त, इस टोपोलॉजी के साथ, इकाई अंतराल के लिए होमोमोर्फिज्म है इस प्रकार टोपोलॉजी इस अंतराल पर साधारण मीट्रिक के अनुरूप (दिए गए होमोमोर्फिज्म के लिए) metrizable है। चूंकि, कोई मीट्रिक नहीं है, जो पर सामान्य मीट्रिक का विस्तार है
इस टोपोलॉजी में, एक सेट , का निकटतम पड़ोसी (टोपोलॉजी) है, अगर और केवल अगर इसमें कुछ वास्तविक संख्या के लिए एक सेट शम्मिलित है, के पड़ोस की धारणा इसी प्रकार परिभाषित किया जा सकता है। विस्तारित-वास्तविक पड़ोस के इस लक्षण वर्णन का उपयोग करते हुए, की सीमा या के लिए उन्मुख, और सीमा के बराबर को तथा तक सीमित करता है, वास्तविक संख्या प्रणाली में एक विशेष परिभाषा होने के अतिरिक्त सीमा की सामान्य सामयिक परिभाषा को कम करता है।
अंकगणितीय संचालन
की अंकगणितीय संक्रियाओं को आंशिक रूप से तक बढ़ाया जा सकता है निम्नलिखित के अनुसार:[2]
घातांक के लिए, घातांक § शक्तियों की सीमा देखें. यहां, दोनों का अर्थ है और जबकि दोनों का अर्थ और है
व्यंजक और (जिसे अनिश्चित रूप कहा जाता है) को सामान्यतः पर अपरिभाषित छोड़ दिया जाता है। ये नियम अनंत सीमाओं के कानूनों पर आधारित हैं। हालांकि, संभाव्यता या माप सिद्धांत के संदर्भ में, को अधिकांश [4] से परिभाषित किया जाता है
धनात्मक और ऋणात्मक दोनों विस्तारित वास्तविक संख्याओं के साथ काम करते समय, व्यंजक सामायतः अपरिभाषित छोड़ दिया जाता है, क्योंकि, हालांकि यह सच है कि में परिवर्तित होने वाले प्रत्येक वास्तविक अशून्य अनुक्रम के लिए पारस्परिक अनुक्रम अंततः के हर पड़ोस में समाहित है, यह सच नहीं है कि क्रम खुद को या तो या अभिसरण करना चाहिए दूसरे तरीके से कहा जाये तो, अगर एक सतत कार्य एक निश्चित मान पर शून्य प्राप्त करता है, तो यह स्थिति नहीं होना चाहिए कि या तो या के रूप में सीमा में की और जाता है, यह पहचान फलन की सीमाओं के लिए स्थिति में है जब की और जाता है और के (बाद के फलन के लिए, न तो न की सीमा है, भले ही के केवल धनात्मक मान माना जाता है)।
चूंकि, ऐसे संदर्भों में जहां केवल गैर-ऋणात्मक मानों पर विचार किया जाता है, को परिभाषित करना अक्सर सुविधाजनक होता है। उदाहरण के लिए, शक्ति श्रृंखला के साथ काम करते समय, गुणांक के साथ एक शक्ति श्रृंखला के अभिसरण की त्रिज्या अधिकांश अनुक्रम की सीमा-सर्वोच्चता के व्युत्क्रम के रूप में परिभाषित किया जाता है, इस प्रकार, अगर कोई को मान लेने की अनुमति देता है, तो कोई भी इस सूत्र का उपयोग कर सकता है चाहे सीमा-सर्वोच्च हो या नहीं।
बीजगणितीय गुण
इन परिभाषाओं के साथ, एक अर्धसमूह (गणित), भी नही है अकेले एक समूह, एक वलय या क्षेत्र (गणित) की तो बात ही छोड़ दें, जैसा कि के स्थितियों में है चूँकि, इसमें कई सुविधाजनक गुण हैं:
- तथा या तो बराबर हैं या दोनों अपरिभाषित हैं।
- तथा या तो बराबर हैं या दोनों अपरिभाषित हैं।
- तथा या तो बराबर हैं या दोनों अपरिभाषित हैं।
- तथा या तो बराबर हैं या दोनों अपरिभाषित हैं
- तथा समान हैं यदि दोनों परिभाषित हैं।
- यदि और यदि दोनों तथा परिभाषित हैं, तो
- यदि तथा और यदि दोनों तथा परिभाषित हैं, तो
सामान्यतः अंकगणित के सभी नियम मान्य में होते हैं—जब तक कि सभी घटित होने वाले भाव परिभाषित हैं।
विविध
सीमाएँ लेकर कई कार्यों को निरंतरता (टोपोलॉजी) तक बढ़ाया जा सकता है उदाहरण के लिए, निम्नलिखित कार्यों के चरम बिंदुओं को परिभाषित किया जा सकता है:
- :
कुछ विलक्षणता (गणित) को अतिरिक्त रूप से हटाया जा सकता है। उदाहरण के लिए, फलन तक लगातार (निरंतरता की कुछ परिभाषाओं के तहत) बढ़ाया जा सकता है, तथा के लिये तथा और के लिये मान को पर सेट करते है। दूसरी ओर, फलन लगातार विस्तारित नहीं किया जा सकता, क्योंकि फलन तक पहुचता है और क्योंकि नीचे से तक पहुचता है, और जैसा ऊपर से तक पहुचता है।
एक समान लेकिन भिन्न वास्तविक-रेखा प्रणाली, अनुमानित रूप से विस्तारित वास्तविक रेखा, तथा (अर्थात अनंत अहस्ताक्षरित है) के बीच अंतर नहीं करती है।[5] परिणामस्वरुप, एक फ़ंक्शन में अनुमानित रूप से विस्तारित वास्तविक रेखा पर सीमा हो सकती है, जबकि सजातीय रूप से विस्तारित वास्तविक संख्या प्रणाली में, फ़ंक्शन के केवल निरपेक्ष मान की सीमा होती है, उदा. फलन की स्थिति में पर दूसरी ओर, तथा प्रक्षेप्य रूप से विस्तारित वास्तविक रेखा पर क्रमशः दाईं ओर से केवल एक सीमा तक और बाईं ओर से एक सीमा तक, पूर्ण सीमा के साथ केवल तभी मौजूद होता है जब दोनों बराबर होते हैं। इस प्रकार, तथा को अनुमानित रूप से विस्तारित वास्तविक रेखा पर पर निरंतर नहीं बनाया जा सकता है।
यह भी देखें
- शून्य से विभाजन
- विस्तारित जटिल विमान
- विस्तारित प्राकृतिक संख्या
- अभिन्न अनुचित
- अनंतता
- सेमीरिंग लॉग करें
- सीरीज (गणित)
- अनुमानित रूप से विस्तारित वास्तविक रेखा
- विस्तारित वास्तविक संख्याओं का कंप्यूटर निरूपण, देखें Floating-point arithmetic § Infinities और IEEE फ़्लोटिंग पॉइंट
टिप्पणियाँ
- ↑ read as positive infinity and negative infinity respectively
संदर्भ
- ↑ Wilkins, David (2007). "धारा 6: विस्तारित वास्तविक संख्या प्रणाली" (PDF). maths.tcd.ie. Retrieved 2019-12-03.
- ↑ 2.0 2.1 2.2 Weisstein, Eric W. "Affinely Extended Real Numbers". mathworld.wolfram.com (in English). Retrieved 2019-12-03.
- ↑ Oden, J. Tinsley; Demkowicz, Leszek (16 January 2018). एप्लाइड कार्यात्मक विश्लेषण (3 ed.). Chapman and Hall/CRC. p. 74. ISBN 9781498761147. Retrieved 8 December 2019.
- ↑ "extended real number in nLab". ncatlab.org. Retrieved 2019-12-03.
- ↑ Weisstein, Eric W. "अनुमानित रूप से विस्तारित वास्तविक संख्याएँ". mathworld.wolfram.com (in English). Retrieved 2019-12-03.
अग्रिम पठन
- Aliprantis, Charalambos D.; Burkinshaw, Owen (1998), Principles of Real Analysis (3rd ed.), San Diego, CA: Academic Press, Inc., p. 29, ISBN 0-12-050257-7, MR 1669668
- David W. Cantrell. "Affinely Extended Real Numbers". MathWorld.