डेटा लिंक लेयर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:
डेटा लिंक प्रोटोकॉल के उदाहरण [[ईथरनेट]], [[पॉइंट-टू-पॉइंट प्रोटोकॉल]] (PPP), [[एचडीएलसी|HDLC]] और [[एडीसीसीपी|ADCCP]] होते हैं। जो [[इंटरनेट प्रोटोकॉल सूट]] (टीसीपी/आईपी) में, डेटा लिंक लेयर की कार्यक्षमता लिंक लेयर के अन्दर समाहित होते है, तथा वर्णनात्मक प्रारूप की सबसे निचली लेयर है, जिसे भौतिक बुनियादी ढांचे से स्वतंत्र माना जाता है।
डेटा लिंक प्रोटोकॉल के उदाहरण [[ईथरनेट]], [[पॉइंट-टू-पॉइंट प्रोटोकॉल]] (PPP), [[एचडीएलसी|HDLC]] और [[एडीसीसीपी|ADCCP]] होते हैं। जो [[इंटरनेट प्रोटोकॉल सूट]] (टीसीपी/आईपी) में, डेटा लिंक लेयर की कार्यक्षमता लिंक लेयर के अन्दर समाहित होते है, तथा वर्णनात्मक प्रारूप की सबसे निचली लेयर है, जिसे भौतिक बुनियादी ढांचे से स्वतंत्र माना जाता है।


== समारोह ==
== फलन ==
डेटा लिंक भौतिक लिंक से जुड़े मेजबानों के बीच डेटा फ्रेम के हस्तांतरण के लिए प्रदान करता है। OSI नेटवर्क आर्किटेक्चर के शब्दार्थ के भीतर, डेटा लिंक लेयर के प्रोटोकॉल [[नेटवर्क परत|नेटवर्क लेयर]] से सेवा अनुरोधों का जवाब देते हैं, और भौतिक स्तर पर सेवा अनुरोध जारी करके अपना कार्य करते हैं। वह स्थानांतरण विश्वसनीय या [[विश्वसनीयता (कंप्यूटर नेटवर्किंग)]] हो सकता है; कई डेटा लिंक प्रोटोकॉल में सफल फ्रेम रिसेप्शन और स्वीकृति की पावती नहीं होती है, और कुछ डेटा लिंक प्रोटोकॉल ट्रांसमिशन त्रुटियों के लिए कोई जांच भी नहीं कर सकते हैं। उन परिस्थितियों में, उच्च-स्तरीय प्रोटोकॉल को [[प्रवाह नियंत्रण (डेटा)]], त्रुटि जाँच, पावती और पुन: प्रसारण प्रदान करना चाहिए।
डेटा लिंक भौतिक लिंक से जुड़े होस्ट के बीच डेटा फ्रेम को संचारण के लिए प्रदान करता है। OSI नेटवर्क संरचना के सेमेन्टिक्स के अन्दर डेटा लिंक लेयर के प्रोटोकॉल [[नेटवर्क परत|नेटवर्क लेयर]] से सेवा अनुरोधों का जवाब देते हैं, तथा भौतिक स्तर पर सेवा अनुरोध जारी करके अपना कार्य करते हैं। वह स्थानांतरण विश्वसनीय या [[विश्वसनीयता (कंप्यूटर नेटवर्किंग)]] हो सकता है। कई डेटा लिंक प्रोटोकॉल में सफल फ्रेम अधिग्रहण और स्वीकृति का परिकलन नहीं होता है, और कुछ डेटा लिंक प्रोटोकॉल संचारण त्रुटियों के लिए कोई जांच भी नहीं कर सकते हैं। तथा उन परिस्थितियों में उच्च-स्तरीय प्रोटोकॉल को [[प्रवाह नियंत्रण (डेटा)]], त्रुटि जाँच परिकलन और पुन: प्रसारण प्रदान करना चाहिए।


फ़्रेम हेडर में स्रोत और गंतव्य पते होते हैं जो इंगित करते हैं कि कौन से उपकरण ने फ़्रेम की उत्पत्ति की है और किस उपकरण से इसे प्राप्त करने और संसाधित करने की उम्मीद है। नेटवर्क लेयर के पदानुक्रमित और रूट करने योग्य पतों के विपरीत, लेयर 2 के पते समतल होते हैं, जिसका अर्थ है कि पते के किसी भी भाग का उपयोग उस तार्किक या भौतिक समूह की पहचान करने के लिए नहीं किया जा सकता है जिससे पता संबंधित है।
फ़्रेम हेडर में स्रोत और गंतव्य के पते होते हैं, जो इंगित करते हैं कि कौन से उपकरण ने फ़्रेम की उत्पत्ति की है और किस उपकरण से इसे प्राप्त करने और संसाधित करने की उम्मीद होती है। नेटवर्क लेयर के पदानुक्रमित और रूट करने योग्य पतों के विपरीत, लेयर-2 के पते समतल होते हैं, जिसका अर्थ है कि पते के किसी भी भाग का उपयोग उस तार्किक या भौतिक समूह की पहचान करने के लिए नहीं किया जा सकता है जिससे पता संबंधित होता है।


कुछ नेटवर्क में, जैसे [[IEEE 802]] [[स्थानीय क्षेत्र अंतरजाल|लोकल एरिया नेटवर्क]], डेटा लिंक लेयर को मीडिया नियंत्रण कंट्रोल (MAC) और लॉजिकल लिंक कंट्रोल (LLC) सबलेयर्स के साथ अधिक विस्तार से वर्णित किया गया है; इसका अर्थ यह है कि IEEE 802.2 LLC प्रोटोकॉल का उपयोग IEEE 802 MAC की सभी लेयरों, जैसे ईथरनेट, [[टोकन रिंग]], IEEE 802.11, आदि के साथ-साथ [[FDDI]] जैसी कुछ गैर-802 MAC लेयरों के साथ किया जा सकता है। अन्य डेटा-लिंक-लेयर प्रोटोकॉल, जैसे [[उच्च-स्तरीय डेटा लिंक नियंत्रण|एचडीएलसी]], दोनों सबलेयर को सम्मिलित करने के लिए निर्दिष्ट हैं, हालांकि कुछ अन्य प्रोटोकॉल, जैसे कि [[सिस्को एचडीएलसी]], एक अलग एलएलसी लेयर के साथ संयोजन में मैक लेयर के रूप में एचडीएलसी के निम्न-स्तरीय फ़्रेमिंग का उपयोग करते हैं। [[ITU-T]] G.hn मानक में, जो उपस्थित होम वायरिंग ([[बिजली लाइन संचार|पावर लाइन]], फोन लाइन और [[मनाना पर ईथरनेट|ईथरनेट]] केबल) का उपयोग करके एक हाई-स्पीड (1 गीगाबिट/सेकंड तक) स्थानीय क्षेत्र नेटवर्क बनाने का एक तरीका प्रदान करता है, डेटा लिंक लेयर तीन उप-लेयरों (एप्लिकेशन प्रोटोकॉल अभिसरण, [[तार्किक लिंक नियंत्रण]] और [[मीडिया अभिगम नियंत्रण]]) में विभाजित है।
कुछ नेटवर्क में जैसे [[IEEE 802]] [[स्थानीय क्षेत्र अंतरजाल|स्थानीय क्षेत्र नेटवर्क]], डेटा लिंक लेयर को मीडिया एक्सेस कंट्रोल (MAC) और लॉजिकल लिंक कंट्रोल (LLC) उपलेयर्स के साथ अधिक विस्तार से वर्णित किया गया है। इसका अर्थ यह है कि IEEE 802.2 LLC प्रोटोकॉल का उपयोग IEEE 802 MAC की सभी लेयरों, जैसे ईथरनेट, [[टोकन रिंग]], IEEE 802.11, आदि के साथ-साथ [[FDDI]] जैसी कुछ गैर-802 MAC लेयरों के साथ किया जा सकता है। अन्य डेटा-लिंक-लेयर प्रोटोकॉल, जैसे [[उच्च-स्तरीय डेटा लिंक नियंत्रण|एचडीएलसी]], दोनों उपलेयर को सम्मिलित करने के लिए निर्दिष्ट होते हैं, हालांकि कुछ अन्य प्रोटोकॉल, जैसे कि [[सिस्को एचडीएलसी]], एक अलग LLC लेयर के साथ संयोजन में मैक लेयर के रूप में एचडीएलसी के निम्न-स्तरीय फ़्रेमिंग का उपयोग करते हैं। [[ITU-T]] G.hn मानक में, जो उपस्थित घर की वायरिंग ([[बिजली लाइन संचार|पावर लाइन]], फोन लाइन और [[मनाना पर ईथरनेट|ईथरनेट]] केबल) का उपयोग करके एक उच्च-गति (1 गीगाबिट/सेकंड तक) स्थानीय क्षेत्र नेटवर्क बनाने का एक तरीका प्रदान करता है, डेटा लिंक लेयर तीन उप-लेयरों (एप्लिकेशन प्रोटोकॉल अभिसरण, [[तार्किक लिंक नियंत्रण]] और [[मीडिया अभिगम नियंत्रण]]) में विभाजित होता है।


== सबलेयर्स ==
== उपलेयर्स ==
डेटा लिंक लेयर को प्रायः दो उपलेयरों में विभाजित किया जाता है: लॉजिकल लिंक कंट्रोल (एलएलसी) और मीडिया नियंत्रण कंट्रोल (मैक)।<ref>{{cite book
डेटा लिंक लेयर को प्रायः दो उपलेयरों में विभाजित किया जाता है। लॉजिकल लिंक कंट्रोल (LLC) और मीडिया एक्सेस कंट्रोल (MAC)।<ref>{{cite book
  | title = आवाज और डेटा संचार पुस्तिका| edition = 5th
  | title = आवाज और डेटा संचार पुस्तिका| edition = 5th
  | author = Regis J. Bates and Donald W. Gregory
  | author = Regis J. Bates and Donald W. Gregory
Line 27: Line 27:
  | url = https://books.google.com/books?id=eq1kRHdyXSUC&pg=PA45
  | url = https://books.google.com/books?id=eq1kRHdyXSUC&pg=PA45
  }}</ref>
  }}</ref>
=== लॉजिकल लिंक कंट्रोल सबलेयर ===
=== लॉजिकल लिंक कंट्रोल उपलेयर ===
ऊपरवाला सबलेयर, एलएलसी, [[बहुसंकेतन]] प्रोटोकॉल डेटा लिंक लेयर के शीर्ष पर चल रहा है, और वैकल्पिक रूप से प्रवाह नियंत्रण, पावती और त्रुटि सूचना प्रदान करता है। एलएलसी डेटा लिंक का पता लगाने और नियंत्रण प्रदान करता है। यह निर्दिष्ट करता है कि ट्रांसमिशन माध्यम पर स्टेशनों को संबोधित करने के लिए और प्रवर्तक और प्राप्तकर्ता मशीनों के बीच आदान-प्रदान किए गए डेटा को नियंत्रित करने के लिए कौन से तंत्र का उपयोग किया जाना है।
ऊपरवाला उपलेयर, एलएलसी [[बहुसंकेतन|बहुसंकेतक]] प्रोटोकॉल डेटा लिंक लेयर के शीर्ष पर चल रहा है, और वैकल्पिक रूप से प्रवाह नियंत्रण, परिकलन और त्रुटि सूचना प्रदान करता है। एलएलसी डेटा लिंक का पता लगाने और नियंत्रण प्रदान करता है। यह निर्दिष्ट करता है कि संचरण माध्यम पर स्टेशनों को संबोधित करने के लिए प्रवर्तक और प्राप्तकर्ता मशीनों के बीच आदान-प्रदान किए गए डेटा को नियंत्रित करने के लिए कौन से तंत्र का उपयोग किया जाना है।


=== मीडिया नियंत्रण कंट्रोल सबलेयर ===
=== मीडिया नियंत्रण कंट्रोल सबलेयर ===
MAC उस सबलेयर को संदर्भित कर सकता है जो यह निर्धारित करता है कि किसी एक समय में मीडिया को नियंत्रण करने की अनुमति किसे है (जैसे CSMA/CD)दूसरी बार यह मैक पतों के आधार पर वितरित फ्रेम संरचना को संदर्भित करता है।
MAC उस उपलेयर को संदर्भित कर सकता है, जो यह निर्धारित करता है कि किसी एक समय में मीडिया को नियंत्रण करने की अनुमति किसे प्राप्त है (जैसे CSMA/CD) दूसरी बार यह मैक पतों के आधार पर वितरित फ्रेम संरचना को संदर्भित करता है।


सामान्य रूप से मीडिया अभिगम नियंत्रण के दो रूप होते हैं: वितरित और केंद्रीकृत।<ref name="Miao">{{cite book|author1=Guowang Miao|author2=Guocong Song|title=ऊर्जा और स्पेक्ट्रम कुशल वायरलेस नेटवर्क डिजाइन|publisher=[[Cambridge University Press]]|isbn=978-1107039889|year=2014|author1-link=Guowang Miao}}</ref> इन दोनों की तुलना लोगों के बीच संचार से की जा सकती है। बोलने वाले लोगों से बने एक नेटवर्क में, यानी एक वार्तालाप, वे प्रत्येक यादृच्छिक समय को रोकेंगे और फिर से बोलने का प्रयास करेंगे, प्रभावी रूप से "नहीं, आप पहले" कहने का एक लंबा और विस्तृत खेल स्थापित करेंगे।
सामान्य रूप से मीडिया अभिगम नियंत्रण के वितरित और केंद्रीकृत दो रूप होते हैं।<ref name="Miao">{{cite book|author1=Guowang Miao|author2=Guocong Song|title=ऊर्जा और स्पेक्ट्रम कुशल वायरलेस नेटवर्क डिजाइन|publisher=[[Cambridge University Press]]|isbn=978-1107039889|year=2014|author1-link=Guowang Miao}}</ref> इन दोनों की तुलना लोगों के बीच संचार से की जा सकती है। बोलने वाले लोगों से बने एक नेटवर्क में, यानी एक वार्तालाप, वे प्रत्येक यादृच्छिक समय को रोकेंगे और फिर से बोलने का प्रयास करेंगे, प्रभावी रूप से नहीं, आप पहले कहने का एक लंबा और विस्तृत खेल स्थापित करेंगे।


मीडिया नियंत्रण कंट्रोल सबलेयर [[फ्रेम तुल्यकालन|फ्रेम सिंक्रोनाइज़ेशन]] भी करता है, जो ट्रांसमिशन [[bitstream|बिटस्ट्रीम]] में डेटा के प्रत्येक फ्रेम के प्रारंभ और अंत को निर्धारित करता है। इसमें कई विधियों में से एक है: समय-आधारित पहचान, वर्ण गणना, [[बाइट भराई|बाइट स्टफिंग]] और [[थोड़ा भराई|बिट स्टफिंग]]।  
मीडिया एक्सेस कंट्रोल उपलेयर [[फ्रेम तुल्यकालन|फ्रेम सिंक्रोनाइज़ेशन]] भी करता है, जो संचारण [[bitstream|बिटस्ट्रीम]] में डेटा के प्रत्येक फ्रेम के प्रारंभ और अंत को निर्धारित करता है। इसमें कई विधियों में से एक है। समय-आधारित पहचान, वर्ण गणना, [[बाइट भराई|बाइट स्टफिंग]] और [[थोड़ा भराई|बिट स्टफिंग]]।  
* समय-आधारित दृष्टिकोण फ्रेम के बीच एक निर्दिष्ट समय की अपेक्षा करता है।
* समय-आधारित दृष्टिकोण फ्रेम के बीच एक निर्दिष्ट समय की अपेक्षा करता है।
* कैरेक्टर काउंटिंग फ्रेम हेडर में बचे हुए कैरेक्टर्स की गिनती को ट्रैक करता है। हालाँकि, यदि यह फ़ील्ड दूषित है, तो यह विधि सरलता से बाधित हो जाती है।
* कैरेक्टर काउंटिंग फ्रेम हेडर में बचे हुए कैरेक्टर्स की गिनती को नितंत्रित करता है। हालाँकि, यदि यह क्षेत्र दूषित होता है, तो यह विधि सरलता से बाधित हो जाती है।
* बाइट स्टफिंग डीएलई एसटीएक्स जैसे विशेष बाइट अनुक्रम के साथ फ्रेम से पहले होती है और इसे डीएलई ईटीएक्स के साथ सफल बनाती है। डीएलई (बाइट मान 0x10) की उपस्थिति को अन्य डीएलई से बचाना होगा। रिसीवर पर स्टार्ट और स्टॉप मार्क का पता लगाया जाता है और साथ ही डाले गए डीएलई वर्णों को हटा दिया जाता है।
* बाइट स्टफिंग DLE STX जैसे विशेष बाइट अनुक्रम के साथ फ्रेम से पहले होती है और इसे DLE ETX के साथ सफल बनाती है। डीएलई (बाइट मान 0x10) की उपस्थिति को अन्य डीएलई से बचाना होगा। प्राप्तिकर्ता पर प्रारम्भ और स्टॉप मार्क का पता लगाया जाता है और साथ ही डाले गए DLE वर्णों को हटा दिया जाता है।
* इसी तरह, बिट स्टफिंग इन प्रारंभ और अंत चिह्नों को एक विशेष बिट पैटर्न (जैसे 0, छह 1 बिट्स और एक 0) वाले झंडों से बदल देता है। प्रेषित किए जाने वाले डेटा में इस बिट पैटर्न की घटनाओं को थोड़ा डालने से बचा जाता है। उदाहरण का उपयोग करने के लिए जहां ध्वज 01111110 है, डेटा स्ट्रीम में 5 लगातार 1 के बाद 0 डाला जाता है। प्राप्त अंत में झंडे और सम्मिलित 0 को हटा दिया जाता है। यह प्राप्तकर्ता के लिए मनमाने ढंग से लंबे फ्रेम और आसान सिंक्रनाइज़ेशन बनाता है। स्टफ्ड बिट जोड़ा जाता है, भले ही निम्न डेटा बिट 0 हो, जिसे [[सिंक अनुक्रम]] के लिए गलत नहीं माना जा सकता है, ताकि रिसीवर स्पष्ट रूप से स्टफ्ड बिट्स को सामान्य बिट्स से अलग कर सके।
* इसी तरह, बिट स्टफिंग इन प्रारंभ और अंत चिह्नों को एक विशेष बिट पैटर्न (जैसे 0, छह 1 बिट्स और एक 0) वाले चिह्नों से परिवर्तित कर देता है। प्रेषित किए जाने वाले डेटा में इस बिट तरीके की घटनाओं को थोड़ा डालने से बचा जाता है। उदाहरण का उपयोग करने के लिए जहां चिह्न 01111110 होते है, डेटा स्ट्रीम में 5 लगातार 1 के बाद 0 डाला जाता है। प्राप्त अंत में चिह्न और सम्मिलित 0 को हटा दिया जाता है। यह प्राप्तकर्ता के लिए मनमाने ढंग से लंबे फ्रेम और साधारण सिंक्रनाइज़ेशन बनाता है। स्टफ्ड बिट जोड़ा जाता है, भले ही निम्न डेटा बिट 0 हो, जिसे [[सिंक अनुक्रम]] के लिए गलत नहीं माना जा सकता है, ताकि प्राप्तिकर्ता स्पष्ट रूप से स्टफ्ड बिट्स को सामान्य बिट्स से अलग कर सके।


== सेवाएं ==
== सेवाएं ==
Line 49: Line 49:
**प्रवाह नियंत्रण, [[ट्रांसपोर्ट परत|ट्रांसपोर्ट लेयर]] पर प्रदान किए गए एक के अतिरिक्त। डेटा-लिंक-लेयर फ्लो कंट्रोल का उपयोग लैन प्रोटोकॉल जैसे ईथरनेट में नहीं, बल्कि मोडेम और वायरलेस नेटवर्क में किया जाता है।
**प्रवाह नियंत्रण, [[ट्रांसपोर्ट परत|ट्रांसपोर्ट लेयर]] पर प्रदान किए गए एक के अतिरिक्त। डेटा-लिंक-लेयर फ्लो कंट्रोल का उपयोग लैन प्रोटोकॉल जैसे ईथरनेट में नहीं, बल्कि मोडेम और वायरलेस नेटवर्क में किया जाता है।
* [[मध्यम अभिगम नियंत्रण]] (MAC) सबलेयर में:
* [[मध्यम अभिगम नियंत्रण]] (MAC) सबलेयर में:
** चैनल-नियंत्रण कंट्रोल के लिए [[मल्टीपल एक्सेस विधि|मल्टीपल नियंत्रण विधि]], उदाहरण के लिए ईथरनेट बस नेटवर्क और हब नेटवर्क में [[टक्कर की पहचान हुई है|टक्कर]] का पता लगाने और री-ट्रांसमिशन के लिए CSMA/CD प्रोटोकॉल, या वायरलेस नेटवर्क में टकराव से बचने के लिए CSMA/CA प्रोटोकॉल।
** चैनल-नियंत्रण कंट्रोल के लिए [[मल्टीपल एक्सेस विधि|मल्टीपल नियंत्रण विधि]], उदाहरण के लिए ईथरनेट बस नेटवर्क और हब नेटवर्क में [[टक्कर की पहचान हुई है|टक्कर]] का पता लगाने और री- संचारण के लिए CSMA/CD प्रोटोकॉल, या वायरलेस नेटवर्क में टकराव से बचने के लिए CSMA/CA प्रोटोकॉल।
** फिजिकल एड्रेसिंग (मैक एड्रेसिंग)
** फिजिकल एड्रेसिंग (मैक एड्रेसिंग)
**[[लैन स्विचिंग]] ([[पैकेट बदली]]), जिसमें [[मैक फ़िल्टरिंग]], [[स्पेनिंग ट्री प्रोटोकॉल]] (STP), [[सबसे छोटा पथ ब्रिजिंग]] (SPB) और [[TRILL]] (बहुत सारे लिंक का ट्रांसपेरेंट इंटरकनेक्शन) सम्मिलित हैं।
**[[लैन स्विचिंग]] ([[पैकेट बदली]]), जिसमें [[मैक फ़िल्टरिंग]], [[स्पेनिंग ट्री प्रोटोकॉल]] (STP), [[सबसे छोटा पथ ब्रिजिंग]] (SPB) और [[TRILL]] (बहुत सारे लिंक का ट्रांसपेरेंट इंटरकनेक्शन) सम्मिलित हैं।
Line 58: Line 58:


== त्रुटि का पता लगाना और सुधार ==
== त्रुटि का पता लगाना और सुधार ==
फ़्रेमिंग के अतिरिक्त, डेटा लिंक लेयर ट्रांसमिशन त्रुटियों का पता लगा सकती है और उनसे उबर भी सकती है। ट्रांसमिशन त्रुटियों का पता लगाने के लिए रिसीवर के लिए, प्रेषक को भेजे गए फ्रेम में त्रुटि पहचान कोड के रूप में अनावश्यक जानकारी जोड़नी होगी। जब रिसीवर एक फ्रेम प्राप्त करता है तो यह सत्यापित करता है कि प्राप्त त्रुटि पहचान कोड एक पुनर्गणना त्रुटि पहचान कोड से मेल खाता है या नहीं।
फ़्रेमिंग के अतिरिक्त, डेटा लिंक लेयर संचारण त्रुटियों का पता लगा सकती है और उनसे उबर भी सकती है। संचारण त्रुटियों का पता लगाने के लिए रिसीवर के लिए, प्रेषक को भेजे गए फ्रेम में त्रुटि पहचान कोड के रूप में अनावश्यक जानकारी जोड़नी होगी। जब रिसीवर एक फ्रेम प्राप्त करता है तो यह सत्यापित करता है कि प्राप्त त्रुटि पहचान कोड एक पुनर्गणना त्रुटि पहचान कोड से मेल खाता है या नहीं।


एक त्रुटि पहचान कोड को एक फ़ंक्शन के रूप में परिभाषित किया जा सकता है जो {{mvar|N}} बिट्स की कुल संख्या एन के प्रत्येक स्ट्रिंग के अनुरूप {{mvar|r}} (अनावश्यक बिट्स की मात्रा) की गणना करता है। सबसे सरल त्रुटि पहचान कोड [[समता द्वियक|समता बिट]] है, जो एक रिसीवर को ट्रांसमिशन त्रुटियों का पता लगाने की अनुमति देता है जो प्रेषित {{mvar|N + r}} बिट्स के बीच एक बिट को प्रभावित करता है। यदि कई फ़्लिप बिट्स हैं, तो जाँच विधि रिसीवर की तरफ इसका पता लगाने में सक्षम नहीं हो सकती है। पैरिटी एरर डिटेक्शन की तुलना में अधिक उन्नत तरीके उपस्थित हैं जो गुणवत्ता और सुविधाओं के उच्च ग्रेड प्रदान करते हैं।
एक त्रुटि पहचान कोड को एक फ़ंक्शन के रूप में परिभाषित किया जा सकता है जो {{mvar|N}} बिट्स की कुल संख्या एन के प्रत्येक स्ट्रिंग के अनुरूप {{mvar|r}} (अनावश्यक बिट्स की मात्रा) की गणना करता है। सबसे सरल त्रुटि पहचान कोड [[समता द्वियक|समता बिट]] है, जो एक रिसीवर को संचारण त्रुटियों का पता लगाने की अनुमति देता है जो प्रेषित {{mvar|N + r}} बिट्स के बीच एक बिट को प्रभावित करता है। यदि कई फ़्लिप बिट्स हैं, तो जाँच विधि रिसीवर की तरफ इसका पता लगाने में सक्षम नहीं हो सकती है। पैरिटी एरर डिटेक्शन की तुलना में अधिक उन्नत तरीके उपस्थित हैं जो गुणवत्ता और सुविधाओं के उच्च ग्रेड प्रदान करते हैं।


{| class="wikitable floatright"
{| class="wikitable floatright"

Revision as of 12:15, 17 December 2022

डेटा लिंक लेयर कंप्यूटर नेटवर्किंग मे OSI मॉडल की सात-लेयर(परत) मे से दूसरी लेयर होती है। यह लेयर प्रोटोकॉल लेयर होती है, जो भौतिक(फ़िज़िकल) लेयर मे एक नेटवर्क खंड पर नोड्स के बीच डेटा स्थानांतरित करती है।[2] डेटा लिंक लेयर नेटवर्क संस्थाओं के बीच डेटा स्थानांतरित करने के लिए कार्यात्मक और प्रक्रियात्मक साधन प्रदान करती है तथा भौतिक लेयर में होने वाली त्रुटियों का पता लगाने और संभावित रूप से सही करने के साधन भी प्रदान कर सकती है।

डेटा लिंक लेयर नेटवर्क के समान स्तर पर नोड्स के बीच फ़्रेम (नेटवर्किंग) के स्थानीय वितरण से संबंधित होता है। डेटा-लिंक फ़्रेम, जैसा कि उन प्रोटोकॉल डेटा इकाइयों को कहा जाता है, जो स्थानीय क्षेत्र नेटवर्क की सीमाओं को पार नहीं करते हैं। इंटर-नेटवर्क रूटिंग और ग्लोबल एड्रेसिंग उच्च-स्तरीय कार्य होता हैं, जो डेटा-लिंक प्रोटोकॉल को स्थानीय वितरण, एड्रेसिंग और मीडिया मध्यस्थता पर ध्यान केंद्रित करने की अनुमति देते हैं। इस तरह डेटा लिंक लेयर पास के नियंत्रित स्थानांतरण के अनुरूप होती है। यह अपने अंतिम गंतव्य के लिए चिंता किए बिना, एक माध्यम तक पहुंचने के लिए संघर्ष करने वाले पक्षों के बीच मध्यस्थता करने का प्रयास करता है। जब उपकरण एक साथ एक माध्यम का उपयोग करने का प्रयास करते हैं, तो फ्रेम टकराव होता है। जो डेटा-लिंक प्रोटोकॉल को निर्दिष्ट करते हैं कि किस प्रकार के उपकरण ऐसे टकरावों का पता लगाते हैं और उनसे उबरते हैं, तथा उन्हें कम करने या रोकने के लिए तंत्र प्रदान कर सकते हैं।

डेटा लिंक प्रोटोकॉल के उदाहरण ईथरनेट, पॉइंट-टू-पॉइंट प्रोटोकॉल (PPP), HDLC और ADCCP होते हैं। जो इंटरनेट प्रोटोकॉल सूट (टीसीपी/आईपी) में, डेटा लिंक लेयर की कार्यक्षमता लिंक लेयर के अन्दर समाहित होते है, तथा वर्णनात्मक प्रारूप की सबसे निचली लेयर है, जिसे भौतिक बुनियादी ढांचे से स्वतंत्र माना जाता है।

फलन

डेटा लिंक भौतिक लिंक से जुड़े होस्ट के बीच डेटा फ्रेम को संचारण के लिए प्रदान करता है। OSI नेटवर्क संरचना के सेमेन्टिक्स के अन्दर डेटा लिंक लेयर के प्रोटोकॉल नेटवर्क लेयर से सेवा अनुरोधों का जवाब देते हैं, तथा भौतिक स्तर पर सेवा अनुरोध जारी करके अपना कार्य करते हैं। वह स्थानांतरण विश्वसनीय या विश्वसनीयता (कंप्यूटर नेटवर्किंग) हो सकता है। कई डेटा लिंक प्रोटोकॉल में सफल फ्रेम अधिग्रहण और स्वीकृति का परिकलन नहीं होता है, और कुछ डेटा लिंक प्रोटोकॉल संचारण त्रुटियों के लिए कोई जांच भी नहीं कर सकते हैं। तथा उन परिस्थितियों में उच्च-स्तरीय प्रोटोकॉल को प्रवाह नियंत्रण (डेटा), त्रुटि जाँच परिकलन और पुन: प्रसारण प्रदान करना चाहिए।

फ़्रेम हेडर में स्रोत और गंतव्य के पते होते हैं, जो इंगित करते हैं कि कौन से उपकरण ने फ़्रेम की उत्पत्ति की है और किस उपकरण से इसे प्राप्त करने और संसाधित करने की उम्मीद होती है। नेटवर्क लेयर के पदानुक्रमित और रूट करने योग्य पतों के विपरीत, लेयर-2 के पते समतल होते हैं, जिसका अर्थ है कि पते के किसी भी भाग का उपयोग उस तार्किक या भौतिक समूह की पहचान करने के लिए नहीं किया जा सकता है जिससे पता संबंधित होता है।

कुछ नेटवर्क में जैसे IEEE 802 स्थानीय क्षेत्र नेटवर्क, डेटा लिंक लेयर को मीडिया एक्सेस कंट्रोल (MAC) और लॉजिकल लिंक कंट्रोल (LLC) उपलेयर्स के साथ अधिक विस्तार से वर्णित किया गया है। इसका अर्थ यह है कि IEEE 802.2 LLC प्रोटोकॉल का उपयोग IEEE 802 MAC की सभी लेयरों, जैसे ईथरनेट, टोकन रिंग, IEEE 802.11, आदि के साथ-साथ FDDI जैसी कुछ गैर-802 MAC लेयरों के साथ किया जा सकता है। अन्य डेटा-लिंक-लेयर प्रोटोकॉल, जैसे एचडीएलसी, दोनों उपलेयर को सम्मिलित करने के लिए निर्दिष्ट होते हैं, हालांकि कुछ अन्य प्रोटोकॉल, जैसे कि सिस्को एचडीएलसी, एक अलग LLC लेयर के साथ संयोजन में मैक लेयर के रूप में एचडीएलसी के निम्न-स्तरीय फ़्रेमिंग का उपयोग करते हैं। ITU-T G.hn मानक में, जो उपस्थित घर की वायरिंग (पावर लाइन, फोन लाइन और ईथरनेट केबल) का उपयोग करके एक उच्च-गति (1 गीगाबिट/सेकंड तक) स्थानीय क्षेत्र नेटवर्क बनाने का एक तरीका प्रदान करता है, डेटा लिंक लेयर तीन उप-लेयरों (एप्लिकेशन प्रोटोकॉल अभिसरण, तार्किक लिंक नियंत्रण और मीडिया अभिगम नियंत्रण) में विभाजित होता है।

उपलेयर्स

डेटा लिंक लेयर को प्रायः दो उपलेयरों में विभाजित किया जाता है। लॉजिकल लिंक कंट्रोल (LLC) और मीडिया एक्सेस कंट्रोल (MAC)।[3]

लॉजिकल लिंक कंट्रोल उपलेयर

ऊपरवाला उपलेयर, एलएलसी बहुसंकेतक प्रोटोकॉल डेटा लिंक लेयर के शीर्ष पर चल रहा है, और वैकल्पिक रूप से प्रवाह नियंत्रण, परिकलन और त्रुटि सूचना प्रदान करता है। एलएलसी डेटा लिंक का पता लगाने और नियंत्रण प्रदान करता है। यह निर्दिष्ट करता है कि संचरण माध्यम पर स्टेशनों को संबोधित करने के लिए प्रवर्तक और प्राप्तकर्ता मशीनों के बीच आदान-प्रदान किए गए डेटा को नियंत्रित करने के लिए कौन से तंत्र का उपयोग किया जाना है।

मीडिया नियंत्रण कंट्रोल सबलेयर

MAC उस उपलेयर को संदर्भित कर सकता है, जो यह निर्धारित करता है कि किसी एक समय में मीडिया को नियंत्रण करने की अनुमति किसे प्राप्त है (जैसे CSMA/CD) दूसरी बार यह मैक पतों के आधार पर वितरित फ्रेम संरचना को संदर्भित करता है।

सामान्य रूप से मीडिया अभिगम नियंत्रण के वितरित और केंद्रीकृत दो रूप होते हैं।[4] इन दोनों की तुलना लोगों के बीच संचार से की जा सकती है। बोलने वाले लोगों से बने एक नेटवर्क में, यानी एक वार्तालाप, वे प्रत्येक यादृच्छिक समय को रोकेंगे और फिर से बोलने का प्रयास करेंगे, प्रभावी रूप से नहीं, आप पहले कहने का एक लंबा और विस्तृत खेल स्थापित करेंगे।

मीडिया एक्सेस कंट्रोल उपलेयर फ्रेम सिंक्रोनाइज़ेशन भी करता है, जो संचारण बिटस्ट्रीम में डेटा के प्रत्येक फ्रेम के प्रारंभ और अंत को निर्धारित करता है। इसमें कई विधियों में से एक है। समय-आधारित पहचान, वर्ण गणना, बाइट स्टफिंग और बिट स्टफिंग

  • समय-आधारित दृष्टिकोण फ्रेम के बीच एक निर्दिष्ट समय की अपेक्षा करता है।
  • कैरेक्टर काउंटिंग फ्रेम हेडर में बचे हुए कैरेक्टर्स की गिनती को नितंत्रित करता है। हालाँकि, यदि यह क्षेत्र दूषित होता है, तो यह विधि सरलता से बाधित हो जाती है।
  • बाइट स्टफिंग DLE STX जैसे विशेष बाइट अनुक्रम के साथ फ्रेम से पहले होती है और इसे DLE ETX के साथ सफल बनाती है। डीएलई (बाइट मान 0x10) की उपस्थिति को अन्य डीएलई से बचाना होगा। प्राप्तिकर्ता पर प्रारम्भ और स्टॉप मार्क का पता लगाया जाता है और साथ ही डाले गए DLE वर्णों को हटा दिया जाता है।
  • इसी तरह, बिट स्टफिंग इन प्रारंभ और अंत चिह्नों को एक विशेष बिट पैटर्न (जैसे 0, छह 1 बिट्स और एक 0) वाले चिह्नों से परिवर्तित कर देता है। प्रेषित किए जाने वाले डेटा में इस बिट तरीके की घटनाओं को थोड़ा डालने से बचा जाता है। उदाहरण का उपयोग करने के लिए जहां चिह्न 01111110 होते है, डेटा स्ट्रीम में 5 लगातार 1 के बाद 0 डाला जाता है। प्राप्त अंत में चिह्न और सम्मिलित 0 को हटा दिया जाता है। यह प्राप्तकर्ता के लिए मनमाने ढंग से लंबे फ्रेम और साधारण सिंक्रनाइज़ेशन बनाता है। स्टफ्ड बिट जोड़ा जाता है, भले ही निम्न डेटा बिट 0 हो, जिसे सिंक अनुक्रम के लिए गलत नहीं माना जा सकता है, ताकि प्राप्तिकर्ता स्पष्ट रूप से स्टफ्ड बिट्स को सामान्य बिट्स से अलग कर सके।

सेवाएं

डेटा लिंक लेयर द्वारा प्रदान की जाने वाली सेवाएं हैं:

त्रुटि का पता लगाना और सुधार

फ़्रेमिंग के अतिरिक्त, डेटा लिंक लेयर संचारण त्रुटियों का पता लगा सकती है और उनसे उबर भी सकती है। संचारण त्रुटियों का पता लगाने के लिए रिसीवर के लिए, प्रेषक को भेजे गए फ्रेम में त्रुटि पहचान कोड के रूप में अनावश्यक जानकारी जोड़नी होगी। जब रिसीवर एक फ्रेम प्राप्त करता है तो यह सत्यापित करता है कि प्राप्त त्रुटि पहचान कोड एक पुनर्गणना त्रुटि पहचान कोड से मेल खाता है या नहीं।

एक त्रुटि पहचान कोड को एक फ़ंक्शन के रूप में परिभाषित किया जा सकता है जो N बिट्स की कुल संख्या एन के प्रत्येक स्ट्रिंग के अनुरूप r (अनावश्यक बिट्स की मात्रा) की गणना करता है। सबसे सरल त्रुटि पहचान कोड समता बिट है, जो एक रिसीवर को संचारण त्रुटियों का पता लगाने की अनुमति देता है जो प्रेषित N + r बिट्स के बीच एक बिट को प्रभावित करता है। यदि कई फ़्लिप बिट्स हैं, तो जाँच विधि रिसीवर की तरफ इसका पता लगाने में सक्षम नहीं हो सकती है। पैरिटी एरर डिटेक्शन की तुलना में अधिक उन्नत तरीके उपस्थित हैं जो गुणवत्ता और सुविधाओं के उच्च ग्रेड प्रदान करते हैं।

H E L L O
8 5 12 12 15

मेटा डेटा का उपयोग करके यह कैसे काम करता है इसका एक सरल उदाहरण वर्णमाला में प्रत्येक अक्षर को उसकी स्थिति के रूप में एन्कोड करके "HELLO" शब्द प्रसारित कर रहा है। इस प्रकार, अक्षर A को 1 के रूप में, B को 2 के रूप में कोड किया गया है, और इसी तरह दाईं ओर तालिका में दिखाया गया है। परिणामी संख्याओं को जोड़ने पर 8 + 5 + 12 + 12 + 15 = 52 प्राप्त होता है, और 5 + 2 = 7 मेटाडेटा की गणना करता है। अंत में, "8 5 12 12 15 7" संख्या क्रम प्रसारित किया जाता है, जिसे रिसीवर अपने अंत में देखेगा यदि कोई संचरण त्रुटियां नहीं हैं। रिसीवर जानता है कि प्राप्त अंतिम संख्या त्रुटि-पता लगाने वाला मेटाडेटा है और इससे पहले कि सभी डेटा संदेश है, इसलिए रिसीवर उपरोक्त गणित की पुनर्गणना कर सकता है और यदि मेटाडेटा मेल खाता है तो यह निष्कर्ष निकाला जा सकता है कि डेटा त्रुटि मुक्त प्राप्त हुआ है। हालांकि, यदि रिसीवर "7 5 12 12 15 7" अनुक्रम (कुछ त्रुटि द्वारा बदला गया पहला तत्व) जैसा कुछ देखता है, तो यह 7 + 5 + 12 + 12 + 15 = 51 और 5 + 1 = की गणना करके चेक चला सकता है। 6, और प्राप्त डेटा को दोषपूर्ण के रूप में छोड़ दें क्योंकि 6 7 के बराबर नहीं है।

अधिक परिष्कृत त्रुटि का पता लगाने और सुधार कलनविधि को इस जोखिम को कम करने के लिए डिज़ाइन किया गया है कि डेटा में कई संचरण त्रुटियां एक दूसरे को रद्द कर देंगी और पता नहीं चलेगा। एक कलनविधि जो यह भी पता लगा सकता है कि सही बाइट प्राप्त हुए हैं लेकिन आदेश से बाहर चक्रीय अतिरेक जांच या सीआरसी है। इस कलनविधि का उपयोग प्रायः डेटा लिंक लेयर में किया जाता है।

प्रोटोकॉल उदाहरण


टीसीपी/आईपी मॉडल से संबंध

इंटरनेट प्रोटोकॉल सूट (टीसीपी/आईपी) में, ओएसआई की डेटा लिंक लेयर कार्यक्षमता इसकी सबसे निचली लेयर, लिंक लेयर के भीतर समाहित है। टीसीपी/आईपी लिंक लेयर में उस लिंक का ऑपरेटिंग स्कोप होता है जिससे एक होस्ट जुड़ा होता है, और लिंक पर होस्ट का पता लगाने और लिंक पर डेटा फ्रेम ट्रांसमिट करने के लिए हार्डवेयर (मैक) एड्रेस प्राप्त करने के बिंदु तक केवल हार्डवेयर मुद्दों के साथ खुद को चिंतित करता है। लिंक-लेयर की कार्यक्षमता RFC 1122 में वर्णित की गई थी और इसे OSI की डेटा लिंक लेयर से भिन्न रूप से परिभाषित किया गया है, और इसमें स्थानीय लिंक को प्रभावित करने वाली सभी विधियों को सम्मिलित किया गया है।

टीसीपी/आईपी मॉडल नेटवर्क के लिए टॉप-डाउन व्यापक डिज़ाइन संदर्भ नहीं है। यह इंटरनेट के संचालन के लिए आवश्यक टीसीपी/आईपी के इंटरनेटवर्किंग प्रोटोकॉल के सूट के डिजाइन में आवश्यक तार्किक समूहों और कार्यों के दायरे को दर्शाने के उद्देश्य से तैयार किया गया था। सामान्य तौर पर, ओएसआई और टीसीपी/आईपी मॉडल की प्रत्यक्ष या सख्त तुलना से बचा जाना चाहिए, क्योंकि टीसीपी/आईपी में लेयरिंग एक प्रमुख डिजाइन मानदंड नहीं है और सामान्य तौर पर इसे "हानिकारक" माना जाता है (आरएफसी 3439)। विशेष रूप से, टीसीपी / आईपी एनकैप्सुलेशन आवश्यकताओं के सख्त पदानुक्रमित अनुक्रम को निर्धारित नहीं करता है, जैसा कि ओएसआई प्रोटोकॉल के लिए जिम्मेदार है।

यह भी देखें

संदर्भ

  1. "X.225 : Information technology – Open Systems Interconnection – Connection-oriented Session protocol: Protocol specification". Archived from the original on February 1, 2021. Retrieved November 24, 2021.
  2. "परत 2 क्या है, और आपको परवाह क्यों करनी चाहिए?". accel-networks.com. Archived from the original on February 18, 2010. Retrieved September 29, 2009.
  3. Regis J. Bates and Donald W. Gregory (2007). आवाज और डेटा संचार पुस्तिका (5th ed.). McGraw-Hill Professional. p. 45. ISBN 978-0-07-226335-0.
  4. Guowang Miao; Guocong Song (2014). ऊर्जा और स्पेक्ट्रम कुशल वायरलेस नेटवर्क डिजाइन. Cambridge University Press. ISBN 978-1107039889.


बाहरी संबंध

डी:ओएसआई-मॉडल#लेयर 2 - डेटा लिंक लेयर