ऊष्मीय उच्चावच: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 39: Line 39:
भाजक <math>m!=\Gamma(m+1)</math> वास्तव में स्टर्लिंग का सन्निकटन है, और यदि संरचना कार्य ऊर्जा के सभी मूल्यों के लिए समान कार्यात्मक निर्भरता को बरकरार रखता है, तो विहित संभाव्यता घनत्व,
भाजक <math>m!=\Gamma(m+1)</math> वास्तव में स्टर्लिंग का सन्निकटन है, और यदि संरचना कार्य ऊर्जा के सभी मूल्यों के लिए समान कार्यात्मक निर्भरता को बरकरार रखता है, तो विहित संभाव्यता घनत्व,
:<math> f(E;\beta)=\beta\frac{(\beta E)^{m-1}}{\Gamma(m)}e^{-\beta E}</math>
:<math> f(E;\beta)=\beta\frac{(\beta E)^{m-1}}{\Gamma(m)}e^{-\beta E}</math>
गामा घनत्व के रूप में ज्ञात घातीय वितरण के परिवार से संबंधित होगा। नतीजतन, विहित संभाव्यता घनत्व बड़ी संख्या के स्थानीय कानून के अधिकार क्षेत्र में आता है जो यह दावा करता है कि स्वतंत्र और समान रूप से वितरित अनियमित चर का एक क्रम सामान्य कानून की ओर जाता है क्योंकि अनुक्रम बिना सीमा के बढ़ता है।
गामा घनत्व के रूप में ज्ञात घातीय वितरण के परिवार से संबंधित होगा। परिणामस्वरूप, विहित संभाव्यता घनत्व बड़ी संख्या के स्थानीय कानून के अधिकार क्षेत्र में आता है जो यह दावा करता है कि स्वतंत्र और समान रूप से वितरित अनियमित चर का एक क्रम सामान्य कानून की ओर जाता है क्योंकि अनुक्रम बिना सीमा के बढ़ता है।


== संतुलन के बारे में वितरण ==
== संतुलन के बारे में वितरण ==
Line 47: Line 47:


=== एकल चर ===
=== एकल चर ===
मान लीजिए <math>x</math> एक थर्मोडायनामिक चर है। संभाव्यता वितरण <math>w(x)dx</math> के लिये <math>x</math> एंट्रॉपी द्वारा निर्धारित किया जाता है <math>S</math>:<br />
मान लीजिए <math>x</math> एक थर्मोडायनामिक चर है। संभाव्यता वितरण <math>w(x)dx</math> के लिये <math>x</math> एंट्रॉपी <math>S</math> द्वारा निर्धारित किया जाता है:<br />
:<math> w(x) \propto \exp\left(S(x)\right). </math>
:<math> w(x) \propto \exp\left(S(x)\right). </math>
यदि एन्ट्रॉपी अपने अधिकतम (तापीय संतुलन स्थिति के अनुरूप) के बारे में [[टेलर विस्तार]] है, तो निम्नतम आदेश अवधि गॉसियन वितरण है:<br />
यदि एन्ट्रॉपी अपने अधिकतम (तापीय संतुलन स्थिति के अनुरूप) के बारे में [[टेलर विस्तार]] है, तो निम्नतम आदेश अवधि गॉसियन वितरण है:<br />
Line 55: Line 55:


=== एकाधिक चर ===
=== एकाधिक चर ===
उपरोक्त अभिव्यक्ति संभाव्यता वितरण के लिए एक सीधा सामान्यीकरण है <math>w(x_1,x_2,\ldots,x_n)dx_1dx_2\ldots dx_n</math>:<br />
उपरोक्त अभिव्यक्ति संभाव्यता वितरण <math>w(x_1,x_2,\ldots,x_n)dx_1dx_2\ldots dx_n</math> के लिए एक सीधा सामान्यीकरण है:<br />
:<math> w = \prod_{i,j=1\ldots n}\frac{1}{\left(2\pi\right)^{n/2}\sqrt{\langle x_ix_j \rangle}} \exp\left(-\frac{x_ix_j}{2\langle x_ix_j \rangle}\right),</math>
:<math> w = \prod_{i,j=1\ldots n}\frac{1}{\left(2\pi\right)^{n/2}\sqrt{\langle x_ix_j \rangle}} \exp\left(-\frac{x_ix_j}{2\langle x_ix_j \rangle}\right),</math>
कहाँ पे <math>\langle x_ix_j \rangle</math> का माध्य मान है <math>x_ix_j</math>.<ref name=Landau/>
जहाँ  <math>\langle x_ix_j \rangle</math> का माध्य मान <math>x_ix_j</math> है.<ref name=Landau/>





Revision as of 17:29, 21 December 2022

एक क्रिस्टल की सतह पर परमाणु प्रसार। परमाणुओं का हिलना ऊष्मीय उतार-चढ़ाव का एक उदाहरण है। इसी तरह, ऊष्मीय उतार-चढ़ाव परमाणुओं के लिए आवश्यक ऊर्जा प्रदान करते हैं जो कभी-कभी एक स्थान से दूसरे स्थान पर कूदते हैं। सादगी के लिए, नीले परमाणुओं के ऊष्मीय उतार-चढ़ाव नहीं दिखाए जाते हैं।

सांख्यिकीय यांत्रिकी में, थर्मल उतार-चढ़ाव एक प्रणाली का अपनी औसत स्थिति से अनियमित विचलन है, जो संतुलन में एक प्रणाली में होते हैं।[1] जैसे-जैसे तापमान बढ़ता है, सभी ऊष्मीय उतार-चढ़ाव बड़े और अधिक लगातार होते जाते हैं, और इसी तरह जैसे-जैसे तापमान पूर्ण शून्य तक पहुंचता है, वैसे-वैसे वे घटते जाते हैं।

ऊष्मीय उतार-चढ़ाव प्रणालियों के तापमान की एक मूलभूत अभिव्यक्ति है: गैर-शून्य तापमान पर एक प्रणाली अपने संतुलन सूक्ष्म अवस्था में नहीं रहती है, बल्कि इसके अतिरिक्त अव्यवस्थित संरचना से सभी संभावित स्थितियों के मानक, बोल्ट्ज़मैन वितरण द्वारा दी गई संभावनाओं के साथ लेती है।

थर्मल उतार-चढ़ाव सामान्यतः एक प्रणाली की स्वतंत्रता (भौतिकी और रसायन विज्ञान) की सभी डिग्री को प्रभावित करते हैं: अनियमित कंपन (फोनन), अनियमित घुमाव (रोटन), अनियमित इलेक्ट्रॉनिक उत्तेजना, और आगे भी हो सकते हैं।

दबाव, तापमान या एन्ट्रापी जैसे ऊष्मागतिकी चर, इसी तरह थर्मल उतार-चढ़ाव से गुजरते हैं। उदाहरण के लिए, एक ऐसी प्रणाली के लिए जिसमें एक संतुलन दबाव होता है, प्रणाली का दबाव संतुलन मान के बारे में कुछ हद तक उतार-चढ़ाव करता है।

सांख्यिकीय परिवर्तनशील के केवल 'नियंत्रण चर' (जैसे कण एन की संख्या, मात्रा वी और माइक्रोकैनोनिकल पहनावा में आंतरिक ऊर्जा ई) में उतार-चढ़ाव नहीं होता है।

थर्मल उतार-चढ़ाव कई प्रणालियों में शोर का स्रोत हैं। ऊष्मीय उतार-चढ़ाव को जन्म देने वाली अनियमित शक्तियाँ प्रसार और अपव्यय (भिगोना और चिपचिपाहट सहित) दोनों का स्रोत हैं। अनियमित बहाव और बहाव के प्रतिरोध के प्रतिस्पर्धी प्रभाव उतार-चढ़ाव-अपव्यय प्रमेय से संबंधित हैं। थर्मल उतार-चढ़ाव चरण संक्रमण और रासायनिक गतिकी में एक प्रमुख भूमिका निभाते हैं।

केंद्रीय सीमा प्रमेय

चरण स्थान का आयतन, स्वतंत्रता की एक प्रणाली द्वारा कब्जा कर लिया गया है जो जो विन्यास आयतन और संवेग स्थान आयतन का गुणनफल है। चूंकि ऊर्जा एक गैर-सापेक्षतावादी प्रणाली के लिए संवेग का एक द्विघात रूप है, संवेग स्थान की त्रिज्या होगी, ताकि एक अति क्षेत्र का आयतन होगा, के रूप में अलग-अलग होते हैं, जिससे आयतन चरण का पता चलता है

जहाँ प्रणाली के विशिष्ट गुणों के आधार पर एक स्थिर है और गामा फलन है। इस स्थिति में कि इस हाइपरस्फीयर में बहुत अधिक आयामीता है, जो ऊष्मप्रवैगिकी में सामान्य स्थिति है, अनिवार्य रूप से सभी मात्रा सतह के निकट होगी

जहाँ हमने पुनरावर्तन सूत्र का उपयोग किया .

सतह क्षेत्र इसके पैर दो दुनियाओं में हैं: (i) मैक्रोस्कोपिक एक जिसमें इसे ऊर्जा का एक कार्य माना जाता है, और अन्य व्यापक चर, जैसे कि आयतन, जिसे चरण आयतन के विभेदन में स्थिर रखा गया है, और (ii) ) सूक्ष्म दुनिया जहां यह उन रंगों की संख्या का प्रतिनिधित्व करती है जो किसी दिए गए मैक्रोस्कोपिक राज्य के साथ संगत हैं। यह वह मात्रा है जिसे प्लैंक ने 'थर्मोडायनामिक' प्रायिकता के रूप में संदर्भित किया है। यह शास्त्रीय संभाव्यता से भिन्न है क्योंकि इसे सामान्यीकृत नहीं किया जा सकता है; अर्थात्, सभी ऊर्जाओं पर इसका अभिन्न भाग विचलन करता है - लेकिन यह ऊर्जा की शक्ति के रूप में विचलन करता है और तेज़ नहीं। चूंकि सभी ऊर्जाओं पर इसका अभिन्न अंग अनंत है, इसलिए हम इसके लाप्लास परिवर्तन पर विचार करने का प्रयास कर सकते हैं

जिसकी भौतिक व्याख्या की जा सकती है। घातीय घटते कारक, जहां एक सकारात्मक पैरामीटर है, जो तेजी से बढ़ते सतह क्षेत्र पर हावी हो जाएगा ताकि एक निश्चित ऊर्जा पर एक अत्यधिक तेज चोटी विकसित हो सके. इंटीग्रल में अधिकांश योगदान ऊर्जा के इस मान के बारे में तुरंत बाद में आएगा। इसके अनुसार एक उचित संभाव्यता घनत्व की परिभाषा को सक्षम बनाता है

जिसकी समस्त ऊर्जाओं पर समाकलन की परिभाषा के बल पर एकता है, जिसे पार्टीशन फंक्शन या जनरेटिंग फंक्शन कहा जाता है। बाद वाला नाम इस तथ्य के कारण है कि इसके लघुगणक का व्युत्पन्न केंद्रीय क्षणों को उत्पन्न करता है, अर्थात्,

और इसी तरह, जहां पहला शब्द औसत ऊर्जा है और दूसरा ऊर्जा में फैलाव है।

यह तथ्य कि ऊर्जा की शक्ति से अधिक तेजी से नहीं बढ़ता है यह सुनिश्चित करता है कि ये क्षण परिमित होंगे।[2] इसलिए, हम कारक को औसत मान जो, गॉसियन उतार-चढ़ाव के लिए के साथ समान होगा (अर्थात् औसत और सबसे संभावित मान समान होते हैं), और सबसे कम ऑर्डर शर्तों को बनाए रखने के परिणामस्वरूप

यह गाऊसी, या सामान्य, वितरण है, जिसे इसके पहले दो क्षणों द्वारा परिभाषित किया गया है। सामान्यतः, किसी को प्रायिकता घनत्व निर्दिष्ट करने के लिए सभी क्षणों की आवश्यकता होगी, जिसे पूर्व घनत्व के विपरीत विहित, या पश्च घनत्व के रूप में संदर्भित किया जाता है पूर्व घनत्व , जिसे 'संरचना' फंक्शन कहा जाता है।[2] यह केंद्रीय सीमा प्रमेय है क्योंकि यह थर्मोडायनामिक सिस्टम पर लागू होता है।[3]

यदि चरण की मात्रा बके रूप में बढ़ती है, तो इसका लाप्लास रूपांतरण, विभाजन फ़ंक्शन, .के रूप में भिन्न होगा }}. सामान्य वितरण को पुनर्व्यवस्थित करना ताकि यह संरचना फ़ंक्शन के लिए एक अभिव्यक्ति बन जाए और इसका मूल्यांकन पर करे

यह पहले क्षण की अभिव्यक्ति से अनुसरण करता है कि , जबकि दूसरे केंद्रीय क्षण से, . ऊर्जा के औसत मूल्य पर मूल्यांकन किए गए संरचना फलन की अभिव्यक्ति में इन दो अभिव्यक्तियों का परिचय देता है

.

भाजक वास्तव में स्टर्लिंग का सन्निकटन है, और यदि संरचना कार्य ऊर्जा के सभी मूल्यों के लिए समान कार्यात्मक निर्भरता को बरकरार रखता है, तो विहित संभाव्यता घनत्व,

गामा घनत्व के रूप में ज्ञात घातीय वितरण के परिवार से संबंधित होगा। परिणामस्वरूप, विहित संभाव्यता घनत्व बड़ी संख्या के स्थानीय कानून के अधिकार क्षेत्र में आता है जो यह दावा करता है कि स्वतंत्र और समान रूप से वितरित अनियमित चर का एक क्रम सामान्य कानून की ओर जाता है क्योंकि अनुक्रम बिना सीमा के बढ़ता है।

संतुलन के बारे में वितरण

नीचे दिए गए भाव उन प्रणालियों के लिए हैं जो संतुलन के करीब हैं और नगण्य क्वांटम प्रभाव हैं।[4]


एकल चर

मान लीजिए एक थर्मोडायनामिक चर है। संभाव्यता वितरण के लिये एंट्रॉपी द्वारा निर्धारित किया जाता है:

यदि एन्ट्रॉपी अपने अधिकतम (तापीय संतुलन स्थिति के अनुरूप) के बारे में टेलर विस्तार है, तो निम्नतम आदेश अवधि गॉसियन वितरण है:

मात्रा औसत वर्ग उतार-चढ़ाव है।[4]


एकाधिक चर

उपरोक्त अभिव्यक्ति संभाव्यता वितरण के लिए एक सीधा सामान्यीकरण है:

जहाँ का माध्य मान है.[4]


मौलिक थर्मोडायनामिक मात्रा का उतार-चढ़ाव

नीचे दी गई तालिका में ऊष्मप्रवैगिकी चर के औसत वर्ग उतार-चढ़ाव दिए गए हैं तथा शरीर के किसी छोटे से हिस्से में। हालांकि, नगण्य क्वांटम प्रभाव रखने के लिए छोटा हिस्सा अभी भी काफी बड़ा होना चाहिए।

Averages of thermodynamic fluctuations. is the heat capacity at constant pressure; is the heat capacity at constant volume.[4]


यह भी देखें

  • मात्रा में उतार-चढ़ाव

टिप्पणियाँ

  1. In statistical mechanics they are often simply referred to as fluctuations.
  2. 2.0 2.1 Khinchin 1949
  3. Lavenda 1991
  4. 4.0 4.1 4.2 4.3 Landau 1985


संदर्भ

  • Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics. Dover Publications. ISBN 0-486-60147-1.
  • Lavenda, B. H. (1991). Statistical Physics: A Probabilistic Approach. Wiley-Interscience. ISBN 0-471-54607-0.
  • Landau, L. D.; Lifshitz, E. M. (1985). Statistical Physics, Part 1 (3rd ed.). Pergamon Press. ISBN 0-08-023038-5.