कैमशाफ्ट: Difference between revisions
(TEXT) |
(TEXT) |
||
Line 49: | Line 49: | ||
==== अवधि ==== | ==== अवधि ==== | ||
कैंषफ़्ट की अवधि निर्धारित करती है कि अंतग्रर्हण/निकास वाल्व कितने समय के लिए खुला है, इसलिए यह एक यन्त्र द्वारा उत्पादित शक्ति की मात्रा का एक महत्वपूर्ण कारक है। एक लंबी अवधि उच्च यन्त्र गति (RPM) पर यन्त्र शक्ति परीक्षण मानकों को बढ़ा सकती है, हालांकि यह कम RPM पर उत्पादित होने वाले कम [[टॉर्कः]] की दुविधा के साथ आ सकता है।<ref name="hotrod.com">{{cite web |title=कैंषफ़्ट पावर का राज|url=https://www.hotrod.com/articles/ccrp-9812-secrets-of-camshaft-power/ |website=www.hotrod.com |access-date=18 July 2020 |language=en |date=1 December 1998}}</ref><ref>{{cite web |title=कैंषफ़्ट आरपीएम रेंज|url=https://help.summitracing.com/app/answers/detail/a_id/4704/~/camshaft-rpm-range |website=www.summitracing.com |access-date=18 July 2020}}</ref><ref name="jegs.com">{{cite web |title=कैंषफ़्ट बुनियादी बातों को समझना|url=https://www.jegs.com/tech-articles/camshaft-specification-basics.html |website=www.jegs.com |access-date=18 July 2020}}</ref> | |||
बढ़ी हुई अवधि का एक द्वितीयक प्रभाव ओवरलैप को बढ़ाया जा सकता है, जो समय की लंबाई निर्धारित करता है कि अंतग्रर्हण और निकास वाल्व दोनों खुले हैं। यह ओवरलैप है जो निष्क्रिय गुणवत्ता को सबसे अधिक प्रभावित करता है, क्योंकि इनटेक चार्ज का ब्लो-थ्रू निकास वाल्व के माध्यम से तुरंत वापस बाहर निकलता है जो ओवरलैप के दौरान होता है, यन्त्र की दक्षता को कम करता है, और कम | कैमशाफ्ट के लिए अवधि माप, उन्नयन की मात्रा से प्रभावित होता है जिसे माप के प्रारंभ और समापन बिंदु के रूप में चुना जाता है। का एक उन्नयन मान {{convert|0.050|in|mm|1|abbr=on}} प्रायः एक मानक माप प्रक्रिया के रूप में उपयोग किया जाता है, क्योंकि इसे उन्नयन श्रेणी का सबसे अधिक प्रतिनिधि माना जाता है जो RPM श्रेणी को परिभाषित करता है जिसमें यन्त्र चरम शक्ति का उत्पादन करता है।<ref name="hotrod.com" /><ref name="jegs.com" />अलग-अलग उन्नयन बिंदु (उदाहरण के लिए 0.006 या 0.002 इंच) का उपयोग करके निर्धारित की गई समान अवधि अनुमतांकन वाले कैंषफ़्ट की शक्ति और निष्क्रिय विशेषताएँ 0.05 इंच के उन्नयन बिंदुओं का उपयोग करके अनुपात किए गए कैंषफ़्ट से बहुत भिन्न हो सकती हैं। | ||
'''बढ़ी हुई अवधि का एक द्वितीयक प्रभाव ओवरलैप''' को बढ़ाया जा सकता है, जो समय की लंबाई निर्धारित करता है कि अंतग्रर्हण और निकास वाल्व दोनों खुले हैं। यह ओवरलैप है जो निष्क्रिय गुणवत्ता को सबसे अधिक प्रभावित करता है, क्योंकि इनटेक चार्ज का ब्लो-थ्रू निकास वाल्व के माध्यम से तुरंत वापस बाहर निकलता है जो ओवरलैप के दौरान होता है, यन्त्र की दक्षता को कम करता है, और कम RPM ऑपरेशन के दौरान सबसे बड़ा होता है।<ref name="hotrod.com" /><ref name="jegs.com" />सामान्य तौर पर, कैंषफ़्ट की अवधि बढ़ाने से सामान्यतः ओवरलैप बढ़ जाता है, जब तक कि क्षतिपूर्ति करने के लिए पिण्डक सेपरेशन एंगल को बढ़ाया नहीं जाता है। | |||
एक सामान्य व्यक्ति आसानी से एक लंबी अवधि के कैंषफ़्ट को व्यापक सतह को देखकर देख सकता है जहां कैम क्रैंकशाफ्ट घूर्णन की बड़ी संख्या के लिए खुले वाल्व को धकेलता है। यह कम अवधि के कैमशाफ्ट की तुलना में अधिक नुकीले कैंषफ़्ट बंप से स्पष्ट रूप से बड़ा होगा। | एक सामान्य व्यक्ति आसानी से एक लंबी अवधि के कैंषफ़्ट को व्यापक सतह को देखकर देख सकता है जहां कैम क्रैंकशाफ्ट घूर्णन की बड़ी संख्या के लिए खुले वाल्व को धकेलता है। यह कम अवधि के कैमशाफ्ट की तुलना में अधिक नुकीले कैंषफ़्ट बंप से स्पष्ट रूप से बड़ा होगा। | ||
==== | ==== उन्नयन ==== | ||
कैंषफ़्ट की | कैंषफ़्ट की उन्नयन वाल्व और [[वाल्व सीट]] के बीच की दूरी निर्धारित करती है (अर्थात वाल्व कितनी दूर खुला है)।<ref name="summitracing.com lift">{{cite web |title=कैंषफ़्ट लिफ्ट|url=https://help.summitracing.com/app/answers/detail/a_id/4699/ |website=www.summitracing.com}}</ref> वाल्व अपनी सीट से जितना ऊपर उठता है उतना अधिक वायु प्रवाह प्रदान किया जा सकता है, इस प्रकार उत्पादित शक्ति में वृद्धि होती है। उच्च वाल्व उन्नयन में वृद्धि की अवधि के रूप में चोटी की शक्ति में वृद्धि का समान प्रभाव हो सकता है, वाल्व ओवरलैप के बढ़ने के कारण डाउनसाइड्स के बिना। अधिकांश ऊपरी वाल्व यन्त्रों में एक से अधिक का संदोलक अनुपात होता है, इसलिए वाल्व खुलने की दूरी (वाल्व उन्नयन) कैंषफ़्ट के पिण्डक के शिखर से बेस सर्कल (कैंषफ़्ट उन्नयन) की दूरी से अधिक होती है।<ref name="hotrod.com camshaft basics">{{cite web |title=कैंषफ़्ट विशेषज्ञ बनें|url=https://www.hotrod.com/articles/0607phr-camshaft-basics/ |website=www.hotrod.com |access-date=18 July 2020 |language=en |date=14 June 2006}}</ref> | ||
ऐसे कई कारक हैं जो किसी दिए गए यन्त्र के लिए | ऐसे कई कारक हैं जो किसी दिए गए यन्त्र के लिए उन्नयन की अधिकतम मात्रा को सीमित करते हैं। सबसे पहले, उन्नयन बढ़ने से वाल्व पिस्टन के करीब आते हैं, इसलिए अत्यधिक उन्नयन से वाल्व पिस्टन से टकरा सकते हैं और क्षतिग्रस्त हो सकते हैं।<ref name="jegs.com"/>दूसरे, बढ़ी हुई उन्नयन का मतलब है कि एक तेज कैंषफ़्ट प्रोफ़ाइल की आवश्यकता होती है, जो वाल्व को खोलने के लिए आवश्यक बलों को बढ़ाती है।<ref name="summitracing.com lift"/>एक संबंधित मुद्दा उच्च RPM पर वाल्व फ्लोट है, जहां वसंत तनाव पर्याप्त बल प्रदान नहीं करता है या तो वाल्व को उसके शीर्ष पर कैम का अनुसरण करते हुए रखता है या वाल्व सीट पर लौटने पर वाल्व को उछलने से रोकता है।<ref name="summitracing.com valve float">{{cite web |title=वाल्व फ्लोट क्या है?|url=https://help.summitracing.com/app/answers/detail/a_id/4765/kw/float |website=www.summitracing.com |access-date=18 July 2020}}</ref> यह पिण्डक के बहुत तेज वृद्धि का परिणाम हो सकता है,<ref name="jegs.com"/>जहां कैम फॉलोअर कैम पिण्डक से अलग हो जाता है (वाल्वट्रेन जड़ता वाल्व स्प्रिंग के समापन बल से अधिक होने के कारण), वाल्व को निर्धारित समय से अधिक समय तक खुला छोड़ देता है। वाल्व फ्लोट उच्च RPM पर बिजली की हानि का कारण बनता है और चरम स्थितियों में पिस्टन से टकरा जाने पर मुड़े हुए वाल्व का परिणाम हो सकता है।<ref name="hotrod.com camshaft basics"/><ref name="summitracing.com valve float"/> | ||
==== समय ==== | ==== समय ==== | ||
क्रैंकशाफ्ट के सापेक्ष कैंषफ़्ट के समय (चरण कोण) को यन्त्र के पावर बैंड को एक अलग | क्रैंकशाफ्ट के सापेक्ष कैंषफ़्ट के समय (चरण कोण) को यन्त्र के पावर बैंड को एक अलग RPM रेंज में स्थानांतरित करने के लिए समायोजित किया जा सकता है। कैंषफ़्ट को आगे बढ़ाना (क्रैंकशाफ़्ट समय से पहले इसे स्थानांतरित करना) कम RPM टॉर्क को बढ़ाता है, जबकि कैंषफ़्ट को धीमा करना (क्रैंकशाफ़्ट के बाद इसे स्थानांतरित करना) उच्च RPM शक्ति को बढ़ाता है।<ref name="compcams.com timing">{{cite web |title=कैम टाइमिंग और लोब पृथक्करण कोण में परिवर्तन का COMP कैम प्रभाव|url=https://www.compcams.com/cam-timing-lobe-separation-angle |website=www.compcams.com |access-date=19 July 2020}}</ref> आवश्यक परिवर्तन अपेक्षाकृत छोटे होते हैं, प्रायः 5 डिग्री के क्रम में।{{citation needed|date=July 2020}} | ||
आधुनिक यन्त्र जिनमें [[चर वाल्व समय]] होती है, | आधुनिक यन्त्र जिनमें [[चर वाल्व समय]] होती है, प्रायः किसी भी समय यन्त्र के RPM के अनुरूप कैंषफ़्ट के समय को समायोजित करने में सक्षम होते हैं। यह उच्च और निम्न RPM दोनों पर उपयोग के लिए एक निश्चित कैम टाइमिंग चुनते समय आवश्यक उपरोक्त समझौते से बचा जाता है। | ||
==== पालि पृथक्करण कोण ==== | ==== पालि पृथक्करण कोण ==== |
Revision as of 21:40, 3 January 2023
एक कैंषफ़्ट एक दस्ता (यांत्रिक अभियन्तािंग) है जिसमें घुमाव को पारस्परिक गति में बदलने के लिए नुकीले सांचारों की एक पंक्ति होती है। कैंषफ़्ट का उपयोग पिस्टन यन्त्र में (अंतर्ग्रहण और निकास वाल्व संचालित करने के लिए)[1][2] और यंत्रवत् नियंत्रित ज्वलन प्रणाली और प्रारंभिक इलेक्ट्रॉनिक गति नियंत्रण में किया जाता है।
पिस्टन यन्त्र में कैंषफ़्ट सामान्यतः इस्पात या कच्चे लोहे से बने होते हैं, और कैम्स का आकार यन्त्र की विशेषताओं को बहुत प्रभावित करता है।
इतिहास
लंगर घन, घूर्णन गति को परिवर्तित करने के लिए कैम के एक रूप के शुरुआती उपयोगों में से एक हैं, उदा. पनचक्के से लेकर, गढ़ाई या फसल पीसने में उपयोग किए जाने वाले हथौड़े की पारस्परिक गति में। इनके प्रमाण चीन में हान राजवंश के समय से मौजूद हैं, और मध्यकाल तक ये व्यापक रूप से फैले हुए थे।
कैंषफ़्ट का वर्णन 1206 में अभियन्ता अल जजारी द्वारा किया गया था।[3]
18वीं शताब्दी के अंत में भाप यन्त्र के घूर्णी संस्करण के विकसित होने के बाद, वाल्व गियर का संचालन सामान्यतः एक उत्केन्द्र (तंत्र) द्वारा किया जाता था, जो क्रैंकशाफ्ट के घूर्णन को वाल्व गियर की पारस्परिक गति में बदल देता था, सामान्यतः एक स्खलन वाल्व। बाद में आंतरिक दहन यन्त्रों में देखे जाने वाले कैमशाफ्ट का उपयोग कुछ भाप यन्त्रों में किया जाता था, सामान्यतः जहां उच्च दबाव वाली भाप (जैसे कि फ्लैश बॉयलर से उत्पन्न), छत्राकार वाल्व या पिस्टन वाल्व के उपयोग की आवश्यकता होती है। उदाहरण के लिए एकदिश प्रवाह भाप यन्त्र और गार्डनर-सर्पलेट भाप शक्ति कार देखें, जिसमें चर वाल्व समय को प्राप्त करने के लिए कैंषफ़्ट को अक्षीय रूप से खिसकाना भी सम्मिलित था।
एकल उपरि कैमशॉफ़्ट वाले यन्त्रों का उपयोग करने वाली पहली कारों में 1902 में पेश की गई अलेक्जेंडर क्रेग द्वारा डिजाइन की गई माउडस्ले थी और [4][5][6] 1903 में मिशिगन के मूल निवासी वाल्टर लोरेंजो मार्र द्वारा अभिकल्पित की गई मार्र ऑटो कार थी।[7][8]
पिस्टन यन्त्र
पिस्टन यन्त्र में, कैंषफ़्ट का उपयोग अंतग्रर्हण और निकास वॉल्व को संचालित करने के लिए किया जाता है। कैंषफ़्ट में एक बेलनाकार रॉड होती है जो सिलेंडर व्यूह की लंबाई के साथ प्रत्येक वाल्व के लिए एक उत्वर्त (उभरे हुए कैम पिण्डक के साथ डिस्क) की लंबाई के साथ चलती है,। जैसे ही उत्वर्त घूमता है, पिण्डक वाल्व (या एक मध्यवर्ती तंत्र) पर दबाव डालता है, इस प्रकार यह इसे खोलने क लिए धकेलता है। सामान्यतः, एक वाल्व स्प्रिंग का उपयोग वाल्व को विपरीत दिशा में धकेलने के लिए किया जाता है, इस प्रकार उत्वर्त के अपने पिण्डक के उच्चतम बिंदु से आगे बढ़ने पर वाल्व को बंद कर दिया जाता है।[9]
निर्माण
कैंषफ़्ट धातु से बने होते हैं और सामान्यतः ठोस होते हैं, हालांकि कभी-कभी खोखले कैंषफ़्ट का उपयोग किया जाता है।[10] कैंषफ़्ट के लिए उपयोग की जाने वाली सामग्री सामान्यतः निम्न होती है:
- कच्चा लोहा: सामान्यतः उच्च मात्रा में उत्पादन में उपयोग किया जाता है, ठंडे लोहे के कैमशाफ्ट में अच्छा पहनने का प्रतिरोध होता है क्योंकि द्रुतशीतन प्रक्रिया उन्हें कठोर बनाती है।
- बिलेट इस्पात: कम मात्रा में उत्पादित उच्च-प्रदर्शन इंजन या कैंषफ़्ट के लिए, कभी-कभी इस्पात बिलेट का उपयोग किया जाता है। यह अधिक समय लेने वाली प्रक्रिया है, और सामान्यतः अन्य तरीकों की तुलना में अधिक महंगी होती है। निर्माण की विधि सामान्यतः फोर्जिंग, मशीनिंग, उदीरण या द्रवीय अभिरूपण होती है।[11][12][13]
यन्त्र में स्थान
कई शुरुआती आंतरिक दहन यन्त्रों ने उत्वर्त-इन-सांचा अभिन्यास (जैसे फ्लैटहेड यन्त्र, IOE या T-हेड अभिन्यास) का इस्तेमाल किया, जिससे कैंषफ़्ट यन्त्र सांचे के भीतर यन्त्र के नीचे स्थित होता है। प्रारंभिक फ्लैटहेड यन्त्र सांचे में वाल्वों का पता लगाते हैं और उत्वर्त सीधे उन वाल्वों पर कार्य करता है। एक उपरि वाल्व यन्त्र में, जो बाद में आया, उत्वर्त अनुचर एक पुशरोड पर दबाता है जो गति को इंजन के शीर्ष पर स्थानांतरित करता है, जहां एक घुमाव अंतग्रर्हण/निकास वाल्व खोलता है।[14] यद्यपि आधुनिक स्वचालित वाहन यन्त्रों में बड़े पैमाने पर SOHC और DOHC अभिन्यास द्वारा प्रतिस्थापित किया गया है, इसके छोटे आकार और कम लागत के कारण पुराने उपरि वाल्व अभिन्यास का उपयोग अभी भी कई औद्योगिक यन्त्रों में किया जाता है।
जैसे-जैसे 20वीं शताब्दी में इंजन की गति में वृद्धि हुई, एकल उपरि कैंषफ़्ट (SOHC) यन्त्र- जहाँ कैंषफ़्ट यन्त्र के शीर्ष के पास सिलेंडर हेड के भीतर स्थित होता है- तेजी से सामान्य हो गया, इसके बाद हाल के वर्षों में द्विक उपरि कैंषफ़्ट (DOHC) यन्त्र सामान्य हो गया। OHC और DOHC इंजनों के लिए, कैंषफ़्ट वाल्व को सीधे या अल्प संदोलक शाखिका के माध्यम से संचालित करता है[14]
वाल्वट्रेन अभिन्यास को प्रति सिलेंडर व्यूह में कैमशाफ्ट की संख्या के अनुसार परिभाषित किया गया है। इसलिए कुल चार कैंषफ़्ट के साथ एक V6 यन्त्र - प्रति सिलेंडर व्यूह में दो कैंषफ़्ट - को सामान्यतः एक द्विक ऊपरी कैंषफ़्ट यन्त्र के रूप में संदर्भित किया जाता है (हालांकि बोलचाल की भाषा में उन्हें कभी-कभी क्वाड-उत्वर्त यन्त्र कहा जाता है)।[15]
ड्राइव सिस्टम
कैंषफ़्ट की स्थिति और गति का सटीक नियंत्रण यन्त्र को सही ढंग से संचालित करने की अनुमति देने में गंभीर रूप से महत्वपूर्ण है। कैंषफ़्ट सामान्यतः या तो सीधे दांतेदार रबर समय क्रम पट्टा के माध्यम से या इस्पात रोलर समय क्रम श्रृंखला के माध्यम से चलाया जाता है। कैंषफ़्ट को चलाने के लिए गियर्स का भी कभी-कभी उपयोग किया जाता है।[16] कुछ अभिकल्पनाओं में कैंषफ़्ट वितरक, तेल पंप (आंतरिक दहन यन्त्र), ईंधन पंप (यन्त्र) और कभी-कभी पावर स्टीयरिंग पंप को भी चलाता है।
अतीत में उपयोग किए जाने वाले वैकल्पिक ड्राइव प्रणाली में प्रत्येक छोर पर बेवल गियर के साथ एक ऊर्ध्वाधर शाफ्ट सम्मिलित है (उदाहरण के लिए प्रथम विश्व युद्ध के पूर्व प्यूजियोट और मर्सिडीज ग्रांड प्रिक्स कारें और कावासाकी W800 मोटरसाइकिल) या संयोजी शलाका के साथ एक तिहरा उत्केंद्र सम्मिलित है (जैसे लीलैंड आठ कार)।
कैंषफ़्ट का उपयोग करने वाले चतुः स्ट्रोक यन्त्र में, क्रैंकशाफ्ट के प्रत्येक घुमाव के लिए प्रत्येक वाल्व को एक बार खोला जाता है; इन यन्त्रों में, कैंषफ़्ट क्रैंकशाफ्ट के समान गति से घूमता है। एक चतुः स्ट्रोक यन्त्र में, वाल्व प्रायः आधे ही खुलते हैं, इसलिए कैंषफ़्ट को क्रैंकशाफ्ट की आधी गति से घूमने के लिए तैयार किया जाता है।
प्रदर्शन विशेषताएँ
अवधि
कैंषफ़्ट की अवधि निर्धारित करती है कि अंतग्रर्हण/निकास वाल्व कितने समय के लिए खुला है, इसलिए यह एक यन्त्र द्वारा उत्पादित शक्ति की मात्रा का एक महत्वपूर्ण कारक है। एक लंबी अवधि उच्च यन्त्र गति (RPM) पर यन्त्र शक्ति परीक्षण मानकों को बढ़ा सकती है, हालांकि यह कम RPM पर उत्पादित होने वाले कम टॉर्कः की दुविधा के साथ आ सकता है।[17][18][19]
कैमशाफ्ट के लिए अवधि माप, उन्नयन की मात्रा से प्रभावित होता है जिसे माप के प्रारंभ और समापन बिंदु के रूप में चुना जाता है। का एक उन्नयन मान 0.050 in (1.3 mm) प्रायः एक मानक माप प्रक्रिया के रूप में उपयोग किया जाता है, क्योंकि इसे उन्नयन श्रेणी का सबसे अधिक प्रतिनिधि माना जाता है जो RPM श्रेणी को परिभाषित करता है जिसमें यन्त्र चरम शक्ति का उत्पादन करता है।[17][19]अलग-अलग उन्नयन बिंदु (उदाहरण के लिए 0.006 या 0.002 इंच) का उपयोग करके निर्धारित की गई समान अवधि अनुमतांकन वाले कैंषफ़्ट की शक्ति और निष्क्रिय विशेषताएँ 0.05 इंच के उन्नयन बिंदुओं का उपयोग करके अनुपात किए गए कैंषफ़्ट से बहुत भिन्न हो सकती हैं।
बढ़ी हुई अवधि का एक द्वितीयक प्रभाव ओवरलैप को बढ़ाया जा सकता है, जो समय की लंबाई निर्धारित करता है कि अंतग्रर्हण और निकास वाल्व दोनों खुले हैं। यह ओवरलैप है जो निष्क्रिय गुणवत्ता को सबसे अधिक प्रभावित करता है, क्योंकि इनटेक चार्ज का ब्लो-थ्रू निकास वाल्व के माध्यम से तुरंत वापस बाहर निकलता है जो ओवरलैप के दौरान होता है, यन्त्र की दक्षता को कम करता है, और कम RPM ऑपरेशन के दौरान सबसे बड़ा होता है।[17][19]सामान्य तौर पर, कैंषफ़्ट की अवधि बढ़ाने से सामान्यतः ओवरलैप बढ़ जाता है, जब तक कि क्षतिपूर्ति करने के लिए पिण्डक सेपरेशन एंगल को बढ़ाया नहीं जाता है।
एक सामान्य व्यक्ति आसानी से एक लंबी अवधि के कैंषफ़्ट को व्यापक सतह को देखकर देख सकता है जहां कैम क्रैंकशाफ्ट घूर्णन की बड़ी संख्या के लिए खुले वाल्व को धकेलता है। यह कम अवधि के कैमशाफ्ट की तुलना में अधिक नुकीले कैंषफ़्ट बंप से स्पष्ट रूप से बड़ा होगा।
उन्नयन
कैंषफ़्ट की उन्नयन वाल्व और वाल्व सीट के बीच की दूरी निर्धारित करती है (अर्थात वाल्व कितनी दूर खुला है)।[20] वाल्व अपनी सीट से जितना ऊपर उठता है उतना अधिक वायु प्रवाह प्रदान किया जा सकता है, इस प्रकार उत्पादित शक्ति में वृद्धि होती है। उच्च वाल्व उन्नयन में वृद्धि की अवधि के रूप में चोटी की शक्ति में वृद्धि का समान प्रभाव हो सकता है, वाल्व ओवरलैप के बढ़ने के कारण डाउनसाइड्स के बिना। अधिकांश ऊपरी वाल्व यन्त्रों में एक से अधिक का संदोलक अनुपात होता है, इसलिए वाल्व खुलने की दूरी (वाल्व उन्नयन) कैंषफ़्ट के पिण्डक के शिखर से बेस सर्कल (कैंषफ़्ट उन्नयन) की दूरी से अधिक होती है।[21] ऐसे कई कारक हैं जो किसी दिए गए यन्त्र के लिए उन्नयन की अधिकतम मात्रा को सीमित करते हैं। सबसे पहले, उन्नयन बढ़ने से वाल्व पिस्टन के करीब आते हैं, इसलिए अत्यधिक उन्नयन से वाल्व पिस्टन से टकरा सकते हैं और क्षतिग्रस्त हो सकते हैं।[19]दूसरे, बढ़ी हुई उन्नयन का मतलब है कि एक तेज कैंषफ़्ट प्रोफ़ाइल की आवश्यकता होती है, जो वाल्व को खोलने के लिए आवश्यक बलों को बढ़ाती है।[20]एक संबंधित मुद्दा उच्च RPM पर वाल्व फ्लोट है, जहां वसंत तनाव पर्याप्त बल प्रदान नहीं करता है या तो वाल्व को उसके शीर्ष पर कैम का अनुसरण करते हुए रखता है या वाल्व सीट पर लौटने पर वाल्व को उछलने से रोकता है।[22] यह पिण्डक के बहुत तेज वृद्धि का परिणाम हो सकता है,[19]जहां कैम फॉलोअर कैम पिण्डक से अलग हो जाता है (वाल्वट्रेन जड़ता वाल्व स्प्रिंग के समापन बल से अधिक होने के कारण), वाल्व को निर्धारित समय से अधिक समय तक खुला छोड़ देता है। वाल्व फ्लोट उच्च RPM पर बिजली की हानि का कारण बनता है और चरम स्थितियों में पिस्टन से टकरा जाने पर मुड़े हुए वाल्व का परिणाम हो सकता है।[21][22]
समय
क्रैंकशाफ्ट के सापेक्ष कैंषफ़्ट के समय (चरण कोण) को यन्त्र के पावर बैंड को एक अलग RPM रेंज में स्थानांतरित करने के लिए समायोजित किया जा सकता है। कैंषफ़्ट को आगे बढ़ाना (क्रैंकशाफ़्ट समय से पहले इसे स्थानांतरित करना) कम RPM टॉर्क को बढ़ाता है, जबकि कैंषफ़्ट को धीमा करना (क्रैंकशाफ़्ट के बाद इसे स्थानांतरित करना) उच्च RPM शक्ति को बढ़ाता है।[23] आवश्यक परिवर्तन अपेक्षाकृत छोटे होते हैं, प्रायः 5 डिग्री के क्रम में।[citation needed] आधुनिक यन्त्र जिनमें चर वाल्व समय होती है, प्रायः किसी भी समय यन्त्र के RPM के अनुरूप कैंषफ़्ट के समय को समायोजित करने में सक्षम होते हैं। यह उच्च और निम्न RPM दोनों पर उपयोग के लिए एक निश्चित कैम टाइमिंग चुनते समय आवश्यक उपरोक्त समझौते से बचा जाता है।
पालि पृथक्करण कोण
पिण्डक पृथक्करण कोण (एलएसए, जिसे पिण्डक सेंटरलाइन कोण भी कहा जाता है) अंतग्रर्हण पिण्डकों की केंद्र रेखा और निकास पिण्डकों की केंद्र रेखा के बीच का कोण है।[24] एक उच्च एलएसए ओवरलैप को कम करता है, जो निष्क्रिय गुणवत्ता और अंतग्रर्हण वैक्यूम में सुधार करता है,[23]हालांकि अत्यधिक अवधि की भरपाई के लिए व्यापक एलएसए का उपयोग करने से बिजली और टॉर्क आउटपुट कम हो सकते हैं।[21]सामान्य तौर पर, किसी दिए गए यन्त्र के लिए इष्टतम एलएसए सिलेंडर वॉल्यूम के अंतग्रर्हण वाल्व क्षेत्र के अनुपात से संबंधित होता है।[21]
विकल्प
वाल्व एक्चुएशन के सबसे आम तरीकों में कैमशाफ्ट और वाल्व स्प्रिंग्स सम्मिलित हैं, हालांकि आंतरिक दहन यन्त्रों पर कभी-कभी वैकल्पिक प्रणालियों का उपयोग किया जाता है:
- डेस्मोड्रोमिक वाल्व, जहां वाल्व स्प्रिंग्स के बजाय एक कैम और लीवरेज सिस्टम द्वारा सकारात्मक रूप से बंद होते हैं। 1956 Ducati_singles#125_Desmo_Ducati रेसिंग बाइक पर पेश किए जाने के बाद से इस प्रणाली का उपयोग विभिन्न डुकाटी रेसिंग और सड़क मोटरसाइकिलों पर किया गया है।
- कैमलेस पिस्टन यन्त्र, जो इलेक्ट्रोमैग्नेटिक, हाइड्रोलिक या न्यूमेटिक एक्ट्यूएटर्स का उपयोग करता है। पहली बार 1980 के दशक के मध्य में टर्बोचार्ज्ड रेनॉल्ट फॉर्मूला 1 यन्त्र में इस्तेमाल किया गया था और कोनिगसेग जेमेरा में सड़क कार के उपयोग के लिए स्लेट किया गया था।[25][26]
- सनकी यन्त्र, एक रोटरी यन्त्र जो न तो पिस्टन और न ही वाल्व का उपयोग करता है। मज़्दा द्वारा 1967 मज़्दा कॉस्मो से सबसे विशेष रूप से उपयोग किया जाता है जब तक कि मज़्दा RX-8 -8 को 2012 में बंद नहीं किया गया था।
इलेक्ट्रिक मोटर गति नियंत्रक
ठोस राज्य इलेक्ट्रॉनिक्स के आगमन से पहले, विद्युत मोटरों की गति को नियंत्रित करने के लिए कैंषफ़्ट नियंत्रकों का उपयोग किया जाता था। इलेक्ट्रिक मोटर या वायवीय मोटर द्वारा संचालित कैंषफ़्ट का उपयोग संपर्ककर्ताओं को अनुक्रम में संचालित करने के लिए किया जाता था। इस माध्यम से, मुख्य मोटर की गति को बदलने के लिए प्रतिरोधों या टैप (ट्रांसफार्मर) को सर्किट में या बाहर स्विच किया गया था। यह प्रणाली मुख्य रूप से इलेक्ट्रिक ट्रेन मोटर्स (यानी इलेक्ट्रिक मल्टीपल यूनिट और इलेक्ट्रिक लोकोमोटिव) में इस्तेमाल की गई थी।[27]
यह भी देखें
इस पेज में लापता आंतरिक लिंक की सूची
- घूर्णन
- हान साम्राज्य
- ट्रिप हथौड़ा
- डंडा धकेलना
- लेलैंड आठ
- दो स्ट्रोक यन्त्र
- contactor
- अवरोध
संदर्भ
- ↑ "एक इंजन के 4 स्ट्रोक". help.summitracing.com. Retrieved 2020-06-10.
- ↑ "कैंषफ़्ट कैसे काम करता है". HowStuffWorks (in English). 2000-12-13. Retrieved 2020-06-10.
- ↑ "इस्लामिक ऑटोमेशन: अल-जज़ारी की द बुक ऑफ़ नॉलेज ऑफ़ इनजेनियस मैकेनिकल डिवाइसेस (1206)" (PDF). www.banffcentre.ca. p. 10. Archived from the original (PDF) on 8 October 2006.
- ↑ Georgano, G. N. (1982). मोटरकार्स का नया विश्वकोश 1885 से वर्तमान तक (Third ed.). New York: E. P. Dutton. p. 407. ISBN 0525932542. LCCN 81-71857.
- ↑ Culshaw, David; Horrobin, Peter (2013). ब्रिटिश कारों की पूरी सूची 1895 - 1975. Poundbury, Dorchester, UK: Veloce Publishing. p. 210. ISBN 978-1-845845-83-4.
- ↑ Boddy, William (January 1964). "O.H.C के बारे में यादृच्छिक विचार". Motor Sport. London, UK: Teesdale Publishing (1): 906. Retrieved 7 June 2020.
- ↑ "मारर ऑटो कार कंपनी". www.marrautocar.com. Archived from the original on 8 February 2014.
- ↑ Kimes, Beverly Rae (2007). वाल्टर एल मार्र: ब्यूक्स अमेजिंग इंजीनियर. Racemaker Press. p. 40. ISBN 978-0976668343.
- ↑ "लुनती कैम प्रोफ़ाइल शर्तें". www.lunatipower.com. Retrieved 2020-06-10.
- ↑ "किस प्रकार का कैंषफ़्ट - स्टील या कच्चा लोहा से बना है?". www.camshaftkits.com. Archived from the original on 2020-09-20.
- ↑ "कस्टम ग्राउंड कैम - किफ़ायती कस्टम कैम ग्राइंड - सर्किल ट्रैक". Hot Rod (in English). 2004-04-19. Retrieved 2020-06-10.
- ↑ "कस्टम-मेड बिलेट कैमशाफ्ट: - मूर गुड इंक" (in English). Retrieved 2020-06-10.
- ↑ "लिनामार मुबिया कैंषफ़्ट संचालन ख़रीद रहा है". www.forgingmagazine.com. Retrieved 7 June 2020.
- ↑ 14.0 14.1 Sellén, Magnus (2019-07-24). "डीओएचसी वि. SOHC - उनके बीच क्या अंतर है?". Mechanic Base (in English). Retrieved 2020-06-10.
- ↑ "क्वाड-कैम इंजन क्या है?". www.carspector.com. Retrieved 7 June 2020.
- ↑ "V8: जन्म और शुरुआत". www.rrec.org.uk. Archived from the original on 15 March 2016. Retrieved 12 July 2020.
- ↑ 17.0 17.1 17.2 "कैंषफ़्ट पावर का राज". www.hotrod.com (in English). 1 December 1998. Retrieved 18 July 2020.
- ↑ "कैंषफ़्ट आरपीएम रेंज". www.summitracing.com. Retrieved 18 July 2020.
- ↑ 19.0 19.1 19.2 19.3 19.4 "कैंषफ़्ट बुनियादी बातों को समझना". www.jegs.com. Retrieved 18 July 2020.
- ↑ 20.0 20.1 "कैंषफ़्ट लिफ्ट". www.summitracing.com.
- ↑ 21.0 21.1 21.2 21.3 "कैंषफ़्ट विशेषज्ञ बनें". www.hotrod.com (in English). 14 June 2006. Retrieved 18 July 2020.
- ↑ 22.0 22.1 "वाल्व फ्लोट क्या है?". www.summitracing.com. Retrieved 18 July 2020.
- ↑ 23.0 23.1 "कैम टाइमिंग और लोब पृथक्करण कोण में परिवर्तन का COMP कैम प्रभाव". www.compcams.com. Retrieved 19 July 2020.
- ↑ "कैंषफ़्ट लोब पृथक्करण". www.summitracing.com. Retrieved 19 July 2020.
- ↑ "Koenigsegg Gemera - तकनीकी विनिर्देश". www.koenigsegg.com. Retrieved 19 July 2020.
- ↑ "आंतरिक दहन इंजन का भविष्य - कोनिगसेग के अंदर". www.youtube.com. The Drive. Archived from the original on 2021-11-18. Retrieved 7 June 2020.
- ↑ "इलेक्ट्रिक इंजन - रेलवे तकनीकी वेबसाइट". www.railway-technical.com. Retrieved 7 June 2020.